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Multiple imputation for analysis of incomplete data
in distributed health data networks
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Distributed health data networks (DHDNs) leverage data from multiple sources or sites such

as electronic health records (EHRs) from multiple healthcare systems and have drawn

increasing interests in recent years, as they do not require sharing of subject-level data and

hence lower the hurdles for collaboration between institutions considerably. However,

DHDNs face a number of challenges in data analysis, particularly in the presence of missing

data. The current state-of-the-art methods for handling incomplete data require pooling data

into a central repository before analysis, which is not feasible in DHDNs. In this paper, we

address the missing data problem in distributed environments such as DHDNs that has not

been investigated previously. We develop communication-efficient distributed multiple

imputation methods for incomplete data that are horizontally partitioned. Since subject-level

data are not shared or transferred outside of each site in the proposed methods, they

enhance protection of patient privacy and have the potential to strengthen public trust in

analysis of sensitive health data. We investigate, through extensive simulation studies, the

performance of these methods. Our methods are applied to the analysis of an acute stroke

dataset collected from multiple hospitals, mimicking a DHDN where health data are hor-

izontally partitioned across hospitals and subject-level data cannot be shared or sent to a

central data repository.
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In the past two decades, enormous amounts of health data have
been collected and digitized, partly due to increasingly broader
adoption of electronic health records (EHRs) by many

healthcare systems. Pooling such big health data from multiple
institutions such as healthcare systems and health insurance
companies into a single database increases sample sizes for sub-
sequent data analyses and, more importantly, the pooled data can
provide a more representative sample of a larger population of
interest. As such, it offers great promises in improving the
validity, robustness and generalizability of research findings.
However, pooling data from multiple institutions may not always
be feasible or desirable. First, when the amount of data is massive
and continues to grow, it may not be feasible or efficient to
transmit data between institutions or store all data in one central
repository. Second, for big health data, it may be desirable to store
them in a distributed fashion and take advantage of advances in
parallel computing. Third, most importantly, due to government
regulations, institutional policies, and privacy concerns, it may
not be possible to transfer big health data at the patient level from
one institution to another or there are extremely high hurdles for
such data transferring that may take years to clear. For example,
Veteran’s Health Administration policies require its EHR data to
remain only within VA’s facilities. In addition, improper dis-
closure of individual-level data has serious implications, such as
discrimination for employment, insurance, or education1. In
addition, the current standard practice of data de-identification
through removing indiviual identifiers is inadequate for privacy
protection in the era of big data, as a large body of research has
demonstrated that given some background information of an
individual, an adversary can learn (from “de-identified” data)
sensitive information about the victim2–6.

To address these challenges, distributed health data networks
(DHDNs) that can store and analyze EHRs data from multiple
sites without sharing individual-level data have drawn increasing
interests in recent years7,8. Examples of DHDNs9, include the
vaccine safety datalink, the health care systems research network,
the sentinel initiative, and most recently the patient-centered
SCAlable national network for effectiveness research (pSCAN-
NER)10 that is part of PCORnet. To enhance scalability and
privacy protection in distributed analysis, the PopMedNet
platform11,12 has been developed to provide software enabled
governance over shared data. DHDNs eliminate the need to
create, maintain, and secure access to central data repositories,
minimize the need to disclose protected health information out-
side the data-owning entity, and mitigate many security, pro-
prietary, legal, and privacy concerns. In this work, we focus on
horizontally partitioned data13, meaning that different data cus-
todians such as hospitals and healthcare providers have the same
set of features for different sets of patients. For example, several
healthcare systems are interested in analyzing pooled data from
their EHRs to improve the precision and generalizbility of ana-
lysis results. However, due to the aforementioned concerns, they
are not allowed or are reluctant to share individual-level data with
others, despite the substantial benefits from such collaboration.
DHDNs would lower the hurdles for them to collaborate in a
distributed analysis environment14, highlighted needed methods
contributions to analysis of distributed EHRs data.

As EHRs are collected as part of healthcare delivery, missing
data are pervasive in EHRs and DHDNs8,15. Missing data pro-
blem reduces the usable sample size and hence analysis power.
Improper handling of missing data is known to compromise the
validity of analysis and yield biased results, and could subse-
quently lead to inappropriate healthcare and health policy deci-
sions. To choose the best way forward in handling missing data,
the pattern and mechanism of missingness need to be con-
sidered16. Three main missing data mechanisms are missing

completely at random (MCAR), missing at random (MAR), and
missing not at random17. Most of the existing methods for
handling missing data rely on the assumption of MAR, i.e.,
missingness only depends on observed data, and which is the
focuse of our current work as well.

Multiple imputation (MI)17 is arguably the most popular
method for handling missing data largely due to its ease of use.
MI methods replace each missing value with samples from its
posterior predictive distribution. The predictive imputation
model is estimated from the observed data, which have no
missing values. The missing values are imputed multiple times in
order to account for the the uncertainty of imputation, and then
each imputed dataset is used to fit the analysis model parameters
θ18 proposed a simple method for combining these analysis
results from multiple imputed datasets, which is known as
Rubin’s rule. In the presence of general missing data patterns, the
MI by chained equations (MICE) method is widely adopted and
has been shown to achieve superior performance in practice19,20.

While there has been a large body of literature on handling
missing data, there has been little work on handling distributed
incomplete data such as missing data in DHDNs. Of note, while
pSCANNER10 has developed a suit of software tools for privacy-
preserving distributed data analysis, it currently has no tools for
handling distributed missing data.

