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High molecular weight adiponectin 
levels are inversely associated 
with adiposity in pediatric brain 
tumor survivors
Rebecca Ronsley1, Shahrad Rod Rassekh1, Adam Fleming2,3, Brianna Empringham2,4, 
William Jennings2,4, Carol Portwine2,3, Sarah Burrow5, Shayna Zelcer6, Donna L. Johnston7, 
Lehana Thabane8,9,10,11 & M. Constantine Samaan2,4,8,12*

While children with brain tumors are surviving at record rates, survivors are at risk of cardiovascular 
disease and type 2 diabetes mellitus; these conditions may be driven by excess body fat. Adiponectin 
in an adipokine that is inversely associated with the fat mass, and has been linked to cardiometabolic 
risk stratification in the general population. However, adiponectin’s profile and determinants in 
SCBT have not been established. We tested the hypothesis that high molecular weight (HMW) 
adiponectin levels, the more biologically active form of adiponectin, were associated with adiposity 
in SCBT similarly to non-cancer controls. Seventy-four SCBT (n = 32 female) and 126 controls (n = 59 
female) who were 5–17 years old were included. Partial correlations and multivariable regression 
analyses assessed the relationship between HMW adiponectin and adiposity. HMW adiponectin 
was inversely associated with total and central adiposity (FM%: β − 0.21, 95% CI − 0.15, − 0.08; p 
value < 0.0001; WHR: β − 0.14, 95% CI − 0.02, − 0.01; p value < 0.0001 ;WHtR: β − 0.21, 95% CI − 0.05, 
− 0.03; p value < 0.0001). In conclusion, HMW adiponectin is inversely correlated with adiposity in 
SCBT. Adiponectin may serve as a biomarker of cardiometabolic risk and response to interventions to 
prevent and manage obesity and its comorbidities in SCBT.

One-third of the world’s population is overweight or obese, and this figure includes tens of millions of children1–5. 
These rates are significant, as childhood obesity persists into adulthood, and obesity-driven cardiovascular dis-
eases and type 2 diabetes mellitus contribute to 4,000,000 adult deaths globally6,7. Obesity is a driver of the global 
epidemic of chronic non-communicable diseases, and is a significant public health challenge6.

Survivors of childhood brain tumors (SCBT) is an emerging group of childhood cancer survivors; this popula-
tion exhibits vulnerability to premature cardiovascular disease and type 2 diabetes mellitus and early mortality 
when compared to non-cancer control groups8–10. There are multiple reasons for the susceptibility to cardio-
metabolic disorders in survivors, and an urgent need for interventions that can lower their risk to improve life 
expectancy and quality of life.

Obesity in children is characterized by the disproportionate expansion of the adipose tissue when compared 
to muscle and bone compartments11–13, with multiple biological, psychological, and lifestyle drivers of the adipose 
phenotype14,15. Importantly, while SCBT have excess adiposity when compared to controls, the potenial alteration 
in adipose tissue function is less well understood and may impact metabolic health16.
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One of the most abundant products of the adipose tissue is the adipokine adiponectin. This adipokine has 
low, medium, and high molecular weight (HMW) isoforms17. The latter isoform is composed of 12–18 mono-
mers and is considered the more relevant active form through which adiponectin exerts its biological actions18.

In the general population, obesity is associated with lower circulating adiponectin levels, which are linked 
to insulin resistance and independently predicts cardiovascular risk19–22. Also, weight loss improves circulating 
adiponectin levels and insulin sensitivity23. While studies have described HMW adiponectin profile in children, 
there are no studies on the association of HMW adiponectin with adiposity in SCBT24–26.

We tested the hypothesis that HMW adiponectin was associated with adiposity in SCBT. We also hypothesized 
that the HMW adiponectin profile was similar in SCBT and non-cancer controls.

Results
Table 1 reports on baseline demographic, anthropometric, and clinical characteristics of the study participants. 
The study enrolled 74 SCBT and 126 non-cancer controls.

