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Evaluating genotype imputation 
pipeline for ultra‑low coverage 
ancient genomes
Ruoyun Hui1,7, Eugenia D’Atanasio2,3,7, Lara M. Cassidy4, Christiana L. Scheib5,6 & 
Toomas Kivisild2,5*

Although ancient DNA data have become increasingly more important in studies about past 
populations, it is often not feasible or practical to obtain high coverage genomes from poorly 
preserved samples. While methods of accurate genotype imputation from > 1 × coverage data have 
recently become a routine, a large proportion of ancient samples remain unusable for downstream 
analyses due to their low coverage. Here, we evaluate a two-step pipeline for the imputation of 
common variants in ancient genomes at 0.05–1 × coverage. We use the genotype likelihood input 
mode in Beagle and filter for confident genotypes as the input to impute missing genotypes. This 
procedure, when tested on ancient genomes, outperforms a single-step imputation from genotype 
likelihoods, suggesting that current genotype callers do not fully account for errors in ancient 
sequences and additional quality controls can be beneficial. We compared the effect of various 
genotype likelihood calling methods, post-calling, pre-imputation and post-imputation filters, 
different reference panels, as well as different imputation tools. In a Neolithic Hungarian genome, we 
obtain ~ 90% imputation accuracy for heterozygous common variants at coverage 0.05 × and > 97% 
accuracy at coverage 0.5 ×. We show that imputation can mitigate, though not eliminate reference 
bias in ultra-low coverage ancient genomes.

Over the past decade, the development of high-throughput sequencing methods has prompted an exponential 
increase in genome-wide sequences retrieved from ancient human remains; however, poor sample preservation 
often leads to low endogenous human DNA contents, thus a large body of ancient DNA (aDNA) samples remain 
sequenced at low coverage (1 × or less), leaving only a small proportion of individuals with high enough coverage 
to confidently call and phase diploid genotypes1.

Genotype imputation uses local linkage patterns to infer unknown genotypes in target samples from known 
genotypes, usually with the help of a reference panel of phased haplotypes. It has been routinely used on modern 
samples to extend SNPs genotyped on DNA microarrays to genome-wide variants for several applications2,3 
There are many imputation tools available, most of which follow the Li and Stephens model4 to identify shared 
haplotypes between samples2,3. The accuracy and efficiency of the imputation algorithms have greatly improved 
over time; more recent tools such as Beagle 5 and IMPUTE 5 are scaled to work with reference panels contain-
ing millions of individuals5,6.

Compared to SNP genotyping, low-coverage shotgun sequencing data present a different challenge because 
we are not certain about any genotypes. One solution is to use a probabilistic measurement of the genotypes in 
the form of genotype probabilities or genotype likelihoods. Imputation tools that accept probabilistic genotype 
input include Beagle (≤ 4.1)7, IMPUTE 28, and GLIMPSE9. Up until Beagle 4.0, the algorithm can produce 
genotypes for all sites in the reference panel in one step similar to IMPUTE 2 and GLIMPSE; in Beagle 4.1, the 
genotype likelihood mode only updates sites in the input file, requiring another step in the genotype mode to 
impute the missing genotypes.

Previous aDNA studies have used Beagle 4.0 to impute low-coverage ancient individuals using a one-step 
pipeline based on genotype likelihoods (detailed below)4, reaching accuracies above 99% for samples with a 
coverage as low as 1 ×10–14. Imputed data have been used to infer demographic history, genetic kinship and 
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phenotypes, thus increasing the amount of information that can be obtained from archaeological samples 
and allowing ancient population-scale diploid studies. However, most aDNA sequences generated by shotgun 
sequencing do not reach the 1 × coverage threshold. aDNA also suffers from contamination and post-mortem 
damage that may not be fully accounted for in genotype likelihood models designed for modern DNA.

Here we break down the one-step pipeline, by first updating genotype likelihoods to genotype probabilities 
with the help of a reference panel and then filtering for highly confident genotypes. Treated as observed, these 
genotypes are then fed into standard imputation tools to estimate unknown genotypes. This procedure offers 
the flexibility to choose filters that are more stringent or more suitable for aDNA. Additionally, it allows us to 
benefit from recent imputation algorithms that are more efficient and accurate but mostly do not accept genotype 
likelihood input. We show that this pipeline can further improve imputation accuracy in ultra-low coverage 
(< 1 ×) ancient individuals.

