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Abstract
The gut-brain axis is a bidirectional information interaction system between the 
central nervous system (CNS) and the gastrointestinal tract, in which gut 
microbiota plays a key role. The gut microbiota forms a complex network with the 
enteric nervous system, the autonomic nervous system, and the neuroendocrine 
and neuroimmunity of the CNS, which is called the microbiota-gut-brain axis. 
Due to the close anatomical and functional interaction of the gut-liver axis, the 
microbiota-gut-liver-brain axis has attracted increased attention in recent years. 
The microbiota-gut-liver-brain axis mediates the occurrence and development of 
many diseases, and it offers a direction for the research of disease treatment. In 
this review, we mainly discuss the role of the gut microbiota in the irritable bowel 
syndrome, inflammatory bowel disease, functional dyspepsia, non-alcoholic fatty 
liver disease, alcoholic liver disease, cirrhosis and hepatic encephalopathy via the 
gut-liver-brain axis, and the focus is to clarify the potential mechanisms and 
treatment of digestive diseases based on the further understanding of the 
microbiota-gut- liver-brain axis.

Key Words: Microbiota-gut-brain axis; Gut-liver axis; Gut microbiota; Digestive diseases; 
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Core Tip: Microbiota-gut-liver-brain axis regulates the occurrence and development of 
many diseases, and it offers a new direction for research on the treatment of diseases. 
In recent years, there have been more and more studies on the microbiota-gut-liver-
brain axis, which not only increases the understanding of its pathogenesis, but also 
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provides many novel treatment methods. We herein discuss the role of microbiota-gut-
liver-brain axis in digestive diseases with a focus on clarifying the potential 
mechanisms and treatment.

Citation: Ding JH, Jin Z, Yang XX, Lou J, Shan WX, Hu YX, Du Q, Liao QS, Xie R, Xu JY. 
Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol 
2020; 26(40): 6141-6162
URL: https://www.wjgnet.com/1007-9327/full/v26/i40/6141.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i40.6141

INTRODUCTION
How does microbiome affect human health? According to related research, the ratio of 
microorganisms living in the human body to human cells is close to 1:1, and the vast 
majority live in the colon whereby the gut represents the largest reservoir of 
microorganisms[1]. Over the past decade, research on the trillions of microbiota living 
in the human body and their interaction with hosts has increased significantly. These 
previously neglected members has been recognized as providing the functions of host 
physiology, such as metabolism, immunity, cardiovascular function and neuronal 
development, and dysregulation of their structure or function can lead to the 
distortion of microbial-host homeostasis and may cause disease[2]. Therefore, it is 
important to understand the role of gut microbiota in the development of human 
diseases.

The gut microbiota forms a complex network along with the enteric nervous system 
(ENS), the autonomic nervous system (ANS), and the neuroendocrine and 
neuroimmunity of the central nervous system (CNS), which is called the microbiota-
gut-brain axis. Signals of microbiota-gut-brain axis can occur through a variety of 
mechanisms. These mechanisms also affect physiological function at multiple levels. 
However, the signal pathways of the microbiota-gut-liver-brain axis need to be further 
studied, and the related therapies need to be further explored.

Recently, a growing number of studies have shown that gut microbiota is associated 
with many diseases, such as depression, autism, anxiety, obesity, schizophrenia, 
diabetes, Parkinson's disease and Alzheimer's disease. This means that the research of 
gut microbiota is crucial to the development of personalized health care strategies in 
the future, and people can directly adjust the gut microbiota to benefit the host. Given 
that gut microbiota play a key role in the gut-liver-brain axis, we mainly discuss the 
role of the gut microbiota in the irritable bowel syndrome (IBS), inflammatory bowel 
disease (IBD), functional dyspepsia (FD), non-alcoholic fatty liver disease (NAFLD), 
alcoholic liver disease (ALD), cirrhosis and hepatic encephalopathy (HE) via the gut-
liver-brain axis in this review, and focus on the potential mechanisms and treatment 
(Table 1).

MICROBIOTA
The gut microbiota is a highly dynamic system, whose density and composition are 
affected by a variety of exogenous and endogenous factors[3], however, the disorder of 
the gut microbiota is the basis for the occurrence of many diseases. Understanding the 
influencing factors of the microbiota can further regulate the microbiota and thus have 
a beneficial effect on the host. In addition, gut microbiota can produce bioactive 
peptides, including neurotransmitters, secondary bile acid conversion, short chain 
fatty acids (SCFAs), branched chain amino acids, and intestinal hormones[4]. These 
bioactive peptides are involved in the signals of the gut-brain axis, of which the 
representative is SCFAs, which enter the circulatory system and send signals to the 
brain via the gut-brain axis, and at the same time stimulate the hypothalamus-
pituitary-adrenal (HPA) axis or it may directly affect the mucosal immune system, 
which can indirectly affect CNS transmission[5]. At the same time, more and more 
studies have shown that the gut microbiota plays an important role in regulating the 
body's basic functions such as metabolism, immunity, cardiovascular function and 
neuronal development[2,6]. Therefore, the gut microbiota may be a potential target for 
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Table 1 Common treatments based on microbiota-gut-liver-brain axis

Treatment Mechanism Example Treated diseases Ref. 

Probiotics Reduce depression and alter brain activity Bifidobacterium 
longum subsp. Longum 
NCC3001

Irritable bowel syndrome [36]

Regulate immunity and diminish inflammation VSL#3 Ulcerative colitis [61]

Modulate gut microbiota, restore the intestinal 
barrier function and prevent mesenteric artery 
endothelial dysfunction, as well as enhance bile 
acids excretion,

LGG Non-alcoholic fatty liver disease; hepatic 
encephalopathy; alcoholic liver disease

[115,141,
168]

Reduce ammonia levels by reducing gut microbiota 
imbalances

Lactobacillus and 
Bifidobacterium species

Hepatic encephalopathy [143]

FMT Modulate gut microbiota, reduce endotoxin and 
inflammation factors, as well as reduce 
neuroinflammation

Irritable bowel syndrome; inflammatory 
bowel disease; non-alcoholic fatty liver 
disease; alcoholic liver disease; hepatic 
encephalopathy

[119,148]

Antibiotic Modulate gut microbiota and their end-products, as 
well as improve the cognitive function

Rifaximin Hepatic encephalopathy; irritable bowel 
syndrome

[18,37]

Psychotherapy Improve mental health CBT Irritable bowel syndrome; inflammatory 
bowel disease

[38,39]

Acupuncture and 
moxibustion

Regulate gut microbiota, repair mucosal tissue 
damage and improve gut mucosal immunity

Moxibustion Irritable bowel syndrome; inflammatory 
bowel disease

[45,66]

Improve the balance of the HPA axis and anxiety 
behaviors

EA and MB Functional dyspepsia [68]

Regulate gut-brain peptides and promote the gastric 
empty rate

Herbal cake-separated 
moxibustion

Alcoholic liver disease [96]

Herbaceous 
Medications

Improve gastrointestinal function, DA-9701 (Motilitone) Functional dyspepsia [88]

Increase the production of ghrelin, cholecystokinin 
and vasoactive intestinal peptides