To enhance protection of patient privacy, we investigate dis-
tributed MI methods for handling missing data that do not require
sharing individual level data between sites. Under MAR, one
straightforward privacy-preserving MI approach for horizontally
partitioned incomplete data would be to conduct MI within each
institution/site and then perform the distributed analysis. We call
this approach the independent MI (iMI). The iMI has a number of
limitations. In particular, it fails to leverage data from other sites,
which leads to large variability in imputation and loss of power in
subsequent analysis. This becomes more pronounced as the pro-
portion of missing data in individual sites increases. In the extreme
case when one variable is missing for all observations in a single site,
this variable cannot be imputed in that site using the iMI approach.
As a result, the data from this site may not be used in any sub-
sequent analysis where that variable is needed21 proposed a privacy-
preserving lazy decision-tree imputation algorithm for data that are
horizontally partitioned between two sources. As their algorithm is
designed for only single imputation, it is challenging to conduct
proper statistical inference such as hypothesis testing using their
singly imputed dataset that underestimates the uncertainty of
imputation. In addition, it is not directly applicable to general
missing data patterns and the case of more than two sources, and
their complex decision tree algorithm may overfit the data and may
not be communication efficient.

Since communicating data between sites in distributed learning
can be a costly operation, we seek to develop communication-
efficient distributed MI approaches. The aforementioned naïve iMI
approach is communication-efficient as it involves no communica-
tion between sites. We propose two additional communication-
efficient approaches, inspired by the inference methods for dis-
tributed complete data (CD); the average mixture approach
(AVGM) and the communication-efficient surrogate likelihood
(CSL) approach. In the AVGM approach22, each site finds the local
estimate using the data available at the site, and then these estimates
are averaged to find the global estimate. The CSL approach23 uses
the curvature information from a central site and the pooled deri-
vative at a point near the true parameter. AVGM is expected to
perform better when the samples are evenly distributed across the
sites, while CSL is expected to perform well when the central site has
the majority of samples. We will use these two approaches to
develop distributed MI approaches, avgmMI and cslMI, for uni-
variate missing data patterns. In addition, we develop the another
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distributed MI method that uses only the aggregated statistics from
each site that are sufficient to obtain the same global estimate as if
one had access to data pooled from all sites, and we call this method
siMI. siMI can be communication efficient for linear regression
models but not for nonlinear regression models for which the fitting
algorithm is iterative. Of note, similar to iMI, when one variable is
missing for all observations in a single site, this variable cannot be
imputed in that site using avgmMI and cslMI and hence the data
from this site may not be used in any subsequent analysis where that
variable is needed. However, siMI would enable the use of data from
these sites, which is one advantage of siMI over the other methods.
Using these techniques, we also develop distributed MICE methods
for general missing data patterns. However, since the standard
MICE algorithm involves fitting of the imputation model multiple
times, these direct extensions may not be as communication efficient
except for iMICE which requires no communication.

Our work represents the first attempt to develop MI methods
that allow proper statistical inference such as hypothesis testing in
analysis of horizontally partitioned incomplete data in DHDNs.
The remainder of the article is organized as follows. In the section
“Results”, we assess the strengths and weaknesses of the proposed
distributed imputation methods in simulation studies; we then
apply the methods to analysis of an acute stroke dataset collected
from EHRs of multiple hospitals, mimicking a DHDN setting.
The section “Discussion” provides some concluding remarks. In
the section “Methods”, we first briefly review the standard MI and
the two distributed analysis methods for CD, AVGM, and CSL,
respectively, and then present our communication-efficient dis-
tributed MI and MICE methods, respectively.

Results
Simulation studies. We conduct simulation studies to investigate
strengths and limitations of the four privacy-preserving dis-
tributed MI methods described in the section “Methods” under
the MAR assumption. We consider a linear regression model as
the “analysis model”

y ¼ θ0 þ θ1x1 þ � � � þ θpxp þ ϵ; ð1Þ
where y is the N × 1 vector of responses Y, x1, …, xp are the N × 1
covariate vectors for variables X1 through Xp, θ= (θ0, θ1, …, θp)
denotes the model parameters of interest, and ϵ � Nð0; σ2IÞ is
the N × 1 vector of errors. We investigate both univariate and
general missing data patterns. We apply each distributed MI
method to the simulated missing data and then fit the analysis
model using the imputed data to evaluate the imputation per-
formance in terms of bias and SD of regression coefficient esti-
mates, and communication costs. To benchmark the performance
of the distributed MI methods, we compare their results with the
results from the CD analysis which fits the analysis model using
the full data before missing values are generated, and the results
from the complete case analysis which fits the analysis model
using only the set of complete cases that have all variables
observed after missing values are generated.

In the first scenario, we have two continuous variables (p= 2).
The first variable X1 has missing values while X2 is fully observed.
For each subject, X2 is first generated from a uniform distribution
Uð�3; 3Þ. Given X2, variable X1 is sampled from a normal
distribution with mean μX= 0.2− 0.5X2 and variance σ2X ¼ 1.
The outcome Y is generated from Y= θ0+ θ1X1+ θ2X2+ ϵ,
where ϵ � Nð0; 1Þ and all θj= 1(j= 0, 1, 2). Variable X1 is
missing with probability f1þ expð�0:3þ 0:2Y � 0:1X2Þg�1,
resulting in approximately 50% of missing rate.

In the second scenario, we make only one change from the first
scenario, which is X1 is now a binary variable. Given X2, instead
of sampling X1 from a normal distribution, we generate X1

from a Bernoulli distribution Bð1; pÞ with probability p ¼
f1þ expð�0:2þ 0:5X2Þg�1. The outcome variable Y and the
missingness of X1 are generated in the same way as in the first
scenario. The resulting missing rate is about 50%.