Method
Imputation pipeline.  The two-step imputation pipeline and all parameters that were tested within it are 
summarised in Fig. 1.

The two-step pipeline utilises previously described genotype calling15–17 and imputation5,7 methods to infer 
diploid genotypes from mapped read data (BAM file format) within a framework of several quality filters (Fig. 1 
and Supplementary Material). First, genotype likelihoods are calculated by a genotype caller at variable positions 
in a reference panel. The imputation process then consists of two steps: the first step (GLIMPSE or -gl mode in 
Beagle 4.0/4.1) updates genotype likelihoods based on a reference panel; the second step then imputes missing 
genotypes from confident genotype calls, as determined by their genotype probability score5,7.

Quality filters.  We introduce optional quality control filters at three stages of the pipeline: after genotype 
likelihoods are called, we can use a post-calling filter to exclude the records at certain sites, e.g. removal of 
genotype likelihoods that could be the result of post-mortem damage; the pre-imputation filter removes low-
confidence genotypes, which will be imputed back; the post-imputation filter excludes certain imputed geno-
types from accuracy assessment and downstream analysis (Fig. 1).

Each filter aims to balance between the amount and the accuracy of genetic information passed onto the next 
step in the pipeline, although the optimal balance might differ across the stages. The user is free to design the 
filtering criteria at each stage. Here we considered several filtering criteria. First, considering that post-mortem 
deamination frequently leads to C to T (and G to A) mutations in aDNA molecules, we tested a transversion-only 
filter to exclude all transitions pre- and/or post-imputation. In the post-calling stage this filter was restricted to 
only exclude C to T and G to A mutations but retain transitions in the other direction, in order to preserve as 
much information as possible from low-coverage genomes. Most imputation tools report a measure of imputa-
tion uncertainty; in the case of Beagle, this takes the form of genotype probabilities (GP) corresponding to the 
genotypes being 0/0, 0/1 and 1/1. We can require the largest GP to exceed a threshold (e.g. 0.99) to enrich for 
confident genotypes in the pre- and post-imputation stages. Finally, because imputation relies on local linkage 
disequilibrium between variants, those in tight linkage with more neighbouring variants are expected to be easier 
to impute. We also tested pre- and post-imputation filters requiring at least 20 tag SNPs within 1000 kb of the 
variant (Supplementary Methods).

Figure 1.   Schematic representation of the imputation pipeline. The input and output of the starting down-
sampling step are both alignment files in BAM format. The output of each step of the pipeline (genotype calling, 
genotype probability update and genotype imputation) is a VCF file. In the output boxes, data fields that are 
updated and necessary in the following step of the pipeline are highlighted in green (1KG: 1000 Genomes).
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Imputation accuracy.  We evaluated the imputation accuracy by down-sampling a non-UDG treated 
20 × Neolithic Hungarian genome (NE1)10 to lower coverages (from 0.05 × to 2 ×) and comparing the genotypes 
produced by the pipeline to those called in the original 20 × genome (Supplementary Methods). For example, 
the accuracy for heterozygous sites is calculated as the proportion of sites that are imputed as heterozygous 
given that they are confidently called as heterozygous in the 20 × genome. We report two metrics: imputation 
accuracy is calculated only in sites where the genotype is present in the imputed genome and confidently called 
in the 20 × genome; but since some post-imputation filters increase imputation accuracy at the cost of exclud-
ing many sites, we also report the raw number of correctly imputed sites and the proportion to sites called in 
the 20 × genome. A total of 2.1e7 confidently called sites (among which 1.8e6 are heterozygous) in the original 
genome were used as the gold standard to evaluate various settings in the pipeline. Some evaluations across 
different coverages are performed only on chromosome 20, where 4.7e6 sites (among which 4.0e5 are heterozy-
gous) were confidently called in the original genome. Phased genomes (n = 2504) from the 1000 Genomes Pro-
ject Phase 318 (1KG) are used as the reference panel in our tests, unless otherwise noted.