Xiangsha Liujunzi 
Decoction

Functional dyspepsia [89]

Increase the levels of motilin, gastrin and gastric 
emptying rate

XiaoErFuPi granules Functional dyspepsia [90]

Regulate gut microbiota and promote the gastric 
empty rate

MA Functional dyspepsia [91]

Treat both gastrointestinal and psychological 
symptoms

Rikkunshito Functional dyspepsia [92]

Regulate gut mucosal barrier, lipid metabolism and 
liver function

Dachaihu decoction Non-alcoholic fatty liver disease [122]

Polyphenol Modulate gut microbiota, reduce inflammation 
factors and alleviate the pathological injuries,

Raw Bowl Tea 
polyphenol

Non-alcoholic fatty liver disease [126]

Change the metabolism of bile acids Green tea polyphenol Non-alcoholic fatty liver disease [127]

LGG: Lactobacillus rhamnosus GG; CBT: Cognitive behavior therapy; EA: Electroacupuncture; MB: Moxibustion; HPA: Hypothalamus-pituitary-adrenal; 
MA: Magnoloside A.

effective personalized medication for some diseases in the future. At present, whole-
genome association research is underway, providing valuable microbial function 
potential for human studies, and the development of high throughput and low-cost 
sequencing methods, metabolomics, and proteomics has made an important 
contribution for the research.

MICROBIOTA-GUT-BRAIN AXIS
The gut-brain axis is a bidirectional information interaction system between the CNS 
and the gastrointestinal tract, involving neural, endocrine, and immune systems 
(Figure 1), which allows our brain and emotional state to influence gastrointestinal 
homeostasis and function from the top down, and regulates brain function and 
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Figure 1  Diagram showing the varied and complex bidirectional information interaction system for microbiota-gut-liver-brain axis, 
including neural, endocrine, and immune systems. GABA: Gamma-aminobutyric acid; DA: Dopamine; NA: Noradrenaline; Ach: Acetylcholine; 5-HT: 
Serotonin; HPA: Hypothalamus-pituitary-adrenal; CRH: Corticotropin-releasing hormone; ACTH: Adrenocorticotropic hormone; ECC: Enterochromaffin cell; SCFAs: 
Short chain fatty acids; Try: Tryptophan.

behavior from the bottom up[7]. This bidirectional interaction constitutes an up-down 
regulation and a down-up regulation system.

Up-down regulation. The regulation of the gastrointestinal tract by the nervous 
system is realized through the interaction of three levels: CNS, ANS and ENS. The 
ENS senses and responds to the dynamic ecosystem of the gastrointestinal tract by 
converting chemical signals from the environment into nerve impulses, which spread 
to the entire intestine and other organs of the body, including the CNS[8]. The ANS 
include sympathetic nerves and parasympathetic nerves, both of which can 
antagonize, cooperately or independently exert their autonomous effects. Also, the 
ANS controls the main functions of the gastrointestinal tract such as gastrointestinal 
motility, regulation of gastrointestinal blood flow, and secretion of digestive juice[9]. 
Moreover, studies have confirmed that the ANS affects intestinal epithelial stem cell 
proliferation[10]. The CNS affects the activity of the gastrointestinal tract by regulating 
the sympathetic and parasympathetic nerves and some structures of the CNS are 
involved in this process, such as amygdala, hypothalamus, nucleus tractus solitarius, 
etc[11]. In addition, the HPA axis plays an important role in mediating the effects of 
stress on the gastrointestinal tract[12].

Down-up regulation. Intestinal cells produce a variety of signal molecules, which 
can travel through the blood-brain barrier to the CNS after passing through the 
bloodstream. For example, a high-salt diet induces TH17 response in the intestine, 
resulting in an increase in circulating plasma interleukin-17 (IL-17), IL-17 in turn acts 
on brain endothelial cells, inhibiting the production of NO by endothelial cells, leading 
to reduced cerebral perfusion and cognitive dysfunction[13]. However, most 
neurotransmitters produced by microbiota, including serotonin, dopamine, and 
aminobutyric acid, usually cannot break through the blood-brain barrier that protects 
the brain. It can directly act on specific receptors of exogenous primary afferent neuron 
cell bodies, or it can cross the blood-brain barrier through neurotransmitter precursors 
and then is converted into active neurotransmitters. For example, gut microbiota can 
affect the metabolism of serotonin precursor tryptophan. This may affect 
serotoninergic signaling in the CNS, as tryptophan concentrations in plasma have been 
shown to correlate with serotonin levels in the brain[14].

The gut microbiota plays a key role in the gut-brain axis, which is proved by 
evidence in six different aspects: (1) Studies on sterile animals have shown that the 
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brain is affected in the absence of a microbiome. For example, mice that grow in a 
sterile environment have a more exaggerated physiological response to stress, and 
Bifidobacterium infantis can reverse the excessive HPA stress response in sterile 
mice[15]; (2) Transplanting gut microbiota can change brain pathophysiology. For 
example, the intestinal microorganisms of patients with Parkinson′s disease are 
isolated and transplanted into the intestinal tract of a mouse model of Parkinson′s 
disease, which can aggravate the pathological changes in Parkinson′s disease[16]; (3) 
Extensive research shows that multiple probiotic strains eliminate stress, depression, 
and anxiety-like behaviors in preclinical models and human studies[4]; (4) Bacterial 
colonization of the gut is key to the development and maturation of important systems 
(including immune and endocrine systems) that influence programming and signaling 
in the CNS after birth[17]; (5) HE can be treated with antibiotics that target 
microorganisms, such as rifaximin, an oral antibiotic that modulates gut microbiota 
and their end-products[18]; and (6) the gut microbiota and their metabolites may affect 
specific brain structures, Labus et al[19] have demonstrated that the composition and 
function of gut microbiota in IBS are related to regional brain structure changes, and 
gut microbial composition is correlated with structural measures of brain regions 
including sensory- and salience-related regions. As a consequence, in the occurrence 
and development of the disease, we should pay attention to the role of the gut 
microbiota and the gut-brain axis, explore the mechanism of the disease, and develop 
promising strategies for future treatment.

MICROBIOTA-GUT-LIVER-BRAIN AXIS
In recent years, due to the high incidence of liver disease, the interaction between the 
gut and liver has gradually been recognized. The gut and liver communicate with each 
other through the portal vein, biliary tract, and systemic circulation. Intestinal 
products, such as host and/or microbial metabolites and microbial-associated 
molecular patterns (MAMPs), are transported to the liver through the portal vein and 
influence liver function. In parallel, the liver transports bile salts and antimicrobial 
molecules to the intestinal lumen through the biliary tract to maintain gut eubiosis by 
controlling unrestricted bacterial overgrowth[20]. Hence, gut dysbiosis can lead to 
metabolic disorders in the liver, which in turn leads to liver damage. For example, 
dysbiotic gut microbiota reduces the activation of nuclear bile acid receptor FXR and 
membrane G protein-coupled receptor TGR5, which leads to the decrease in the 
synthesis of secondary bile acids, thereby contributing to bile salt retention, small 
intestinal translocation and bacterial overgrowth, finally leading to liver disease[21]. The 
diseased liver cannot effectively inhibit the overgrowth of bacteria, remove the 
harmful microbial by-products, and accelerate the progress of the disease. Moreover, it 
is reported that liver damage is closely related to the severity of gut dysbiosis[22]. 
Therefore, in the occurrence and development of the disease, while paying attention to 
the important role of the gut-brain axis in the disease, the role of the liver in the gut-
brain axis cannot be ignored, especially in liver diseases, such as HE, which is 
considered a typical microbiota-gut-liver-brain axis disease model.