The third scenario considers general missing data patterns. We
have p= 5 predictor variables, and X1–X3 have missing values.
The fully observed variables X4 and X5 are independent and
identically distributed as Nð0; 1Þ. Given X4 and X5, we sample
X1–X3 from a multivariate normal distribution NðμX ;ΣXÞ with

μX ¼ ð0:3� 0:3X4 � 0:1X5Þ1; ΣX ¼
1 0:5 0:5

0:5 1 0:5

0:5 0:5 1

264
375:

The outcome Y is generated by Y= θ0+ θ1X1+ θ2X2+ θ3X3+
θ4X4+ θ5X5+ ϵ, where ϵ � Nð0; 1Þ and all θj= 1(j= 0, 1, …, 5).
Missing values in X1–X3 are generated based on the logistic
regression models for the missing indicators δ1–δ3.

logitðPrðδ1 ¼ 1ÞÞ ¼ �1:0� 0:4Y � 0:1X4 � 0:2X5;

logitðPrðδ2 ¼ 1ÞÞ ¼ �0:8� 0:6Y þ 0:2X4 þ 0:4X5;

logitðPrðδ3 ¼ 1ÞÞ ¼ �0:8� 1:0Y þ 0:4X4 þ 0:3X5;

resulting in 20% of missing rates for each missing variable and
50% of complete case rate.

Let K be the number of data sites distributed over the network.
We consider two different numbers of sites (K= 5, 10) and three
different sample sizes N= 250, 500, and 1000. We also look at
two different types of distributions among the samples over the
sites. In the first type (U), the samples are unevenly distributed.
The first site has the majority of the samples and each site except
the first has 15 samples only. In the second type (E), the samples
are evenly distributed over the K sites. Table 1 lists all 15 settings
of K, N, and the sample distribution type which are considered in
this study. To evaluate the performance, we compute bias,
standard deviation (SD), and root mean squared error of the
estimates for θ from 1000 Monte Carlo datasets, which are

defined as BiasðθÞ ¼ k Eθ � θ0k2, SDðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E k θ �Eθk22

q
,

and rMSEðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E k θ � θ0k22

q
, where θ0 is the true value of θ.

Tables 2–4 summarize the results for scenarios 1–3, respectively.
Note that the CC method is biased regardless of the sample size N,
which is as expected since the missing mechanism is not MCAR.
Overall, the biases of all MI methods deteriorate as N decreases and
K increases. However, the changes vary with the method, the type of
sample distribution, and the type of imputed variable.

We can see that iMI and iMICE are less biased when the
samples are evenly distributed, as each individual imputation
model can be fitted stably. In contrast, when most of sites do not
have enough samples, the individual and hence the aggregated
estimates are less stable. Note that avgmMI and avgmMICE are
hardly affected by the type of sample distribution when the
missing variable is continuous (scenarios 1 and 3). However, they
are substantially influenced when the missing variable is binary
(scenario 2). The difference is even bigger when K= 10.
Conversely, cslMI and cslMICE are worse when the samples are
evenly distributed, obviously because the sample size at the
central site is smaller. Note that they utilize the curvature
information from the central site only and the initial estimate is
obtained from the central site as well. Therefore, its performance
is sensitive to the sample size at the central site. In particular, note
that a few cases of cslMICE failed to converge in evenly
distributed case when K= 10 and N= 250. However, the
performance of the CSL based methods is comparable to that
of siMI and siMICE when the central site has the majority of the
samples. Note that the estimates of siMI and siMICE are as
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unbiased as comparable to CD in all settings, although they suffer
a bit larger SDs.

Note that iMI and iMICE do not require any communication
for imputation. The avgmMI approach only requires two one-way
communications; one to fit the imputation model by AVGM and
another to deliver the aggregated estimates to all sites for
imputation. The cslMI approach requires one more one-way
communication; two to fit the imputation model by CSL and
another to deliver the estimated estimates to all sites for
imputation. However, the cslMI method transmits vectors only
in the first two communications, while avgmMI sends an estimate
vector and a covariance matrix in every communication. The
siMI approach requires as many communications as avgmMI
does when the imputation model is a linear regression. However,
siMI requires more communications when the imputation model
is nonlinear as shown in Table 3.

As we can see in Table 4, the communication costs of the
proposed MICE methods are huge except iMICE. Due to the
iterative nature of the MI by chained equation, the number of
required communications is proportional to the number of
imputations, M.

Analysis of real data. The Georgia Coverdell Acute Stroke Registry
(GCASR), covering nearly 80% of acute stroke admissions in the
state of Georgia in USA, was set up to monitor and improve the care
of acute stroke patients in the prehospital and hospital settings. The
GCASR dataset analyzed in this section includes 68,287 patients
from 75 hospitals in Georgia with clinically diagnosed acute stroke
between 2005 and 2013. The data collected from EHRs in each
hospital include a total of 203 variables, many of which have missing
values due to various reasons. The goal of our analysis is to fit a
linear regression model for assessing the effect of 14 features on the
outcome variable of arrival-to-computed tomography time, an
important quality indicator for acute stroke care, in the presence of
missing data. The features of interest include patient-related char-
acteristics such as age and gender, and pre-hospital-related char-
acteristics such as EMS notification.