In SCBT group, the brain tumor types included non-Neurofibromatosis-1 (NF1) (N = 31, 41.90%) and NF1-
related low-grade glioma (N = 11, 14.90%), medulloblastoma (N = 16, 21.60%), germ cell tumors (N = 6, 8.10%), 
subependymal giant cell astrocytoma (N = 3, 4.10%), ependymoma (N = 2, 2.70%), craniopharyngioma (N = 2, 
2.70%), meningioma (N = 1, 1.40%), and other (N = 2, 2.70%). Tumors were distributed almost equally between 
the supratentorial (n = 35, 47.30%) and infratentorial (n = 39, 52.70%) compartments. The majority of SCBT 
were treated with surgery (n = 57, 77.00%), with 30 (40.50%) receiving radiotherapy and 36 (48.60%) receiving 
chemotherapy.

Both SCBT and non-cancer controls had similar age (SCBT: 15.10 ± 7.30 years; controls 14.00 ± 2.70 years) 
and sex distributions (SCBT: n = 32 female, 43.20%; controls: n = 59 female, 46.80%). Of note, the majority of 
SCBT were pubertal (n = 109 (86.50%); male n = 59 (88.10%); female n = 50 (84.70%)), and a similar trend was 
noted in controls (n = 51 (68.90%); male n = 30 (71.40%); female n = 21 (65.60%).

The mean BMI percentile was 64.20% for females and 61.40% for males, while body fat percentage was 26.70% 
in females compared to 20.10% in males.

One-in-four SCBT and one-in-three controls were overweight or obese based on BMI z-score measures 
(SCBT: overweight n = 13 (18.00%), obesity n = 7 (9.00%); controls: overweight n = 22 (17%), obesity n = 23 
(18.00%)).

The levels of adiponectin were similar in SCBT and controls (6.40 ± 5.40 versus 18.70 ± 3.90 µg/mL, p value 
0.589). Females had a higher level of HMW adiponectin when compared to male participants (6.90 ± 4.80 versus 
4.80 ± 3.80 µg/mL, p value 0.041).

To determine the correlations between the fat depots and HMW adiponectin in SCBT and controls, we 
conducted partial correlation analyses adjusting for age, sex, and puberty (Table 2). Total adiposity (fat mass 
percentage, FM%) correlated with central adiposity measures (waist-to-hip ratio (WHR), waist-to-height ratio 
(WHtR)). Adiponectin was negatively correlated with FM% and WHtR in survivors but not in controls; there 
was no correlation between adiponectin and WHR in both populations (Table 2).

To determine the relationship between HMW adiponectin and adiposity, we performed a multivariable lin-
ear regression analysis and adjusted for age, sex, puberty, cancer diagnosis, and treatments, including surgery, 
radiotherapy, and chemotherapy (Table 3).

The HMW adiponectin was negatively associated with total and central adiposity measures (FM%: β − 0.21, 
95% CI − 0.15, − 0.08, p value < 0.0001; WHR: β − 0.14, 95% CI − 0.02, − 0.01, p value < 0.0001; WHtR: β − 0.21, 
95% CI − 0.05, − 0.03, p value < 0.0001). Having a brain tumor diagnosis and older age were associated with 
adiposity, as well as female sex except for WHtR. Treatments and puberty had no significant association with 
adiposity.

In conclusion, HMW adiponectin was inversely associated with total and central adiposity measures in SCBT 
and non-cancer controls.

Table 1.   Baseline characteristics of participants. BMI body mass index, cm centimeter, kg kilogram, SCBT 
survivors of childhood brain tumors, SD standard deviation.

Variables

SCBT Controls

(Mean ± SD, n = 74) (Mean ± SD, n = 126)

Age (years) 15.10 ± 7.30 (range 5.20–42.70) 14.00 ± 2.70 (range 5.40–18.80)

Height (cm) 151.10 ± 25.20 162.20 ± 15.10

Weight (kg) 53.30 ± 24.60 60.10 ± 22.00

BMI z-score 0.45 ± 1.20 0.52 ± 1.10

Body fat percentage (n = 180) 25.00 ± 10.00 (range 9–51) 22.70 ± 9.80 (range 6–47)

Waist-to-hip ratio (n = 198) 0.87 ± 0.08 (range 0.71–1.06) 0.83 ± 0.10 (range 0.65–1.28)