MICROBIOTA-GUT-LIVER-BRAIN AXIS AND IBS
IBS is a common functional disease characterized by abdominal pain or discomfort 
accompanied by changes in bowel habits without organic lesions. It is the most 
common chronic visceral pain syndrome. The syndrome has no significant structural 
or biochemical abnormalities, and is defined by the criteria for symptoms. The Rome 
IV criteria are currently used for the diagnosis of IBS. IBS subtypes can be divided into 
IBS with predominant constipation, IBS with predominant diarrhea, IBS with mixed 
bowel habits, and IBS unclassified according to changes in predominant bowel 
habits[23]. Internal and external regulatory factors associated with the development of 
the disease include heredity, dietary intake, gastrointestinal infections, increased 
intestinal permeability, low inflammation, bile salt metabolism disorders, abnormal 
serotonin metabolism, CNS dysfunction, visceral allergies, gut microbiota imbalance. 
Patients with severe symptoms are more likely to be caused by a combination of 
factors[24,25].

There is increasing consensus that changes in the gut-brain axis plays an important 
role in the pathophysiology of IBS. Currently, the interaction of brain, gut and gut 
microbial metabolites is one of the important pathophysiological foundations of IBS. 
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These metabolites are mainly involved in the subcortex but also in the cerebral cortex, 
which may alter the perception of pain in patients with IBS and may be mediated by 
microbial regulation of the intestinal serotoninergic system[26]. Labus et al[19] have 
demonstrated that the composition and function of gut microbiota in IBS are related to 
regional brain structure changes, and gut microbial composition is correlated with 
structural measures of brain regions including sensory- and salience-related regions, 
which suggests that the gut microbiota and their metabolites may affect specific brain 
structures, and gut microbiota may play a role in the development and formation of 
the microbiota-gut-brain axis. Based on this finding, it may play an important role in 
optimizing the treatment of IBS.

Treatment of IBS. (1) Diet control can improve symptoms. Among the many factors 
that have been proposed, intolerance to malabsorptive dietary carbohydrates has 
become a major cause of IBS, therefore dietary interventions is important[27]. Many 
studies have found that low-fermented oligosaccharides, disaccharides, 
monosaccharides, and polyols (FODMAP) diets significantly improve symptoms[28,29], 
Zhou et al[30] fed rats with high doses of FODMAP feed, and observed elevated fecal 
Gram-negative bacteria and serum lipopolysaccharide levels, as well intestinal 
inflammation, barrier dysfunction, and visceral allergies response, and these 
symptoms can be prevented by antibiotics and reversed by a low FODMAP diet; (2) 
fecal microbiota transplantation (FMT), one of the effective methods for treating IBS, 
high-dose transplantation or repeated FMT can improve the response rate and 
intensity of FMT[31]. Use of FMT shortly after disturbance of the gut microbiota in IBS 
may improve efficacy[32], but the current evidence from randomized controlled trials 
does not suggest that FMT is beneficial for global IBS symptoms[33]. Therefore, the 
clinical efficacy of FMT in the treatment of IBS warrants more clinical research; (3) 
Probiotics can inhibit the excessive growth of pathogenic bacteria, competitively 
exclude pathogens and strengthen the intestinal barrier, enhance host immunity, 
increase the production of IgA, regulate the production of cytokines, produce or 
secrete SCFAs, and promote the absorption of ions and trace elements[34]. The use of 
multi-biotic probiotic supplements has the potential to improve symptoms of IBS. 
However, the specific symptoms improved by probiotics supplementation have not 
been consistent in different studies. Some studies have found general improvement in 
symptoms of IBS, while others have reported improvements in specific symptoms[35]. 
For example, Ray et al[36] demonstrated that Bifidobacterium longum subsp. Longum 
NCC3001 (BL) reduced the depression score and changed their brain activity in IBS 
patients, but BL had no effect on anxiety; (4) antibiotic therapy, short courses of non-
absorbable antibiotics such as rifaximin have been shown to moderately improve the 
symptoms of IBS, especially bloating and flatulence[37], however, the exact duration of 
this improvement has not been determined, and further research is needed; (5) 
psychotherapy, especially face-to-face cognitive-behavioral therapy, can improve 
mental health and quality of life in patients with IBS[38]. Moreover, Dickson et al[39] 
followed adults with refractory IBS (12 mo of clinically significant symptoms despite 
first-line treatment), and found that compared with the conventional treatment group, 
the cognitive behavioral treatment group (including telephone and Web page method) 
has significant clinical and statistical improvements in IBS symptoms and effects on 
life and emotions, and there are no serious adverse reactions after treatment. 
Cognitive-behavioral research solidifies its status as the leading treatment for non-
drug IBS, and emphasizes the importance of central processes under gut-brain 
interactions, which may pave the way for novel therapeutic strategies[40]; and (6) 
acupuncture and moxibustion can effectively regulate gastrointestinal motility, 
visceral hypersensitivity, gut-brain axis, neuroendocrine system and immune 
system[41]. In addition, acupuncture has a regulating effect on gut-brain peptides. For 
example, acupuncture at “Zusanli” and “Taichong” points can reduce the content of 
somatostatin, vasoactive intestinal peptide (VIP), and substance P (SP) in the ileum of 
IBS-D model rats[42]. Moreover, some studies have shown that oculo-acupuncture can 
not only up-regulate mRNA and protein expression of serotonin reuptake transporter 
in IBS model rats[43], but also significantly reduces the content of SP and VIP in serum 
and colon tissue of IBS rats, which improves the abnormal function of the gut-brain 
axis[44]. In addition, moxibustion treats IBS by regulating the gut microbiota. Wang 
et al[45] first tested the effect of moxibustion on the gut microbiota of IBS and found that 
IBS-related changes in the gut microbiota can be normalized by moxibustion, and the 
diversity of gut microbiota caused by moxibustion. As a consequence, acupuncture 
and moxibustion provide new ideas and targets for the clinical treatment of IBS.
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MICROBIOTA-GUT-LIVER-BRAIN AXIS AND IBD
IBD is a chronic immune-mediated inflammatory disease of the intestinal mucosal 
tissues, mainly in two forms: Crohn's disease (CD) and ulcerative colitis (UC). CD is 
characterized by transmural inflammation of any part of the gastrointestinal tract, 
while UC affects the mucosal layers of the colon and rectum[46]. The incidence of IBD is 
increasing worldwide, with the highest incidence in Europe and North America, and 
the rising incidence in Asia[47]. Its etiology involves complex interactions between the 
environment, heredity, microbes, and immunity. Genome-wide association studies 
have confirmed an increase in IBD susceptibility sites to 163, most of which are related 
to CD and UC, and most of them are involved in regulating intestinal barrier function 
and host-microbe interactions[48]. And Chu et al[49] proposed that polymorphisms of 
susceptible genes promote disease through defects in the microbiome′s perception of 
protective signals, defining a potentially critical environmental etiology of IBD genes.