Results
Default imputation pipeline.  By default we used the following settings, which provide a good balance 
between imputation accuracy and the number of genotypes retained in the end: (a) genotype calling using 
ATLAS17 (maximum likelihood mode); (b) no post-calling filter application; (c) genotype probability update 
using Beagle 4.1; (d) application of a GP pre-imputation filter: max(GP) ≥ 0.99; (e) genotype imputation of miss-
ing sites using Beagle 5.0; (f) application of a GP post-imputation filter: max(GP) ≥ 0.99. More details can be 
found in the Supplementary Methods and the online repository (https​://githu​b.com/ryhui​/imput​ation​-pipel​ine).

Table 1 summarises the performance of our default imputation pipeline as evaluated on chromosome 20 of 
NE1 down-sampled to 0.05–2 ×. In addition to the overall measurements, we calculated accuracies separately 
for sites that are called as homozygous reference (0/0), homozygous alternative (1/1), and heterozygous (0/1) 
in the full-coverage genome and further partition them according to the minor allele frequency (MAF) in the 
1KG reference panel. The accuracy at homozygous sites is much higher than at heterozygous sites, exceeding 
0.97 at all coverages tested and even 0.99 above 0.5 × (Table S1). We were able to recover more than half of the 
variants in NE1 at > 0.95 accuracy from coverage as low as 0.05 × (Tables S1 and S2). The overall accuracy will 
be affected by the heterozygosity, which varies between genomes. We therefore limit our subsequent discussion 
to heterozygous sites to provide a lower bound of imputation performance.

In general, we observed that the accuracy at heterozygous sites depends heavily on variant frequencies, with 
the most common variants (MAF ≥ 0.3 in the reference panel) reaching 90% accuracy even at 0.05 ×, the lowest 
coverage tested (Table 1 and Fig. 2). On the other hand, rare variants (MAF < 0.05) remain difficult to impute 
even at 2 ×.

Comparison with one‑step imputing from genotype likelihoods.  Previous aDNA studies have 
used Beagle 4.0 to impute ancient genomes10–13, which accepts genotype likelihood input to estimate genotypes 
at all sites in the reference panel in a single step. Another imputation tool recently developed for low-coverage 
sequencing data, GLIMPSE, functions in a similar way9. We compared the performance of these one-step pro-
cedures to our two-step pipeline (Fig. 3, Table S3). Although the overall accuracy is similar without any post-
imputation filters, the imputation algorithm reports more differential genotype probabilities when uncertain 
genotypes are excluded prior to imputation in our proposed two-step pipeline. As a result, more variants were 

Table 1.   Imputation accuracy of the default pipeline across all coverages in NE1 chromosome 20. Accuracies 
are also shown for various MAF bins and genotypes in the full-coverage genome. Accuracies for homozygous 
sites are presented in Table S1; the actual numbers of correctly imputed sites are presented in Table S2.

Minor allele frequency bins

Coverages

0.05 × 0.1 × 0.5 × 0.75 × 1 × 1.5 × 2 ×

Het accuracy

0.001–0.01 0.490 0.614 0.720 0.731 0.743 0.753 0.765

0.01–0.05 0.574 0.712 0.835 0.844 0.849 0.858 0.869

0.05–0.1 0.837 0.881 0.944 0.947 0.949 0.951 0.959

0.1–0.3 0.871 0.922 0.972 0.972 0.977 0.975 0.979

> 0.3 0.923 0.955 0.984 0.982 0.984 0.982 0.985

Common variants (MAF ≥ 0.05) 0.891 0.933 0.975 0.974 0.977 0.976 0.980

All variant types accuracy

0.001–0.01 0.994 0.994 0.994 0.994 0.994 0.994 0.994

0.01–0.05 0.991 0.991 0.993 0.993 0.993 0.993 0.994

0.05–0.1 0.983 0.984 0.991 0.992 0.992 0.992 0.993

0.1–0.3 0.967 0.974 0.988 0.989 0.990 0.989 0.991

> 0.3 0.961 0.966 0.986 0.987 0.988 0.988 0.989

Common variants (≥ 0.05) 0.970 0.974 0.988 0.989 0.990 0.989 0.991

https://github.com/ryhui/imputation-pipeline
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Figure 2.   Imputation accuracy of heterozygous sites following the default pipeline evaluated by down-sampling 
NE1 chr20. The main figure shows the accuracy across coverages (on a log scale, X-axis), with and without the 
post-calling deamination filter. The inset on the top-right corner shows the proportion of heterozygous sites 
called in the original 20 × genome that are correctly imputed (i.e. not imputed as homozygous or failing the 
post-imputation filter).