Waist-to-height ratio (n = 198) 0.48 ± 0.07 (range 0.36–0.75) 0.45 ± 0.08 (range 0.33–0.79)

Systolic blood pressure (mmHg) 105.00 ± 12.00 108.00 ± 11.00

Diastolic blood pressure (mmHg) 66.00 ± 9.00 68.00 ± 9.00

Adiponectin (µg/mL, n = 49 SCBT, n = 101 controls) 6.40 ± 5.40 18.70 ± 3.90
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Discussion
Over the past few decades, the number of children surviving brain tumors has reached record rates. However, 
survivors are at risk of developing obesity, cardiovascular disease, and type 2 diabetes mellitus9,10,27–32. While 
childhood obesity and dysglycemia drive early adult mortality33, SCBT have higher rates of adverse cardio-
metabolic outcomes and premature mortality than the general population but with similar BMI-defined obesity 
rates9, 10,16,27–32,34.

Importantly, SCBT have higher adiposity at similar BMI levels when compared to non-cancer controls16,35, 
and while the fat mass is a component of total body mass, it is a superior predictor of cardiometabolic risk in 
the general population versus BMI36–43.

Therefore, identifying biomarkers of the fat mass may help clarify which SCBT are at risk of cardiometabolic 
morbidities and mortality to target them with interventions that attempt to improve outcomes. This study has 
demonstrated that circulating HMW adiponectin is a biomarker of the fat mass in SCBT and that it follows the 
same trends observed in the non-cancer control group.

Adiponectin is a 30 kDa molecule secreted predominantly by adipocytes.
The endoplasmic reticulum plays an important role in regulating the synthesis and secretion of adiponec-

tin, whereby Endoplasmic Reticulum resident protein 44 (ERp44) inhibits adiponectin secretion by retain-
ing its oligomers44. The Endoplasmic Reticulum Oxidoreductase 1 alpha (Ero1-La) releases the ERp44-bound 
oligomers45. Adiponectin has significant Immunometabolic effects, including actions in insulin sensitivity and 

Table 2.   Partial correlations of the different fat depots and adiponectin adjusted for age, sex, and puberty in 
SCBT and controls. FM% fat mass percentage, 95% CI 95% confidence interval, SCBT survivors of childhood 
brain tumors, WHR waist-to-hip ratio, WHtR waist-to-height ratio.

Population Variables Correlations (p value) FM% WHR WHtR Adiponectin

SCBT

FM%
r 1 0.4 0.77 − 0.42

p value – 0.006 < 0.0001 0.015

WHR
r 0.4 1 0.61 − 0.2

p value 0.006 – < 0.0001 0.27

WHtR
r 0.77 0.61 1 − 0.37

p value < 0.0001 < 0.0001 – 0.032

Controls

FM%
r 1 0.3 0.77 − 0.14

p value – 0.001 < 0.0001 0.161

WHR
r 0.3 1 0.68 − 0.12

p value 0.001 – < 0.0001 0.27

WHtR
r 0.77 0.68 1 − 0.14

p value < 0.0001 < 0.0001 – 0.171

Table 3.   Regression analysis for the association of adiponectin, age, sex, and cancer status in SCBT and 
controls. 95% CI 95% confidence interval, SCBT survivors of childhood brain tumors, WHR waist-to-hip ratio, 
WHtR waist-to-height ratio.

Variables β

95% CI

p valueUpper Lower

Dependent variable: FM%

Adiponectin − 0.21 − 0.15 − 0.08 < 0.0001

Age 0.26 0.23 0.53 < 0.0001

Sex 0.41 0.13 0.18 < 0.0001

Cancer status 0.16 0.04 0.1 < 0.0001

Dependent variable: waist-to-hip ratio

Adiponectin − 0.14 − 0.02 − 0.01 < 0.0001

Age 0.12 0.01 0.07 0.016

Sex − 0.13 − 0.02 − 0.01 < 0.0001

Cancer status 0.19 0.012 0.024 < 0.0001

Dependent variable: waist-to-height ratio

Adiponectin − 0.21 − 0.05 − 0.03 < 0.0001

Age 0.27 0.08 0.18 < 0.0001

Sex − 0.004 − 0.01 0.01 0.91

Cancer status 0.11 0.01 0.03 0.001
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inflammation19,46. The mechanisms of adiponectin downregulation in obesity are not fully understood, but it 
may be related to adipose tissue macrophage secretion of Tumor Necrosis Factor Alpha (TNFα) and oxidative 
stress suppressing adiponectin gene expression47–51.