Recent advances in next-generation sequencing technology have confirmed adverse 
changes in the composition and function of the gut microbiota in IBD[50], such as 
reduced gut microbiota diversity, reduced SCFAs-producing bacteria, and increased 
hemolytic bacteria, sulfate-reducing bacteria, and pathogenic bacteria. This change can 
affect the integrity of the host′s immune system and barriers, leading to chronic 
diseases and abnormal immune responses. Furthermore, Imhann et al[51] found that 
healthy individuals with a high genetic risk load of IBD also had adverse changes in 
their gut microbiota. To our knowledge, the gut microbiota plays an important role in 
maintaining the intestinal environment balance, the development and activation of the 
host′s immune system. Therefore, adverse changes in the gut microbiota will lead to 
the development of disease. In addition, the gut microbiota also affects the host′s 
susceptibility to disease, and even affects the host′s metabolic function[50].

Empirical studies have found that under stress conditions such as lack of sleep and 
lack of physical activity, the brain (HPA axis) stimulates the production of pro-
inflammatory cytokines, which can lead to increased intestinal permeability and 
changes in the gut microbiota. Moreover, personal habits (hygiene and smoking), long-
term consumption of foods rich in fat and sugar, long-term use of drugs and genetic 
susceptibility can directly affect the composition of gut microbiota, and then affect the 
permeability of the intestine[46]. Therefore, these factors further lead to the 
development of IBD. More and more people believe that IBD is related to anxiety and 
depression-related symptoms, and behavioral disorders including anxiety and 
depression-like symptoms are also observed in animal models of IBD[52]. In a large 
primary care database study, Frolkis et al[53] found that depression is associated with an 
increased risk of IBD, and that treatment with antidepressant medications can decrease 
the incidence of IBD. In addition, Gracie et al[54] showed evidence of the bi-directional 
effect of IBD activity and mental disorders, that is, patients with normal anxiety scores 
at baseline and active disease were almost 6 times more likely to have abnormal 
anxiety scores during follow-up. Similarly, patients with quiescent disease activity at 
baseline, but abnormal anxiety scores, had 2-fold higher rates of flare of disease 
activity or need for glucocorticosteroids. These results highlight the bidirectional gut-
brain axis interaction in patients with IBD.

During the course of IBD, symptoms such as abdominal pain, cramps, loose stools 
or bloody diarrhea, fatigue, anemia, or weight loss can occur. Fatigue is one of the 
most common and severe symptoms in IBD patients, which can lead to decreased 
quality of life and impaired productivity. An online survey from the European Crohn′s 
Disease Alliance and the Ulcerative Colitis Association found that 53% of patients with 
IBD and anemia and 40% of patients with IBD feel fatigued almost every day[55]. Recent 
research suggests that gut-brain axis may play a role in mediating fatigue. Key 
pathways include immunity (cytokines), metabolism (tryptophan), endocrine 
(cortisol), branch chains amino acids and SCFAs[56]. Therefore, IBD management 
should not only focus on inflammatory activities, but also the role of the gut-brain axis.

Treatment of IBD. (1) Control inflammatory response. Immune mediators are the 
main therapeutic targets for IBD. The homeostasis of effector cells and Treg cells in the 
intestine suggests the therapeutic potential of Treg cells in IBD patients, and studies 
have found that the gut microbiota is the key to inducing Treg cells and IL-10 
production[57]. Therefore, regulating the gut microbiota can indirectly affect the 
homeostasis of Treg cells, thereby benefiting patients and providing a direction for 
future immunotherapy of IBD; (2) Intervention in gut microbiota: (a) Drug treatment: 
5-Aminosalicylic acid (5-ASA) has a significant effect on bacterial gene expression[58], 
and Mesalazine reduces fecal and mucoadhesive bacteria concentrations[59]; (b) 
Probiotics: Many probiotics have been tested for their effectiveness in IBD. The 
mechanism is to regulate the microbiota and relieve the gut microbiota imbalance. A 
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meta-analysis has found that probiotics can provide a similar effect to that of 5-ASA in 
maintaining UC remission[60], especially VSL#3 (a multi-organism combination), which 
may induce remission in patients with mild to moderate UC[61]. However, probiotic 
administration has no additional benefit for patients with relapsed CD under 
endoscopy, and its effect on CD needs to be further explored; and (c) FMT: Antibiotic 
pretreatment may increase the effectiveness of FMT or other microbial treatments[62]. 
But FMT is not as effective in IBD as in Clostridium infection[50]. In addition, there are 
still issues to be addressed in FMT. In addition to low effectiveness and safety 
uncertainty, other challenges include the lack of standardization of procedures, the 
risk of pathogen transfer, and the induction of unnecessary phenotypes (such as flares 
in UC patients)[63]. Therefore, more studies need to be done about the clinical 
application of FMT in order to reduce its adverse effects; (3) Psychotherapy and 
antidepressants. Integrating these treatments into the bio-psycho-social care model 
may improve the mental health and quality of life of some IBD patients, and change 
the natural history of the disease[64]; and (4) Acupuncture and moxibustion. 
Experimental and clinical studies have shown that acupuncture is a safe and effective 
treatment, and a meta-analysis has shown that acupuncture is more effective than oral 
sulphasalazine in the treatment of IBD[65]. Moxibustion plays a therapeutic role by 
repairing mucosal tissue damage, regulating gut microbiota and improving intestinal 
mucosal immunity[66,67] and short-term (7 d) rather than long-term (14 d) moxibustion 
may significantly affect the gut microbiota[66]. Studies by Wei et al[68] have shown that 
both electroacupuncture and moxibustion can improve anxiety behaviors in patients 
with colitis, and its effect comes in part from improving the balance of the HPA axis. 
In addition, studies have shown that changes in regional homogeneity in the 
subcortical regions of the electroacupuncture group and moxibustion group are 
associated with a decrease in the CD activity index. But the regulation mechanism is 
different, electroacupuncture regulates homeostatic afferent processing network, while 
moxibustion mainly regulates the default mode network of the brain[69].

MICROBIOTA-GUT-LIVER-BRAIN AXIS AND FD
FD is referred to as a series of symptoms in the gastroduodenal region of the upper 
gastrointestinal tract and is characterized by one or more of the followings: 
Postprandial fullness, early satiety, abdominal pain, epigastric burning, which are 
unexplained after a routine clinical evaluation. It includes two subgroups: 
postprandial distress syndrome, which is characterized by indigestion symptoms 
caused by meals, and epigastric pain syndrome, which does not occur only after meals, 
and these two subgroups can overlap[70]. About 21% of the world′s population has 
dyspepsia[71]. However, prevalence varies among different countries according to the 
differently defined criteria. About 10% of adults in the United States, Canada and the 
United Kingdom have FD based on Rome IV symptoms, and the highest prevalence is 
reported in the United States[72]. FD not only obviously affects the quality of life and 
work efficiency, but also poses a huge economic burden on the medical system[73].