Figure 3.   Comparing performance between one-step and two-step imputation pipelines. Two-step pipelines 
have a pre-imputation filter applied: max(GP) ≥ 0.99 for Beagle 4.0 + Beagle 5 and Beagle 4.1 + Beagle 5; 
max(GP) ≥ 0.9 for GLIMPSE + Beagle 5. In the lower panel, post-imputation GP filters are max(GP) ≥ 0.9 for 
GLIMPSE and max(GP) ≥ 0.99 for all the others. We used a more relaxed cutoff for GPs generated by GLIMPSE 
because these appear more conservative than GPs generated by Beagle 4 and 5 (Table S3).
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obtained at a lower error rate when we apply the “max(GP) ≥ 0.99” filter after imputation (Fig. 3 and Table S3) 
(the same trend that we observe when evaluating the effect of other pre-imputation filters, described in a later 
section). We note that the two-step pipeline combining Beagle 4.0 and Beagle 5 does not improve imputation 
accuracy in common variants compared to Beagle 4.0 alone when the post-imputation filter is applied. Hence, 
part of the superior performance in the Beagle 4.1 + Beagle 5 pipeline, which we use as the default, can be attrib-
uted to the improved algorithm in Beagle 4.1 over Beagle 4.0.

We next explored the effect of various settings in the imputation pipeline, using our default setting as the 
baseline and changing one element at a time.

Post‑calling deamination filter.  We tested a post-calling filter on all the coverages from 0.05 × to 2 ×, by 
masking out genotype likelihoods supporting C to T (G to A) mutations. We observed that this filter reduces the 
number of confidently imputed sites as well as accuracy at coverages below 0.1 × (Fig. 2; Table S4), suggesting 
that the loss of information outweighs the benefits from lower error rate. The difference in common variants 
becomes narrower above 0.5 ×, yet the deamination filter does not appear to convey any detectable advantage.

Genotype callers.  We then tested all the other parameters only on the 0.05 × down-sampled version of NE1 
(Table S5). Comparison between genotype callers suggests that the performance of GATK15 HaplotypeCaller 
could be improved by increasing its sensitivity (--min-pruning = 1, --min-dangling-branch-length = 1). GATK 
UnifiedGenotyper, ATLAS, GATK HaplotypeCaller with relaxed settings, and ANGSD16 show comparable per-
formance in general (Fig. 4A; Table S5). We chose to use ATLAS in the default pipeline for its built-in capacity 
to calibrate for post-mortem damage without comparing with the reference genome, which has been shown 
to reduce reference bias in low coverage genomes17. Although since post-mortem damage recalibration is not 
applicable to very low-coverage genomes, we did not perform it in our test to obtain more conservative results.

Pre‑imputation filters.  Among criteria we tested to filter for reliable genotypes before the imputation step, 
the most effective one is based on GPs produced by Beagle. More precisely, filtering for confident genotypes (e.g. 
max(GP) ≥ 0.99) before imputation does not always improve overall accuracy, but generates more discriminating 
GPs for imputed genotypes, which facilitates post-imputation filtering. On the other hand, applying other filter-
ing criteria based on tag SNPs or only transversions performs worse than not applying pre-imputation filters at 
all (Fig. 4B; Table S5). Adding the transversion-only filter or the tag SNP filter on top of the GP filter increases 
slightly the accuracy in common variants (MAF ≥ 0.05) at the cost of rare variants (MAF < 0.05) but greatly 
reduces the total number of usable genotypes.