To assess the performance of the distributed imputation
methods, we consider the case where EHRs data from individual
hospitals cannot be pooled or sent to a central data repository,
mimicking a DHDN, and we seek to impute missing values in this
distributed set-up while protecting data privacy. Among these
features of interest, only gender and race are observed for all
patients, and the missing rates for the other variables range from
0.04 to 50.73%. Of note, in some hospitals one or more variables

(e.g., NIH stroke score, EMS prenotification, and NPO) are
missing for all observations. Since iMICE cannot be used to
impute missing values in a hospital with one or more variables
missing for all observations, such hospitals were removed in the
first set of analyses resulting in 67,944 observations from 66
hospitals. The sample size in each hospital ranges from 18 to
4,333 with median 578. The number of complete cases across all
hospitals is 13,353.

As with the simulation study, we used the CC, iMICE,
avgmMICE, cslMICE, and siMICE methods. The CD analysis is
not applicable to real data analysis. In addition, since the cslMICE
approach is sensitive to the sample size of the central site, we
consider two versions of cslMICE, namely, cslMICE(M) and
cslMICE(m). For cslMICE(M), the central site is chosen to be the
one with the most samples (4333). For cslMICE(m), the central
site is the hospital with the median sample size (578). For each
imputation method, we generate M= 20 imputed datasets. To
benchmark the performance of the distributed MI methods, we
also include the results from the complete case analysis, noting
that the CD analysis is not applicable in the real data example.

To compare the performance of distributed imputation
methods without being complicated by the choice of distributed
method for fitting the analysis model, we chose to fit the analysis
model using the imputed data pooled across all hospitals. The
analysis results from the M= 20 imputed datasets are combined
using the Rubin’s rule. Specifically, let bθm and dVarðbθmÞ be the
regression coefficient estimate and its estimated variance (or
variance–covariance) from the m-th imputed dataset. Then the
overall coefficient estimate is given by bθ ¼ 1

M

P
m
bθm, and its

estimated variance is given by dVarðbθÞ ¼ 1
M

P
m
dVarðbθmÞþ

1
M�1

P
mðbθm � bθÞðbθm � bθÞT .

Figure 1 presents the parameter estimates and associated 95%
confidence intervals for each regression coefficient in the linear
regression model of interest. Of note, the hospitals in which at least
one variable is missing for all observations are removed for iMICE
since the missing values in such hospitals cannot be imputed using
iMICE. For each method other than siMICE, we counted the
number of discrepancies in statistical significance defined at α=
0.05 or in sign/direction of estimated effect compared to siMICE.
Table 5 reports the number of discrepancies along with the number
of communications required for each imputation method.

Since the results from the siMICE method are the same as the
results from the standard MICE using pooled data, the latter is
omitted from Fig. 1, and the results from the siMICE method are

Table 1 Fifteen different distributions of samples.

Type K N n(1) n(2) n(3) n(4) n(5) n(6) n(7) n(8) n(9) n(10)

– 1 250 250
– 1 500 500
– 1 1000 1000
U 5 250 190 15 15 15 15
U 5 500 440 15 15 15 15
U 5 1000 940 15 15 15 15
U 10 250 115 15 15 15 15 15 15 15 15 15
U 10 500 365 15 15 15 15 15 15 15 15 15
U 10 1000 865 15 15 15 15 15 15 15 15 15
E 5 250 50 50 50 50 50
E 5 500 100 100 100 100 100
E 5 1000 200 200 200 200 200
E 10 250 25 25 25 25 25 25 25 25 25 25
E 10 500 50 50 50 50 50 50 50 50 50 50
E 10 1000 100 100 100 100 100 100 100 100 100 100

Type indicates whether the samples are unevenly (U) distributed or evenly (E) distributed. K is the number of sites. N is the total number of samples.
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used to benchmark the other methods. As shown in Table 5, siMICE
incurs substantially higher communication costs than the other
distributed MI methods. Compared to the results from siMICE, the
CC analysis yields substantially different parameter estimates for
multiple regression coefficients as well as disagreement in statistical
significance or in direction of estimated effect for eight features. This
demonstrates the need for adequate handling missing data in the
analysis of the GCASR data.

The results from the other distributed MI methods are closer to
the results from siMICE than the CC analysis. Though, cslMICE
(m), which uses the hospital with the medium sample size as the
central site, exhibits the second largest number of discrepancies
after CC, including disagreement for four features. While offering
substantial savings in communication costs and yielding similar
parameter estimates for some features, iMICE shows notable
discrepancies for “NIH stroke score,” “Serum total lipid”, and
“NPO” when compared to siMICE. On the other hand, cslMICE
(M), which uses the hospital with the largest sample size as the
central site, and avgmMICE yield the smallest number of
discrepancies from siMICE, specifically only two discrepancies
as shown in Table 5. In addition, Fig. 1 provides more granular
information about comparing cslMICE(M) and avgmMICE with
siMICE. The locations of 95% confidence intervals obtained by
avgmMICE are most similar to those obtained by siMICE, with
the only notable discrepancy for “family history of stroke.” The
lengths of confidence intervals obtained by cslMICE(M) are most
similar to those obtained by siMICE, which could be attributed to
the fact that it uses the curvature information of the central site
with a large sample size. As a comparison, avgmMICE yields
wider intervals for a number of features including “EMS
prenotification,” “history of TIA,” “history of cardiac valve
prosthesis,” and “family history of stroke.”