The pathogenesis of FD is heterogeneous, and the relationship between possible 
pathophysiology factors is extremely complicated. It is impossible to have a unified 
pathological mechanism to explain the symptoms of all FD patients[74]. Various 
changes in the function and structure of the gastrointestinal tract in FD patients 
include changes in the stomach (impaired regulatory function, delayed gastric 
emptying and allergies), and changes in the duodenum (increased duodenal acid 
and/or lipid sensitivity and mild inflammation). These functional and structural 
abnormalities can interact[74], and impaired mucosal integrity, barrier dysfunction, low-
level immune activation, and abnormal regulation of the gut-brain axis are also 
involved[70,74-76]. In a study of the Swedish population, anxiety increased FD risk by 7.6 
times over the past 10 years[77]. There are also epidemiological studies showing that the 
prevalence of anxiety and depression is higher in patients with FD than in healthy 
people, which suggests that mental illness has an intrinsic role in the pathogenesis of 
FD, and pathophysiology research also shows that psychosocial factors and mental 
disorders may play a role in FD by regulating the processing of visceral signals in the 
brain[78]. In addition, the gut microbiota also plays an important role in the 
pathogenesis of FD. Zhong et al[79] used the 16S rRNA gene sequence to determine the 
relative abundance of bacterial genus in the duodenal mucosa. It was found that the 
relative abundance of Streptococcus was high in patients with FD, and the anaerobic 
genera Prevotella, Veillonella and Actinomyces was significantly reduced. And it was 
also found that duodenal mucosal bacterial load was related to FD symptoms. 
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Furthermore, in a small number of patients with FD, Helicobacter pylori (Hp) infection is 
the cause of dyspepsia. Hp infection can cause chronic mucosal inflammation of the 
stomach and duodenum, which may lead to gastroduodenum movement and 
sensitivity abnormalities[80]. Therefore, in view of the fact that the abnormal regulation 
of the gut microbiota and the gut-brain axis play a key role in the pathogenesis of FD, 
the basis of microbiota-gut-brain axis dysfunction cannot be ignored in its treatment.

Treatment of FD. (1) Eradication of Hp. American College of Gastroenterology and 
the Canadian Association of Gastroenterology guidelines recommend that patients less 
than 60 years of age should be tested for non-invasive Hp and should be treated if the 
test is positive[81]. Eradication of Hp may improve symptoms in FD patients with 
epigastric pain and postprandial distress[80]. In addition, a meta-analysis shows that Hp 
eradication treatment leads to statistically significant improvement in long-term 
symptoms in patients with FD, although the effect is small[82]; (2) Acid inhibitory drug 
and prokinetics. Proton pump inhibitors (PPIs), histamine type 2 receptor antagonists 
and prokinetics have been recommended as first-line treatments for FD, patients with 
epigastric pain syndrome benefit from acid inhibitory drug, while patients with 
postprandial distress syndrome benefit from prokinetic drugs[83]. Recently, a meta-
analysis has found that PPIs are more effective than prokinetic drugs[84], however, the 
use of PPIs is related to changes in the composition of the gut microbiota, which may 
lead to an increased risk of infection[85,86], therefore, both medical staff and researchers 
should consider the impact of PPIs on the gut microbiota when using PPIs; (3) 
Antipsychotics and antidepressants. Use of antidepressants showed a negative 
association with postprandial distress syndrome[72]. In addition, a systematic review 
and meta-analysis showed that psychotropic drugs may be effective for FD, but their 
effects seem to be limited to antipsychotics and tricyclic antidepressants[87]. Therefore, 
the exact efficacy of psychotropic drugs still needs to be confirmed by more research; 
(4) Herbaceous medications. Multi-component Chinese medicine for multiple targets 
may be a promising alternative therapy for FD. DA-9701 (Motilitone) is a botanical 
drug consisting of Corydalis tuber and morning glory seeds. It has been found to 
improve symptoms and gastrointestinal function in patients with FD, and to be safer 
than traditional medicine[88]. At the same time, studies have found that Xiangsha 
Liujunzi Decoction alleviates the symptoms of FD by increasing the production of 
ghrelin, cholecystokinin and VIP and increasing the levels of these neuropeptides in 
the circulation[89]. Moreover, Wei et al[90] found that XiaoErFuPi granules can increase 
the levels of motilin, gastrin and gastric emptying rate, and thus have a good effect on 
patients with FD. Xue et al[91] isolated and purified magnoloside A (MA) from 
Magnolia officinalis, and found that MA accelerated the delayed intestinal emptying 
of FD rats and increased the levels of gastrin, motilin, and calcitonin gene-related 
proteins, reducing the levels of serotonin, nitric oxide synthase, and VIP. On the other 
hand, MA can regulate the composition of the intestinal microbiota, leading to changes 
in SCFAs. In addition, a randomized, placebo-controlled, double-blind clinical trial 
found that Rikkunshito (a Japanese herbal medicine) may be beneficial for FD patients 
with both gastrointestinal and psychological symptoms[92]. These studies indicate that 
herbaceous plants and their extracts have great therapeutic potential in FD; (5) 
Acupuncture and moxibustion, there have been several studies showing that 
acupuncture therapy is superior to prokinetics in improving the symptoms and quality 
of life of FD patients[93,94]. Exact treatment mechanism is being explored. Fang et al[95] 
showed that the brain function of FD patients after treatment was close to that of the 
healthy control, The relief of gastrointestinal signs and symptoms by acupuncture is 
likely due to the normalization of gut-brain axis associated with FD. In addition, 
herbal cake-separated moxibustion can promote the gastric empty rate in FD rats, 
which may be associated with its effects in inhibiting stress induced decrease of 
hypothalamic 5-HT, DA and NE levels[96]. Therefore, acupuncture can be used as an 
effective supplement to routine treatment of patients with FD; and (6) Other 
treatments. Studies have found that mast cells increase during FD with or without 
inflammation, which may be caused by altering the gut-brain axis signal[97]. Mast cells 
play a key role in the regulation of the mucosal barrier. Signals from the intestinal 
nerve directly or through other lamina propria cells stimulate mast cells, releasing 
mediators through receptors, and in turn affect the epithelial barrier[98]. At the same 
time, the degree of paracellular permeability was positively correlated with the 
number of mast cells[76], therefore, the stabilization or blocking of mast cell surface 
receptors provides new insights into the treatment of FD. In addition, studies have 
found that child compound Endothelium corneum may enhance gastrointestinal 
motility by balancing homeostasis of the microbiota-gut-brain axis in FD rats[99], which 
also provides a new way for the treatment of FD.
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MICROBIOTA-GUT-LIVE-BRAIN AXIS AND NAFLD
NAFLD is a common chronic liver disease, including a series of liver damage, from 
steatosis to steatohepatitis with or without fibrosis. Fibrosis may develop into cirrhosis 
and complications including hepatocellular carcinoma[100]. NAFLD can be divided into 
non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) in 
histology[101]. The development of NAFLD is closely related to obesity, hyperlipidemia, 
hypertension, type-2 diabetes and metabolic syndrome. NAFLD is generally 
considered to be the liver manifestation of metabolic syndrome[102]. Currently, the 
understanding of the pathogenesis of NAFLD is still incomplete. It is believed to be the 
result of a combination of multiple damaging factors, including insulin resistance, 
oxidative stress, lipid metabolism alteration, inflammatory cytokines liberation, 
endoplasmic reticulum stress, gut dysbiosis or gut-liver axis activation, genetic and 
epigenetic factors[103,104]. In addition, studies have found that the neurobehavioral 
disorder of NAFLD is related to hyperammonemia, gut dysbiosis, metabolism and 
functional defects of brain regions[105]. Therefore, the microbiota-gut-live-brain axis 
plays an important regulatory role in the pathogenesis of NAFL/NASH, and the main 
participants are the gut microbiota, its bacterial products, and the intestinal barrier[106].