Figure 4.   Effect of different settings on imputation accuracy evaluated by down-sampling NE1. (A) 
Performance using different genotype callers in a 0.05 × coverage genome; (B) Effect of pre-imputation filters in 
a 0.05 × coverage genome; (C) Effect of post-imputation filters at in a 0.05 × coverage genome; (D) Performance 
using different reference panels during the genotype probability update and imputation steps in a 0.05 × coverage 
genome. The inset on the top-right corner shows the proportion of heterozygous sites called in the original 
20 × genome that are correctly imputed (i.e. not imputed as homozygous or failing the post-imputation filter). tv: 
transversion.
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Imputation tools.  Many tools and services are available to impute missing genotypes from known ones. We 
compared other popular tools and services in addition to Beagle 5.0, including IMPUTE419, the Sanger Imputa-
tion Server20–22, and the Michigan Imputation Server23 starting from the same filtered genotypes (Table S5). 1KG 
was chosen as the imputation reference panel to make results comparable, although both imputation servers also 
provide larger reference panels. We find that Beagle 5.0 achieved the highest accuracy among heterozygous sites, 
but IMPUTE4 produced more correct genotypes by raw numbers.

Post‑imputation filters.  GPs, the number of linked SNPs and/or types of mutations (transition vs. trans-
version) can also be used as post-imputation filtering parameters to select a subset of more confident variants 
(Fig.  4C; Table  S5). In our test on chromosome 20, the accuracy for heterozygous sites gets close to 99% at 
coverages as low as 0.1 × when we combine filters based on GPs (≥ 0.99), types of mutations (transversion only) 
and the number of tag SNPs (≥ 20) (Table  S6). They represent ~ 8% of all heterozygous calls in the original 
20 × genome, but nevertheless suffice for many downstream analyses that do not require dense genetic markers.

Because the combination of quality filters sometimes retains relatively few sites for evaluation, we also tested 
the default pipeline, the post-calling deamination filter and the pre-imputation tag SNP filter on repeated down-
samplings of chromosome 20. The results confirm that even at 0.05 ×, the observed effect of quality filters is not 
a result of stochasticity (Table S7).

Reference panels.  Finally, we tested how the choice of reference panel affects imputation accuracy 
(Fig. 4D). Genotype likelihood input is not supported after Beagle 4.17, which does not scale to reference panels 
larger than a few thousand genomes, depending on the density of input markers and window size. A reference 
panel similar to the target sample in the first Beagle step performs slightly better than a world-wide reference 
panel. In the imputation step, a larger reference panel has little impact on the accuracy after applying the GP 
filter, but increases the number of genotypes passing the filter (Table S5). Therefore, we suggest first selecting a 
small reference panel as similar as possible to the target samples when updating the genotype likelihoods then 
switching to a larger world-wide reference panel in the imputation step.

Considerations in local imputation.  For some applications, such as the analysis of Mendelian traits, only 
the genotype/haplotype information of a short chromosomal region is required. So, we tested our imputation 
pipeline on short regions (1–5 Mb) of chromosome 20 of the NE1 genome (Supplementary Material). We tested 
four regions of different size and the results are highly concordant (Table S8), suggesting that also a small region 
can be used as a target for local imputation allowing to save computation time without losing accuracy. Since 
the computational time to perform the local imputation is shorter compared to the global imputation, we used 
this approach on 10 Mb to test some parameters also useful for the global imputation, namely MAF or minor 
allele count (MAC) filters on the reference panel and length and overlap of the Beagle 4.1 sliding windows at the 
genotype likelihood update step of our two-step pipeline. As for the MAF or MAC filters, we observed that in the 
absence of filters does not improve the accuracy (Table S8). When filters are applied, more strict filtering criteria 
(i.e. MAF ≥ 0.01) increase the imputation accuracy. However, rare variants (MAF < 0.1) showed higher accuracy 
estimates when relaxed filters (MAC ≥ 5) are applied on the reference panel, suggesting that more information 
is required to impute them. Regarding the window parameters (length and overlap) of Beagle 4.1, we found that 
windows smaller than the default value should be preferred for low coverage genomes (Table S8). Results from 
replicates on the HLA locus on chromosome 6 (Table S9) are consistent with chromosome 20, suggesting that 
our findings are not specific to the chromosomal context.