The HMW adiponectin levels trended higher in females when compared to male participants. Our results are 
consistent with current data in the general pediatric population26,46,52–55, with obese boys having the lowest levels 
when compared to girls and lean children, as the androgen rise with puberty in boys is associated with reduced 
adiponectin level55,56. In our cohort, the majority of participants were pubertal, and the number of prepubertal 
subjects was quite small and we could not verify the impact of puberty on adiponectin levels in survivors.

Children with central adiposity have lower adiponectin levels compared to those with normal central fat52. 
Also, patients with type 2 diabetes mellitus have lower adiponectin levels when compared to people with no 
diabetes57. This negative association of adiposity with adiponectin is consistent with the inflammatory response 
within visceral fat and immune cell infiltration and inflammatory cytokine secretion within this depot which 
may suppress adiponectin production58.

While SCBT have not had their adiponectin levels measured previously, pediatric leukemia and lymphoma 
patients have had their adiponectin profile interrogated. These studies demonstrated that adiponectin correlated 
with BMI-z score, sex, and puberty59–62. Our data highlight that the adipose tissue of brain tumor survivors likely 
has similar biological profile to that of survivors of other pediatric cancers and the general pediatric population, 
and further study of the adipose tissue is needed to understand the impact of the tumor and its treatment on 
adipose tissue Immunometabolism.

The role of adiponectin as an anti-inflammatory, and at times as an inflammatory, molecule has been 
debated17,63. Further analysis of adiponectin actions in SCBT is needed as a biomarker of adipose mass and to 
assess responses to interventions targeting adiposity and cardiometabolic risk.

One strength of this analysis involved the use of measures of total and central adiposity in assessing the rela-
tionship between adiponectin and the adipose profile in SCBT. Furthermore, we were able to compare SCBT to 
a healthy non-cancer control group in our analysis, providing a unique comparison population for this study.

One limitation of this study is that due to its cross-sectional design, it was not possible to elicit longitudinal 
changes in HMW adiponectin levels from diagnosis and into follow-up, and link that profile with future health 
outcomes. Furthermore, as the sample size is relatively small, tumor subgroup analyses were not possible to 
maintain the power of the study.

Future studies need to assess survivors with different tumors at sufficient numbers longitudinally to determine 
the potential association of adiponectin with other metabolic parameters in this population including glucose 
homeostasis. Whether adiponectin during childhood can predict future cardiometabolic outcomes in SCBT 
requires further assessment.

Conclusions
In this study, adiposity in SCBT was inversely associated with HMW adiponectin levels. This population is highly 
vulnerable to adverse cardiometabolic disorders.

The insulin-sensitizing, anti-inflammatory, and anti-atherogenic effects of adiponectin makes it a critically 
vital molecule to study in survivors, as it may serve as a biomarker of future cardiovascular and type 2 diabetes 
risk. Adiponectin may also act as a marker of response to interventions aiming to prevent, delay, and treat obesity 
and its cardiometabolic comorbidities in pediatric brain tumor survivors.

Methods
Study design.  This study was a cross-sectional investigation conducting a secondary analysis of data from 
the Canadian Study of Determinants of Endometabolic Health in ChIlDrEn (CanDECIDE study) cohort. The 
full protocol for this study and its feasibility has been previously published64,65. This study was approved by the 
Hamilton Integrated Research Ethics Board, and the methods adhered to the relevant regulations and guidelines.

Participants.  Participants were recruited from the endocrine, oncology, and orthopedics clinics at McMas-
ter Children’s Hospital, a Tertiary Pediatric Academic Center in Hamilton, Ontario, Canada. Participants 
included children between 5–17 years of age, who are either lean, overweight, or obese based on their body mass 
index z-score (BMI z-score) as defined by standard criteria66. SCBT had to have completed therapy for at least 
six months before study enrolment.