Colonization of the gut microbiota of patients with NASH can aggravate hepatic 
steatosis and inflammation in sterile mice fed a high-fat diet (HFD), confirming that 
the gut microbiota plays a vital role in the development of NAFLD[107]. And the study 
by Boursier et al[108] showed that the severity of NAFLD is related to gut dysbiosis and 
changes in the metabolic function of the gut microbiota. Changes in gut microbiota 
may stimulate liver fat deposition via the following mechanisms: Regulating intestinal 
permeability, increasing low-grade inflammation, regulating dietary choline 
metabolism, regulating bile acid metabolism, and producing endogenous ethanol[109]. 
And, gut microbiota has also been reported to play a role in the neuroendocrine 
regulation of lipid metabolism[110]. Furthermore, gut microbiota metabolites and 
ammonia may produce neurotoxic damage, which is related to the cognitive 
impairment of NASH[105], however, more research is necessary to fully understand the 
underlying mechanism of functional changes caused by cognitive impairment in 
NASH. Mouries et al[111] have recently found that the disruption of the intestinal 
epithelial barrier and gut vascular barrier (GVB) are early events in the onset of 
NASH, and HFD-mice in just one week will cause GVB damage and bacterial 
translocation. Hence, in addition to the important role of gut microbiota and its 
products in NAFLD, the intestinal barrier is also very important.

Treatment of NAFLD. In recent years, with in-depth research on the microbiota-gut-
live-brain axis, the gut microbiota has become a therapeutic target for NAFLD: (1) 
Lifestyle interventions. First-line treatment for NAFLD includes diet and exercise. 
Studies have shown that the treatment of NAFLD diet and exercise is closely related to 
the intestinal microbiota. The Mediterranean diet (higher in monounsaturated fatty 
acids) has a significant impact on the composition and diversity of the gut microbiota. 
The polyphenols contained in it can cause the increase of bifidobacteria, and due to 
high dietary fiber intake, it can reduce Firmicutes and increase Bacteroides[112]. 
Moreover, Spinach consumption also has a similar effect, which can improve the liver 
dysfunction of NAFLD by regulating the gut microbiota[113]. In addition, it is 
interesting that exercise effectively offset the gut dysbiosis caused by the HFD, thereby 
preventing the imbalance of the gut-liver axis and improving the homeostasis of bile 
acid, which helps to control the development of NAFLD[114]; (2) Probiotics. Using 
probiotics to regulate the gut microbiota is a promising treatment for NAFLD. The 
probiotic Lactobacillus rhamnosus GG (LGG) increases beneficial bacteria in the distal 
small intestine, restores the intestinal barrier function, reduces liver inflammation and 
steatosis, and exerts protective effects on NAFL mice caused by high fructose diet[115]. 
However, the study by Naudin et al[116] found that in female mice on a high-fat, high-
carbohydrate diet, dietary supplementation of Lactococcus lactis subspecies cremoris 
was more effective than dietary supplementation of LGG in reducing liver fat and 
inflammation development. In addition, a randomized clinical trial suggested that 
supplementation of VSL#3 for 4 mo can significantly improve NAFLD in children, and 
the mechanism may be the increase of glucagon-like peptide 1[117]. Another 
randomized clinical trial showed for the first time that a high potency multistrain 
probiotic can significantly improve liver histology, ALT and cytokines in adult 
patients with NAFLD[118]; (3) FMT. On the one hand, animal studies have shown that 
FMT can correct the gut dysbiosis in mice with steatohepatitis induced by HFD, 
increase the concentration of cecal butyrate and small intestinal tight junction protein 
ZO-1, as well as reduce endotoxin and inflammation factor generation[119], furthermore, 
recent studies by Porras et al[121] have shown that FMT in HFD-mice can cause 
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metabolic phenotype transfer. For example, dHFD+ (responder to HFD donor) 
microbiota transplantation produces insulin resistance and moderate hepatic steatosis 
in control diet-fed recipients. On the other hand, clinical trials have shown that 6 wk 
after allogeneic FMT in NAFLD patients, the abnormal permeability of the small 
intestine is significantly reduced[121]. Although the results of existing studies are 
encouraging, large-scale FMT studies are still necessary to evaluate the effect of 
NAFLD; (4) Herbaceous medications. At present, a large number of studies are being 
carried out on herbal medicines to treat NAFLD. The Chinese herbal medicine 
Dachaihu decoction has been proven to have a good effect on NAFLD. Its mechanism 
may involve regulating the intestinal mucosal barrier, lipid metabolism and liver 
function to a certain extent[122]. And the Si-Ni-San freeze-dried powder prepared from 
four herbal medicines such as Bupleuri Radix, Paeoniae Alba Radix, Aurantii 
Immaturus Fructus, and Honey-fried Licorice Root in equal proportions not only 
reduce the total cholesterol, triglycerides and free fatty acids, but also change 
composition and function of gut microbiota[123]. Furthermore, Shenling Baizhu powder 
made from ten different traditional Chinese medicinal herbs not only increases the 
relative abundance of beneficial bacteria (Bifidobacterium and Anaerostipes), but also 
decreases levels of lipopolysaccharide, reduces serum endotoxin and inflammatory 
factors and improves liver function[124]. Feng et al[125] found that the traditional Chinese 
medicine Qushi Huayu Decoction (QHD) promotes the formation of regulatory T cell-
induced microbiota in the gut, and at the same time enhances the liver′s antioxidant 
mechanism and decreases liver lipid synthesis; and (5) Polyphenols. Recently, animal 
studies showed that Raw Bowl Tea polyphenol not only reduced the level of 
Firmicutes in the feces of mice with NAFLD, and increased the minimum levels of 
Bacteroides and Akkermansia, but also reduced the production of inflammatory 
factors and alleviated the pathological injuries of liver and small intestinal tissues[126], 
moreover, green tea polyphenol (epigallocatechin-3-gallate) can affect the composition 
of the gut microbiota of mice fed a HFD and change the metabolism of bile acids[127]. 
These studies suggest that polyphenol has great therapeutic potential for patients with 
NAFLD. In addition, the flavonoid quercetin exerts its protective effect on HFD-
induced NAFLD via its anti-inflammatory, antioxidant and prebiotic integrative 
response[128].