To assess the performance of the distributed MI methods when
sample sizes in individual hospitals are moderate to small, we
conducted another set of analyses after removing the hospitals
with more than T patients where T= 500, 300, 100. When T=
500, the total sample size decreases to 5307 patients from 26
hospitals. The number of patients in each hospital ranges from 18
to 462 with a median of 163 and the number of complete cases is
only 362. In this set of analyses, we exclude cslMICE(m). As T
decreases and, in other words, the number of patients per hospital
continues to decrease, the discrepancies between the results from
siMICE and the results from the other distributed MI methods
including iMICE, avgmMICE and cslMICE(M) become greater.
Particularly, the discrepancies between siMICE and cslMICE(M)
tend to grow faster than the discrepancies between siMICE and
avgmMICE, suggesting that cslMICE(M) is more sensitive to
moderate to small sample sizes in all sites than avgmMICE.

Discussion
In this paper, we consider the problem of distributed incomplete
data where data from multiple sites are not allowed to be com-
bined, due to institutional policies or privacy concerns. We have
developed and investigated four MI approaches that allow proper
statistical inference such as hypothesis testing in analysis of
horizontally partitioned incomplete data in DHDNs.

Our numerical experiments provide insights into the strengths
and weaknesses of these methods. The proposed distributed
imputation methods except for iMI/iMICE enable the use of data
from all sites including sites with one or more variables missing
for all observations. siMI has been shown in our numerical stu-
dies to yield comparable performance as the standard MI using
pooled data, but it is not communication efficient for generalized
linear imputation models. While cslMI and avgmMI are more
communication efficient for all imputation models, theirT
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Fig. 1 Forest plot for analysis results of the GCASR data. The parameter estimates (dots) and associated 95% confidence intervals (whiskers) for each
regression coefficient including the intercept are compared between all the methods. The hospitals in which at least one variable is missing for all
observations have been removed for iMICE. The plots are based on 67,944 observations from 66 hospitals. The sample size in each hospital ranges from
18 to 4333 with median 578.

Table 5 Comparisons of analysis results of the GCASR data.

CC iMICE avgmMICE cslMICE(M) cslMICE(m) siMICE

# of communications 0 0 4730 7095 7095 25,397
# of discrepancies 8 3 2 2 4 –

Reported are the communication costs and the number of discrepancies in statistical significance defined at α= 0.05 or in sign/direction of estimated effect compared against siMICE. The hospitals in
which at least one variable is missing for all observations are removed for iMICE.
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performance may be sensitive to sample sizes in individual sites.
In particular, the performance of cslMI may become unstable as
the sample size in the central site becomes small to moderate.
While avgmMI is less sensitive to small sample sizes, our simu-
lations show that it tends to yield larger bias when imputing
binary variables. Of note, siMI may be particularly appealing
when analyzing data for uncommon diseases for which the
sample size can be small in each individual site and missing data
can further complicate data analysis. On the other hand, given
that existing networks have 5 to upwards of 70 or more sites and
can have millions to billions of records, the avgmMI and cslMI
approaches can be very appealing options compared to the iMI or
siMI approaches if all the data are used in analysis.

Unlike the other proposed methods, iMI requires no com-
munication between sites but may lead to unstable results as the
sample sizes in some sites become small to moderate. As shown
in the real data example, when one variable, say X1, is missing for
all observations in a single site, X1 in that site cannot be imputed
using iMI/iMICE and hence the data from the site may not be
used in subsequent analysis involving X1. The choice of dis-
tributed imputation approaches may also depend on whether data
heterogeneity across multiple sites can be adequately adjusted for
in imputation models. If we are able to adequately account for the
heterogeneity by say including covariates that capture the het-
erogeneity or random effects for sites in imputation models, the
siMI, cslMI, and avgmMI methods that borrow information
across sites can enhance the efficiency of imputation and hence
the power of subsequent analysis of imputed datasets. However, if
that is not the case, then the iMI approach may be preferred.

We have investigated the extensions of the distributed MI
methods for general missing patterns through the use of chained
equations (MICE). Although these methods are privacy-
preserving and yield good performance, they are not commu-
nication efficient as demonstrated in the numerical experiments.
In cases where communication costs are of critical concern, more
communication-efficient imputation methods are needed for
handling general missing data as potential future work. Another
potential limitation is that siMI, cslMI and avgmMI may not
always be privacy-preserving as the summary statistics trans-
mitted between individual sites and a central server may still leak
individual-level information24. Particularly, the siMI method
needs to transfer the entire design matrix between sites, which
poses higher risk of leaking individual patients’ information. To
address this issue, a differential privacy step25 can be added to
further strengthen the privacy-preserving property.

In practice, robust imputation methods such as predictive
mean matching (PMM) and random forest (RF) imputation are
widely used. It is of future interest to develop distributed versions
of generic imputation methods include PMM and RF, which,
however, can be very challenging. Such distributed generic
imputation methods are expected to require additional commu-
nication overhead and more general definition of sufficient sta-
tistics. Particularly, the information to be exchanged for a
distributed generic imputation method needs to be carefully
investigated, while taking into account statistical validity, privacy-
preserving property, and communication costs.

Methods
Ethical approval. This study was reviewed by the Institutional Review Board at the
University of Pennsylvania which determined that the study does not meet the
criteria for human subject research since it involves only secondary analysis of de-
identified data from an existing database and does not involve new data collection.

Notation. To fix ideas, suppose that we are interested in fitting the analysis model
(1) of outcome Y on p features X1, …, Xp, using a random sample of N observa-
tions. We define x0 = 1 for the N × 1 vector of ones and denote the values for the i-

th individual by exi ¼ ðxi0 ¼ 1; xi1; ¼ ; xipÞT and yi. Let X ¼ ½1 x1 � � � xp� ¼
½ex1 � � �exN �T be the N × (p+ 1) design matrix.