Biases towards the reference genome and the reference panel.  Pervasive reference bias is a major 
concern in aDNA analysis24. f4 statistics show that the imputed NE1 genomes are less biased towards the human 
reference genome compared to pseudo-haploid genotypes called on the down-sampled genomes, although 
the bias is not eliminated, consistent with previous observations12 (Table S10). Besides the reference genome 
bias in variant calling, we also assessed the bias towards the reference panel after imputation by calculating 
f4(20 × genome, down-sampled or imputed genome; 1KG population, ancestral genome) and found that both 
the pseudo-haploid and imputed genomes show reduced affinities to all modern populations included in the 
reference panel compared to the original 20 × genome (Table S10). This can also be explained by the bias towards 
the reference genome: the reference allele is more likely to be ancestral than derived, hence the derived alleles 
shared between the original NE1 genome and modern populations are often lost after pseudo-haploid calling 
or imputation. In fact, the most significant changes are found in European populations that are closest to NE1. 
Nevertheless, the outgroup f3 statistics to reference populations are highly correlated (R2 > 0.98) between the 
20x, down-sampled and imputed genomes (Table S11), indicating that imputation does not cause the genome to 
become closer to a subset of the reference panel.

Discussion
The default settings in the two-step pipeline presented here are a recommendation for imputing ultra-low cover-
age (≤ 1 ×) genomes, in cases where most of the genetic ancestry components are expected to be represented in 
the reference panel. By adding pre- and post-imputation filters based on the maximum genotype probabilities, we 
were able to recover more genotypes at increased accuracy compared to directly imputing from genotype likeli-
hoods input. Reducing the effect of post-mortem damage biochemically by UDG treatment or computationally 
during mapping17 is likely to further improve the performance.
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Despite the promising results of our pipeline, we also must note some limitations. Since we focused on 
extremely low coverages, the strategy of starting from genotype likelihoods may not be optimal for higher cov-
erages. We tested the pipeline on down-sampled copies of a 20 × ancient genome to ensure that we can obtain 
enough “true” genotypes to compare with the imputed genomes. Genomes at lower coverages might still allow 
a subset of variants to be called confidently, but these variants are also more likely to be covered by reads after 
down-sampling, which would bias our estimation of the proportion of correctly imputed sites. We would expect 
a higher imputation accuracy for Western European individuals after the Neolithic period, as they should be 
closer than the NE1 genome we tested to individuals in the reference panel. These results may not be transfer-
able to other populations, dependent on their demographic history and representation in the reference panel. 
In particular, accurate imputation will be difficult in populations harbouring ancestry components that are 
extremely rare or absent in the present-day reference panels, such as the European early hunter gatherer ancestry 
in Europe29. It will be helpful to evaluate the pipeline using high-coverage ancient genomes from outside Europe 
when they become available.

We also have to note that the imputation accuracy is still low for rare variants (MAF < 0.05), which show 
only < 60% accuracy for heterozygous sites at coverage 0.05 × (i.e. compared to > 85% accuracy at coverage 2 × in 
the MAF category 0.01–0.05; SI Table S1), making their analysis challenging. Although imputation reduces the 
pervasive reference bias in down-sampled genomes, we should still be mindful about its presence (SI Table S8).

In conclusion, we recommend using imputed genomes for downstream analyses incorporating genome-
wide markers segregating at relatively high frequencies. They have been used in population genetics studies for 
detecting runs of homozygosity and identical-by-descent segments, and local ancestry deconvolution10–13,25. It 
has also been shown that low-coverage sequencing combined with imputation is more cost-effective in GWAS 
and generating polygenic risk scores26–28. But caution should be taken against conclusions that are based on 
individual loci, or methods that are sensitive to rare variant genotype quality (e.g. methods based on sequential 
Markovian coalescence).

Data availability
No new data were generated for this study. The previously published NE1 genome can be accessed from the 
NCBI Sequence Read Archive under the code SRX484078. Scripts to run the pipeline and evaluate imputation 
accuracy are available at https​://githu​b.com/ryhui​/imput​ation​-pipel​ine.
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