MICROBIOTA-GUT-LIVER-BRAIN AXIS AND ALD
ALD is the leading cause of chronic liver disease worldwide, ranging from simple 
steatosis, alcoholic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, the 
National Institute on Alcohol Abuse and Alcoholism showed that 48% of liver 
cirrhosis were alcohol related[129]. In the United States, hospitalizations for alcohol-
related liver disease are increasing among young people, the more severe chronic liver 
failure, the more hospital resources they consume. The economic burden of this 
disease is increasing on young people[130]. Early research on the pathogenesis of the 
disease focused on oxidative stress[129]. Currently, there is increasing evidence that 
ALD is associated with changes in gut microbiota, which is the basis of the disorder of 
the gut-liver axis. The gut-liver axis is the interaction between the gut and its 
microbiota and the liver, which is established by the portal vein which enables 
transport of gut-derived products directly to the liver, as well as the liver feedback 
route of bile and antibody secretion to the intestine. Control of the microbial 
community is essential to maintain the homeostasis of the gut-liver axis, gut 
microbiota acts on the liver through various mechanisms such as increasing liver lipid 
metabolism, increasing alcohol production, increasing intestinal permeability, bacterial 
translocation, intestinal bacterial overgrowth, gut microbiota imbalance, and reduced 
bile secretion[131], and as part of the bidirectional communication, the liver shapes the 
gut microbial communities[132]. Microbial functions, especially those related to bile acid 
metabolism, can regulate alcohol-related damage even in cirrhosis and alcoholic 
hepatitis. Moreover, changes in the microbiota may also alter brain function, and 
specific changes in the gut-liver-brain axis are related to the interaction between the 
gut microbiota and alcohol addiction[133]. In addition to having a positive effect on the 
development of alcohol-dependent psychotic symptoms, the gut microbiota can also 
increase the risk of serious alcohol-related illnesses[134].

Studies have shown that direct toxicity to brain tissue, induction of 
neuroinflammation, and changes in gut microbiota by alcohol may be the mechanism 
of HE related to alcohol use[135]. In addition, alcohol intake can alter a variety of 
neurotransmitter in the brain. Studies by Tiwari et al[136] have shown that alcohol can 
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reduce glutamatergic and GABA-ergic neurotransmitter to varying degrees, so 
cessation of alcohol is necessary for the treatment. However, Godlewski et al[137] 
showed that endocannabinoids act on the cannabinoid-1 receptor (CB1R) and ghrelin 
acts on its receptor (GHS-R1A) to promote alcohol intake through the gut-brain axis, 
therefore, inhibiting CB1R and GHS-R1A to reduce alcohol intake provides a new 
approach for the treatment of ALD. In a cross-sectional study, patients with alcoholic 
cirrhosis performed worse on cognitive tests than patients with non-alcoholic cirrhosis. 
MRI show that compared with patients with non-alcoholic cirrhosis, patients with 
alcoholic cirrhosis have greater effects of hyperammonemia and cerebral edema, and 
significantly higher cortical damage[138]. Furthermore, alcohol-induced disorders can 
also affect the gut-brain axis, further exacerbating abuse and emotional disorders. The 
brain is affected by alcohol-induced disorders in a wide range, from acute poisoning to 
changes in personality and behavior to dementia[133]. In conclusion, the occurrence and 
development of ALD are affected by the gut microbiota and the gut- brain axis. Some 
new treatments can be based on this.

Treatment of ALD. (1) The primary intervention focused on lifestyle changes-
abstinence from alcohol. Long-term abstinence is the most effective strategy to prevent 
disease progression[139]. Complete cessation of alcohol is necessary to ensure 
meaningful reversals and sustained improvement of prognosis, even in the later stages 
of the disease[132], however, symptoms of abstinence should be monitored, prevented, 
and treated. Addolorato et al[140] found that baclofen can promote alcohol abstinence in 
patients with alcoholic cirrhosis and is well tolerated. Recently, Godlewski et al[137] have 
further shown that inhibition of CB1R by peripherally restricted drugs can reduce 
ethanol intake in mice, so this provides a safer treatment; (2) Intervention in gut 
microbiota. (a) Probiotics: A recent study has shown that supplementation with 
probiotics, LGG can reduce hepatic bile acids by increasing intestinal FXR/FGF15 
signaling pathway-mediated suppression of bile acids de novo synthesis and enhances 
bile acids excretion, which prevents excessive bile acids-induced liver injury and 
fibrosis in mice[141]. In addition, alcohol exposure reduces the abundance of 
Akkermansia muciniphila in the intestines of mice and humans, however, 
Akkermansia muciniphila, a Gram-negative intestinal commensal, promotes barrier 
function by increasing mucus production, and studies have found that it can be 
recovered in experimental ALD by oral supplementation[142], therefore, patients with 
ALD may benefit from Akkermansia muciniphila. When ALD develops into alcoholic 
cirrhosis, attempts have been made to increase beneficial bacterial populations such as 
bifidobacteria and lactobacillu to reduce ammonia levels by reducing gut microbiota 
imbalances[143]; (b) FMT: Preliminary results from a randomized clinical trial 
comparing the efficacy of FMT and steroids for severe alcoholic hepatitis suggest that 
patients receiving FMT have greater survival benefits than patients receiving 
steroids[144], this result paves the way for FMT to become a potential treatment option 
for alcoholic hepatitis. Moreover, recent research by Bajaj et al[145] showed that FMT 
capsules after antibiotic pretreatment are well tolerated and safe for patients with 
cirrhosis and recurrent HE. However, the role and exact efficacy of FMT in ALD need 
further research and exploration; (c) Bacteriophages: Further research by Duan et al[146] 
showed that bacteriophages can specifically target cytolytic E. faecalis, and eliminate 
alcohol-induced liver disease in mice. But assessing bacteriophage safety and further 
patient testing are currently under study[147]; and (d) Synthetic human α-defensin 5 
(HD5): Recent research by Zhong et al[148] found that chronic alcohol feeding resulted in 
microbial dysbiosis in mice and reduce antimicrobial peptides-α-defensins in Paneth 
cell. Knockout of functional α-defensins synergistically affected the bacterial 
composition and intestinal barrier of alcohol interference, and enhance the 
translocation of pathogen-associated molecular patterns and liver damage. 
Administration of HD5 effectively changes the cecal microbial composition, especially 
increases certain gut bacteria and reverses the harmful effects induced by alcohol. 
Therefore, HD5 may be a new and promising treatment for the treatment of alcoholic 
hepatitis; (3) Suppression of immunity: At present, many studies are further exploring 
the mechanism of immune suppressants on ALD and looking for potential therapeutic 
targets. Some studies have found that early application of glucocorticoids can improve 
the short-term survival of patients with severe alcoholic hepatitis[149]. In addition, Chu 
et al[150] confirmed that Candidalysin, a polypeptide toxin secreted by the symbiotic 
intestinal fungus Candida albicans, can increase the levels of Il1b, Cxcl1, and Cxcl2 
mRNAs in the liver of mice after ethanol administration. These pro-inflammatory 
cytokines may further recruit immune cells and cause hepatocyte damage. This may 
directly lead to hepatocyte death induced by Candidalysin. They also found that 
Candidalysin is associated with the severity and mortality of liver disease in patients 
with alcoholic hepatitis. Therefore, Candidalysin may be an effective target for the 
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treatment of alcohol-related liver disease. Inhibition of Candidalysin production can 
reduce the inflammatory response and thus benefit patients; (4) Acupuncture and 
moxibustion. Research has shown that electroacupuncture stimulation changed the 
levels of vasoactive substances to increase hepatic microcirculation perfusion and 
promote indocyanine green clearance, thereby improving hepatic microcirculation and 
reserve function, protecting liver function in animals with acute ALD[151]. Though the 
clinical application of acupuncture is widely studied, there are relatively few studies 
on acupuncture for ALD. Therefore, more research is needed to explore the exact 
mechanism and effectiveness of acupuncture for ALD; and (5) Liver transplantation: 
ALD is the main indication for liver transplantation worldwide. A retrospective 
analysis of 147 patients with early liver transplants (before 6 mo of abstinence) for 
severe alcoholic hepatitis found that most patients survived 1 year (94%) and 3 years 
(84%), similar to patients receiving liver transplantation for other indications[152]. But 
before and after liver transplantation, attention should not only be paid to alcohol 
recurrence, but also to prevention and treatment of modifiable risk factors such as 
obesity and smoking[149].