We consider horizontally partitioned data from K institutions or sites, all of
which have the same set of features recorded for all of their subjects. y and X,
known as the “pooled” outcome vector and the “pooled” design matrix respectively,
can be decomposed by sites as follows:

y ¼
yð1Þ

..

.

yðKÞ

0BB@
1CCA; X ¼

Xð1Þ

..

.

XðKÞ

0BB@
1CCA;

where y(k) and X(k) are the data from the kth site with n(k) subjects, X(k) is an n(k) ×
(p+ 1) matrix, and N ¼PK

k¼1 n
ðkÞ.

We first consider a univariate missing pattern where only X1 has missing values
and the other variables are fully observed where Nc denotes the number of
complete cases. We then consider general missing data patterns.

Multiple imputation. An MI method replaces each missing value multiple times
from its predictive distribution based on the observed data, accounting for the
uncertainty of imputation. Each of the imputed datasets is analyzed separately as if
it were fully observed. The results across all imputed datasets are then combined
following Rubin’s rule. For example, if X1 which has missing values is continuous,
we can use a Bayesian linear regression model for imputation

X1 ¼ α0 þ α1Y þ
Xp
j¼2

αjXj þ ζ; ð2Þ

where ζ � Nð0; τ2Þ with priors

πðτ2Þ / IGð1=2; 1=2Þ; αjτ2 � Nð0; τ2λ�1IÞ;

where IG and N refer to the inverse gamma distribution and the multivariate
Gaussian distribution, respectively. Let Z = [1, y, x2, …, xp], and let Zc be the
Nc × (p + 1) submatrix of Z loaded with the complete cases only. Similarly, let x1,c be
the subvector of x1 with the complete cases. The posterior distribution of (τ2, α) is
given by

τ2jZc � IGððNc þ 1Þ=2; ðSSEþ 1Þ=2Þ;
αjτ2;Zc � NððZT

c Zc þ λIÞ�1ZT
c x1;c; τ

2ðZT
c Zc þ λIÞ�1Þ;

ð3Þ

where SSE ¼ xT1;cx1;c � xT1;cZcðZT
c Zc þ λIÞ�1ZT

c x1;c. The MI method samples (τ2, α)
from Equation (3), imputes the missing values of X1 according to Eq. (2) with random
errors added, and fits the analysis model (1) using the imputed full data. This pro-
cedure is repeated multiple times.

When X1 that has missing values is binary, we can use a Bayesian logistic regression
model for imputation with prior α � N 0; λ�1I

� �
. Let bα be the maximum A posteriori

estimator. Note that, as Nc tends to infinity, we have

CovðbαÞ ¼ ðZT
c WcZc þ λIÞ�1ð1þ OðN�1c ÞÞ, where W is a diagonal matrix with

wii ¼ expitðezTi bαÞð1� expitðezTi bαÞÞ, Wc is the sub-diagonal-matrix of W for the
complete cases, and expitðxÞ ¼ logit�1ðxÞ ¼ 1

1þe�x . Therefore, the MI method samples

α from Nðbα; ðZT
c WcZc þ λIÞ�1Þ, imputes the missing values according to the

Bernoulli distribution, xi1 � Bð1; expitðezTi αÞÞ, and fits the analysis model using the
imputed full data. This procedure is repeated multiple times. A regularization
parameter λ can be used to avoid numerical difficulties particularly when the sample
size at a site is less than the dimension of the parameters. We choose the value of λ to
be as small as possible so that the bias caused by regularization can be negligible.

Communication-efficient inference for distributed CD. One straightforward
approach to analyze distributed data is to transmit the minimally sufficient informa-
tion from all sites to the central site such that it would enable reproducing the results
from analyzing data pooled from all sites. We call this approach the SI (suffcient
information) method which will be extended to the sufficient informationMI (siMI) in
the next section. In linear regression, for example, we only need X(k)TX(k) and X(k)Ty(k)

to obtain the same least-square estimates for the regression coefficients as if we had the
data pooled from all sites. This can be seen from the following equation:

bθ ¼ XTX
� ��1

XTy
� � ¼ X

k

XðkÞTXðkÞ
 !�1 X

k

XðkÞTyðkÞ
 !

: ð4Þ

In addition, this approach requires only one single communication between each site
and a central server where the computations described in Eq. (4) are conducted. To
extend this strategy to the generalized linear models (GLMs), we note that a standard
algorithm for fitting GLMs goes through Newton iterations, each of which requires the
derivative and the curvature information of the global loglikelihood that involves
regression coefficients. For example, in the logistic regression, the parameters are
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updated as follows for each iteration.

θðtþ1Þ  θðtÞ þ s
X
k

XðkÞTWðkÞXðkÞ
 !�1 X

k

XðkÞT ðyðkÞ � πðkÞÞ
 !

; ð5Þ

where πðkÞi ¼ expitðexðkÞTi θðtÞÞ, W(k)= diag(π(k))diag(1− π(k)), and s is the step size.
For each iteration, the central site has to transfer θ(t) to other sites and all sites have to
transfer X(k)TW(k)X(k) and X(k)T(y(k)− π(k)) back to the central site. Since the number
of required round-trip communications is same as that of Newton iterations, the SI
method may not be communication efficient. This approach is privacy preserving in
the sense that the subject-level data are not shared outside of each site and hence are
protected. Again, this approach generates the same results as the analysis of the pooled
data.