Participants were excluded due to active infections or a history of infections within 14 days before participa-
tion, history of autoimmune disorders, or using immunosuppressive therapy or systemic steroids at a dose higher 
than maintenance dosing (6–8 mg/m2/day), or had a history of smoking. We excluded participants and families 
who were unable to provide consent64,65.

Participants 16 years and older provided written informed consent. For participants between 7 and 15 years 
of age, the parent or guardian supplied written informed consent, and the participant provided assents. For those 
below seven years of age, the parent or guardian provided written informed consent before study inclusion. The 
study participation rate was 26.8% as previously reported65.

Data collection.  We collected clinical measures, including height, weight, waist circumference, hip circum-
ference, blood pressure, and adiposity data. Questionnaires were also administered to participants’ parents and 
to participants at study visits to collect sociodemographic data, past medical history, and pubertal stage (using 
validated Tanner pubertal staging pictures). Clinical data, including diagnosis and treatment details, were also 
collected and verified from medical notes.
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Clinical measures and variable definitions.  We collected anthropometric measures including height 
that was assessed with a stadiometer and measured to the closest 0.1 cm. We measured weight to the nearest 
0.1 kg using an electronic scale (Seca, USA). We calculated the BMI using a standard formula of weight (kg)/
[height (m)]2 and the BMI percentile using the Children’s BMI Tool for Schools66. We measured the BMI z-score 
using the Centers for Disease Control and Prevention growth chart67. We measured Total adiposity by bioelec-
trical impedance analysis using the Tanita body fat monitor (Tanita Corporation, Illinois, USA). We measured 
waist circumference and hip circumference using a spring-loaded tape measure. We then calculated the waist-
to-hip and waist-to-height ratios to assess central adiposity64,65.

Enzyme‑Linked Immunosorbent Assay (ELISA) for adiponectin.  We collected blood samples into 
EDTA tubes in the fasted state. Centrifugation of the samples took place at room temperature for 15 min at 
1,500 g to isolate plasma. We stored the samples in cryovials at − 80 °C. When preparing the samples for the assay, 
the samples were centrifuged at room temperature for 15 min at 1500 g after they were thawed on ice. The high 
molecular weight Adiponectin levels were quantified using the commercially available enzyme-linked immuno-
sorbent assay (ELISA) Human HMW Adiponectin/Acrp30 Quantikine ELISA Kit (R&D Systems, Minneapolis, 
USA) as per manufacturer’s guidelines68.

Statistical analysis.  We used the method of Norman and Streiner to calculate sample size69. We report 
the demographic data and baseline variables using descriptive analyses based on the variable type. We report 
continuous variables as mean ± SD and categorical variables as numbers (%). We tested the data for normality of 
distribution using the Shapiro–Wilk test, and non-normally distributed data were log-transformed. We tested 
for colinearity using variance inflation factor.

We imputed missing data in SPSS and included five imputations per missing variable. After variable selec-
tion, the output dataset encompassed our original data set with the imputed missing data and a set of cases 
with imputed values generated by the program70. The variables that were imputed included fat mass percentage 
(n = 20/200), waist-to-hip ratio (2/200), waist-to-height ratio (2/200), and adiponectin (n = 50/200). The valid-
ity of our methods has already been established with the percentage of imputations that will maintain data 
validity70–73.

We used partial correlations to assess adiponectin’s association with fat mass percentage, WHR, and WHtR 
and adjusted for age, sex, and puberty. An independent sample t-test was used to assess the differnces in adipose 
depots and total and sex-specific differences in HMW adiponectin levels.

We conducted a multivariable regression analysis to assess the relationship between adiposity and HMW 
adiponectin. Adiposity measures used included total adiposity (FM%) and central adiposity using WHR and 
WHtR measures. These analyses had age, sex, puberty, cancer diagnosis, and treatments included as independ-
ent variables. Two subjects per variable were needed to address the association of adiponectin with adiposity74. 
Therefore, the number of participants in the SCBT and the control groups has provided valid results.

As fat mass percentage and BMI z-score were co-linear variables, we included only the FM% in the analysis. 
We report the results as standardized β coefficients with 95% CI and associated p values. SPSS version 25.0 was 
used to conduct all analyses75.

Data availability
The study data are available from the corresponding author upon reasonable justification.
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