MICROBIOTA-GUT-LIVE-BRAIN AXIS AND CIRRHOSIS AND HE
Cirrhosis is the end-stage of various chronic liver diseases, and is clinically 
characterized by portal hypertension and decreased liver function. There are many 
causes of cirrhosis, alcohol abuse and viral hepatitis are the most common causes of 
liver cirrhosis. Decompensated cirrhosis can have any of the following complications, 
such as jaundice, bleeding from varicose veins, ascites or HE[153,154]. Bacterial 
translocation and its products such as endotoxin play a key role in the pathogenesis of 
HE, spontaneous bacterial peritonitis and other infections, more and more cirrhosis 
research has focused on gut microbiota. Bajaj et al[22] have found that the gut microbiota 
changes with disease progression. The cirrhosis dysbiosis ratio may be a useful 
quantitative indicator to describe the changes in the microbiome accompanying the 
progression of cirrhosis. Interestingly, a recent study has found that the diversity of 
circulating bacteria in patients with cirrhosis is consistent with the presence of 
dysbiosis in cirrhotics[155]. Moreover, specific taxa of gut microbes are associated with 
changes in neurons and astrocytes in brain dysfunction associated with cirrhosis[156]. 
Hence, changes in the microbiota-gut-liver-brain axis are closely related to the 
progression of cirrhosis. In addition, HE is considered a typical model of gut-liver-
brain axis disease.

As it is known, HE manifests as a wide range of neurological or psychiatric 
abnormalities, from subclinical changes to coma[157]. It is believed to be related to 
harmful microbial by-products such as ammonia, indole, oxindole and endotoxin. The 
increase in the concentration of these toxic metabolites and the inability of the diseased 
liver to clear these products are considered to be important pathophysiological 
effects[143]. Furthermore, inflammation (systemic or local), leaky gut, bacterial 
translocation, and overgrowth of small intestinal bacteria are also critical to the 
pathogenesis of HE[158].

Treatment of cirrhosis and HE: So far, treatments for advanced cirrhosis and HE 
have focused on the regulation of gut microbiota. The efficacy of these intestinal-
centric treatments further supports the importance of changes in the gut microbiota in 
disease progression: (1) Dietary approach. Diet plays a vital role in regulating the 
intestinal environment, and has received extensive attention in the treatment of 
advanced liver cirrhosis and HE. Since protein catabolism increases ammonia levels, 
early studies recommended limiting protein intake in patients with HE. However, this 
conclusion has been overturned. Existing studies have shown that normal protein 
intake is well tolerated by patients with HE[158]. Interestingly, a clinical trial study 
showed that a high-protein, high-calorie diet based on casein-vegetable can 
significantly reduce the blood ammonia level of patients with HE and improve mental 
status[159]. Oral supplementation of branched chain amino acids not only produces a 
nutritional effect on cirrhosis itself, but also produces an effect on reducing the risk of 
recurrence of HE[160]; (2) Non-absorbable disaccharides. Currently, non-absorbable 
disaccharides (lactulose and lactol) have been recommended as the first-line treatment 
for HE. Lactulose can not only treat and prevent overt hepatic encephalopathy (OHE), 
but also significantly improve the recovery rate of minimal hepatic encephalopathy 
(MHE)[161,162]. The mechanisms involved are laxative effect, reducing ammonia 
production, and exerting prebiotic effect to regulate gut microbiota[163]. In addition, 
animal studies have shown that lactulose can effectively improve cognitive function by 
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enhancing the neuroplasticity of early HE model rats[164]; (3) Probiotics. With the in-
depth research on the gut microbiota, the important role of probiotics has been 
observed in diseases. Existing studies have shown that probiotics can increase 
beneficial flora and reduce pathogenic bacteria; reduce endotoxemia and ammonia 
content, reduce physical and psychosocial sickness impact profile score and serious 
adverse events, significantly reverse MHE and reduce the development of OHE[165,166]. 
Moreover, the application of VSL#3 has received extensive attention from researchers. 
On the one hand, animal studies have shown that VSL#3, in addition to its significant 
anti-inflammatory effects, can also prevent mesenteric artery endothelial dysfunction, 
and induce the synthesis of bile acids in the liver of mice[167-169], on the other hand, 
clinical trials have shown that the intake of VSL#3 can significantly reduce the risk of 
hospitalization for HE, as well as Child-Turcotte-Pugh and model for end-stage liver 
disease scores[170]; (4) Antibiotics. Rifaximin is a non-absorbable antibiotic. It not only 
reduces the production of intestinal ammonia by increasing the expression of intestinal 
glutaminase, but also reduces the levels of serum soluble CD163 and mannose 
receptors and partially changes the gut microbiota to reduce endotoxemia[171,172]. And 
its effect on HE has been proved by clinical research[173]. Bajaj et al[18] found that 
rifaximin can also improve the cognitive function of MHE; and (5) FMT. The effect of 
FMT on advanced cirrhosis and HE is gradually being recognized. At present, safety 
and changes in the structure and function of the gut microbiota have been the main 
concern in FMT[174]. Clinical studies have shown that FMT can reduce the 
hospitalization rate of patients with cirrhosis and recurrent HE, improve cognition and 
gut dysbiosis[175], moreover, FMT can restore the decrease in microbial diversity and 
the changes in SCFAs and bile acid caused by antibiotic use[176].

CONCLUSION
With the deepening of understanding of microbiota and the gut-liver-brain axis, and 
further exploration of the microbiota-gut-liver-brain axis, the importance of gut-liver-
brain interaction in the occurrence and development of many diseases has been 
discovered, which provides a new direction for further research on the treatment of 
diseases. In this review, we mainly discuss the role of the gut microbiota in IBS, IBD, 
FD, NAFLD, ALD, cirrhosis and HE via the gut-liver-brain axis. This article mainly 
focuses on clarifying the potential mechanisms and treatment. Although there are 
many studies based on this in preclinical models, clinical studies are required on its 
efficacy and safety, as well as patient tolerability. In addition, the specific signaling 
pathways of the microbiota-gut-liver-brain axis in the occurrence and development of 
gastrointestinal diseases are unknown, and further research is needed in order to find 
more personalized molecular targeted therapies.
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