We also consider two alternative distributed analysis methods that are
communication efficient22 proposed the average mixture algorithm. Each site
estimates the model parameters using the data available at the site only, and then

combine the estimates to find the global estimate for the parameters. Let bθðkÞ be the
estimate from the kth site. Then, we have

bθavgm ¼X
k

wk
bθðkÞ; ð6Þ

where wk ≥ 0 and ∑kwk= 1. Note that the weights wk should reflect the sample size of
each site. This method is communication efficient as it requires a single one-way
communication only. The resulting estimator can achieve the best rate of convergence
in asymptotics22. However, the local estimates can be volatile, especially when the

sample size of the site is small. Therefore, the finite sample characteristic of bθavgm can
be quite different. We call this approach the AVGM (average mixture)
algorithm. Jordan et al.23 proposed using the curvature information from one central
site, say site 1, and the global derivative at a point near the true parameter. The
estimator is defined as the minimizer of the CSL, which is defined aseLðθÞ ¼ L1ðθÞ � h∇L1ðθÞ � ∇LðθÞ; θi;
where L is the gross average loglikelihood (loss function), L1 is the local average
loglikelihood at the central site (site 1), θ is a point close to the true θ, and 〈⋅,⋅〉
denotes the inner product. Note that it requires one round-trip communication in
order to calculate ∇LðθÞ. The solution achieves the optimal convergence rate if θ
converges fast enough23. However, the finite sample performance may deteriorate if
the sample size at the central site is small, as it utilizes the curvature information from
the central site only and the initial solution θ is also obtained from the central site
only. We call this approach the CSL method.

Jordan et al.23 proposes multiple versions of CSL methods including the ones
that repeat the whole procedure using the current solution as a new initial
coefficient θ. Since those approaches require more communications, we do not
consider all of them and restrict our focus on the most communication-efficient
version, the one described above. The two communication-efficient methods
AVGM and CSL are also privacy-preserving in the sense that the individual level
data are not shared between sites.

Distributed MI for univariate missing data pattern. One straightforward way to
impute missing values for distributed data is to impute missing data in each site
separately using a standard MI method. We call this approach the iMI method. When
using iMI, no subject-level data are shared across sites and thus no communication is
required. As such, it is communication-efficient and privacy-preserving. However, this
approach has a number of limitations as discussed in the “Introduction” section.

Algorithm 1
Independent MI algorithm

1 for k ← 1 to K do
2 Fit the imputation model at site k to find bαðkÞ and CovðbαðkÞÞ;
3 Sample αðkÞ1 ; ¼ ; αðkÞM independently from NðbαðkÞ ;CovðbαðkÞÞÞ;
4 end
5 for m ← 1 to M do
6 for k ← 1 to K do Impute the missing data at site k based on αðkÞm
7 Fit the analysis model and obtain bθm and CovðbθmÞ;
8 end
9 Combine the results by Rubin’s rule to obtain bθ and CovðbθÞ;

An alternative approach is to use the SI method to fit a distributed imputation
model, which would be equivalent to fit the imputation model using data pooled
from all sites. The imputation approach requires as many communications as the
number of communications required by the SI method plus a one-way
communication to deliver the sampled imputation model parameters to all sites.
Hence, this method is less communication-efficient than the other methods
considered, unless the imputation model is a linear regression. However, as it uses
the full information, it is expected to yield the best imputation performance. We
call this approach the siMI method, which will be used as a benchmark for
assessing imputation performance in our numerical studies.

Algorithm 2
Sufficient information MI algorithm

1 Fit the global imputation model using the SI method to find bαsi and CovðbαsiÞ;
2 Sample α1, …, αM independently from Nðbαsi;CovðbαsiÞÞ;
3 Send α1, …, αM to all sites;
4 for m ← 1 to M do
5 for k ← 1 to K do Impute the missing data at site k based on αm;
6 Fit the analysis model and obtain bθm and CovðbθmÞ;
7 end
8 Combine the results by Rubin’s rule to obtain bθ and CovðbθÞ;

We also develop two communication-efficient distributed MI methods, namely,
avgmMI and cslMI, which adapt the communication-efficient methods described
above. The avgmMI method fits the distributed imputation model using the
AVGM method, in which the weights are chosen to be proportional to the number
of complete cases in each site.

bαavgm ¼ 1
Nc

X
k

nðkÞc bαðkÞ;
where the covariance matrix of bαavgm is given by

CovðbαavgmÞ ¼ 1

N2
c

X
k

nðkÞ2c CovðbαðkÞÞ:
Since each site needs to transmit two quantities bαðkÞ and CovðbαðkÞÞ to the central
site, avgmMI requires two one-way communications. This is a huge advantage over
the siMI method in terms of communication cost except when the imputation
model is a linear regression.

Algorithm 3
AVGM MI algorithm

1 for k ← 1 to K do
2 Find the estimates bαðkÞ and CovðbαðkÞÞ at site k;
3 Send bαðkÞ and CovðbαðkÞÞ to the central site;
4 end
5 bαavgm  1

Nc

P
kn
ðkÞ
c bαðkÞ;

6 CovðbαavgmÞ  1
N2

c

P
kn
ðkÞ2
c CovðbαðkÞÞ;

7 Sample α1, …, αM independently from Nðbαavgm;CovðbαavgmÞÞ;
8 Send α1, …, αM to all sites;
9 for m ← 1 to M do
10 for k ← 1 to K do Impute the missing data at site k based on αm
11 Fit the analysis model and obtain bθm and CovðbθmÞ;
12 end
13 Combine the results by Rubin’s rule to obtain bθ and CovðbθÞ;

The cslMI method fits the imputation model using the CSL method.bαcsl ¼ argminα
eLðαÞ;

where α is chosen as the local solution at the central site.

α ¼ argminαL1ðαÞ:
Following the asymptotic property of the CSL estimator23, the covariance matrix ofbαcsl is consistently estimated by

CovðbαcslÞ ¼ 1
Nc

∇2L1ðαÞ�1jα¼bαcsl :
Algorithm 4
CSL MI algorithm

1 Find the estimate α ¼ argminαL1ðαÞ, which is the optimal estimate at site 1;
2 Send α to all sites and receive ∇LkðαÞjα¼α back;
3 Find bαcsl ¼ argminα

eLðαÞ and CovðbαcslÞ ¼ 1
Nc
∇2L1ðαÞ�1jα¼bαcsl ;

4 Sample α1, …, αM independently from Nðbαcsl;CovðbαcslÞÞ;
5 Send α1, …, αM to all sites;
6 for m ← 1 to M do
7 for k ← 1 to K do Impute the missing data at site k based on αm;
8 Fit the analysis model and obtain bθm and CovðbθmÞ;
9 end
10 Combine the results by Rubin’s rule to obtain bθ and CovðbθÞ;
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The aforementioned algorithms can be used for a wide range of imputation
models including, but not limited to, GLMs. But, when applied to a linear
imputation model, the algorithms need to be designed to draw the error variance
parameter τ2 in different ways. The iMI and siMI methods can follow the
procedure in (3) without modification. However, a direct application of the AVGM
and CSL approaches would sample the error variance τ2 from Gaussian, which
does not ensure its positiveness. To address this issue, we propose the following
alternative procedures for sampling τ2.

For avgmMI, we use SSE= ∑kSSE(k) where SSE(k) is the sum of squared errors
from site k.

SSEðkÞ ¼ k xðkÞ1;c � ZðkÞc bαðkÞk22:
The error variance is sampled from τ2 � IGðNc=2; SSE=2Þ and α is sampled from
the multivariate Gaussian distribution with mean bαavgm and the variance

Covðbαavgmjτ2Þ ¼ τ2

N2
c

X
k

nðkÞ2c ðZðkÞTc ZðkÞc þ λIÞ�1:

Each site needs transfer bαðkÞ, SSE(k), and ðZðkÞTc ZðkÞc þ λIÞ�1 to the central site after
fitting the local imputation model.

The cslMI method also follows the procedure in (3). It entails sampling τ2 with

SSE ¼ Nc k xð1Þ1;c � Zð1Þc bαcslk22=nð1Þc , which is based on the asymptotic variance of bα
defined in Eq. (13) in ref. 23 and does not require additional communication
between sites to compute, and then sampling α from the multivariate Gaussian
distribution with mean bαcsl and the variance

Covðbαcsljτ2Þ ¼ τ2nð1Þc
Nc
ðZð1ÞTc Zð1Þc þ λIÞ�1:

In finite samples, the above-mentioned asymptotic approximation of SSE may
contribute to deteriorating performance of the cslMI when sample size decreases,
as evidenced in our numerical experiments.

Distributed MI for general missing data patterns. Since it is commonly
encountered in practice to have multiple variables with missing values, it is of
particular interest to develop privacy-preserving distributed MI methods for gen-
eral missing data patterns.

A very popular method for handling general missing data patterns is the MI by
chained equation, known as MICE in short20. Without loss of generality, we
assume that the first q (q < p) covariates, i.e., (X1, . . . , Xq), have missing values. The
MICE algorithm starts with an initial imputation. For example, the missing values
of Xj can be imputed by random samples from the observed data. Then, for each j
= 1, …, q, the missing values of Xj are imputed by a MI method, assuming that the
imputed values of all the other variables were actually observed. A sweep of
imputations for all qmissing variables form an iteration, and multiple iterations are
fulfilled until the distribution of imputed values becomes stationary before the first
imputed dataset is sampled. Multiple iterations are carried out between each
imputed dataset to alleviate autocorrelations. A total of M imputed datasets are
collected and used to fit the analysis model separately, and the results are combined
by the Rubin’s rule. Readers are referred to ref. 20 for more details about MICE.

Algorithm 5
Privacy-preserving MI by chained equation algorithm

1 for j ← 1 to q do
2 Impute the missing values of Xj.
3 end
4 for m ← 1 to M do
5 repeat
6 for j ← 1 to q do
7 Fit the imputation model for Xj using the samples for which Xj are

observed and impute the missing values of Xj by iMI, avgmMI, cslMI,
or siMI;

8 end
9 until multiple times;
10 Fit the analysis model and obtain bθm and CovðbθmÞ;
11 end
12 Combine the results by Rubin’s rule to obtain bθ and CovðbθÞ;

In parallel with the distributed MI methods, we consider four privacy-
preserving distributed MICE approaches, namely, iMICE, avgmMICE, cslMICE,
and siMICE. The generic privacy-preserving MICE algorithm is summarized in
Box 5. Unlike the distributed MI methods for the univariate missing pattern, each
imputation model is fitted multiple times in MICE. Therefore, these distributed

MICE methods may not be communication-efficient except iMICE, which requires
no communication between each site and the central site.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The real data analyzed in this article were provided by the Georgia Coverdell Acute
Stroke Registry and restrictions apply to the availability of these data. Request for access
to the data should be submitted to and approved by the Georgia Coverdell Acute Stroke
Registry.

Code availability
We used R software (Version 3.6.3) including custom code and existing R package (mice)
to conduct the simulations and real data analysis. All relevant R codes are publicly
available from https://github.com/changgee/MIDist.
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