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Abstract

The body responds to endotoxins by triggering the acute inflammatory response system to 

eliminate the threat posed by gram-negative bacteria (endotoxin) and restore health. However, an 

uncontrolled inflammatory response can lead to tissue damage, organ failure, and ultimately death; 

this is clinically known as sepsis. Mathematical models of acute inflammatory disease have the 

potential to guide treatment decisions in critically ill patients. In this work, an 8-state (8-D) 

differential equation model of the acute inflammatory response system to endotoxin challenge was 

developed. Endotoxin challenges at 3 and 12 mg/kg were administered to rats, and dynamic 

†This paper is an extended version of our paper published in Hogg, J.S.; Clermont, G.; Parker, R.S. Acute Inflammation Treatment via 
Particle Filter State Estimation and MPC. In Proceedings of the 9th International Symposium on the Dynamics and Control of Process 
Systems (DYCOPS), Leuven, Belgium, 5–7 July 2010; pp. 678–683.
*Correspondence: rparker@pitt.edu; Tel.: +1-412-624-7364.
Author Contributions: A.R., R.S.P., S.D.-G, and G.C. constructed the mathematical model; J.S.H., R.S.P., and G.C. synthesized the 
control algorithm. The modeling and experimental integration was conceived by J.A.K., G.C., and W.J.F. Endotoxin data was provided 
by C.L. and Y.V.; hemofiltration experiments were conducted by M.V.F., I.E.V., and W.J.F., with some reagents provided by T.R. and 
J.A.K. S.D.-G. and J.R. contributed to model analysis. The paper was written by R.S.P., A.R., and J.S.H.
‡Current address: Medtronic, 18000 Devonshire St, Northridge, CA 91325, USA.
§Current address: Service d’Anesthésie-Réanimation; Hôpital Edouard Herriot; 5 Place d’Arsonval; 69437 LYON Cedex 03, France.
‖Current address: Research Center Juelich and Department of Zoology; University of Cologne; Biowissenschaftliches Zentrum, Zi. 
1.104; Z ulpicher-Straße 47b; 50674 K oln, Germany.

Conflicts of Interest: The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Processes (Basel). Author manuscript; available in PMC 2020 October 30.

Published in final edited form as:
Processes (Basel). 2016 ; 4(4): 38. doi:10.3390/pr4040038.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cytokine data for interleukin (IL)-6, tumor necrosis factor (TNF), and IL-10 were obtained and 

used to calibrate the model. Evaluation of competing model structures was performed by 

analyzing model predictions at 3, 6, and 12 mg/kg endotoxin challenges with respect to 

experimental data from rats. Subsequently, a model predictive control (MPC) algorithm was 

synthesized to control a hemoadsorption (HA) device, a blood purification treatment for acute 

inflammation. A particle filter (PF) algorithm was implemented to estimate the full state vector of 

the endotoxemic rat based on time series cytokine measurements. Treatment simulations show 

that: (i) the apparent primary mechanism of HA efficacy is white blood cell (WBC) capture, with 

cytokine capture a secondary benefit; and (ii) differential filtering of cytokines and WBC does not 

provide substantial improvement in treatment outcomes vs. existing HA devices.
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1. Introduction

1.1. Inflammation

Inflammation is the body’s natural response to infection and trauma [1]. Macrophage cells 

play a key role in the initiation and orchestration of the inflammatory response. These 

immune cells reside in tissues where they monitor the environment for molecules derived 

from pathogen or damaged cells [2]. When such molecular patterns are detected, 

macrophages secrete pro-inflammatory mediators (such as tumor necrosis factor (TNF) and 

interleukin (IL)-1) and chemoattract other WBCs, thus initiating an immune response [3]. 

TNF and IL-1 induce endothelial cells to express adhesion molecules for neutrophils, a 

circulating white blood cell. Neutrophils migrate into the tissues, following chemokine 

gradients, where they scavenge and digest pathogen in a process called phagocytosis [4]. 

Pro-inflammatory cytokines also trigger an anti-inflammatory wave that suppresses 

inflammation and returns the system to baseline as the infection or damage is cleared [5]. 

IL-10 is a powerful anti-inflammatory cytokine that suppresses the expression of pro-

inflammatory cytokines and the activity of innate immune effector cells [6]. Anti-

inflammation is an essential regulator of the inflammatory response that thwarts potential 

deleterious cytotoxic effects of vigorous pro-inflammation. Although the goal of the 

inflammatory response is to contain and eliminate the initial biological stressor (e.g., 

infection) and thus restore a healthy state, it also has the potential to push the system into a 

number of pathological states. Case in point, high levels of anti-inflammatory IL-10 in 

combination with pro-inflammatory IL-6 have been associated with risk of death in septic 

patients [7].

1.2. Sepsis

Sepsis, a systemic inflammatory response triggered by infection, is one such pathology [8]. 

An estimated 751,000 incidents of severe sepsis occur annually in the United States with 

51% of cases receiving treatment in the ICU and 28.6% mortality [9]. Severe sepsis may 

lead to the failure of multiple organ systems [10]. The cascade of organ failures may occur 
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even while the infection is suppressed by antibiotics, demonstrating that uncontrolled 

inflammation is destructive to organ tissues.

The mainstay of sepsis treatment has been source control, antibiotic treatment, fluid 

resuscitation and organ support. Recent recommendations added very few additional options 

to this therapeutic approach [11,12]. Numerous attempts at controlling the ill effects of the 

inflammatory response in sepsis using immunomodulation, such as anti-inflammatory 

treatments (e.g., anti-TNF antibodies, low dose corticosteroids, etc.), have largely failed to 

improve patient outcome despite great pre-clinical promise. Hence, there is ongoing 

controversy as to the merit of immunomodulation in severe sepsis [12,13] and reticence to 

pursue development of interventions based on simple rationales. An opportunity exists for 

model-based intervention design in sepsis and other complex diseases where standard 

approaches have not delivered expected advances.

1.3. Mathematical Models of Inflammation

Our previous work focused on either low-order [14] phenomenological or high-complexity 

[15–17] models of the inflammatory response cascade. Other groups have also attacked the 

problem of modeling inflammatory processes [18–25]. More complex models increase 

biologic accuracy at the expense of full structural and parameter identifiability. The mapping 

of such complex models to data requires either significant amounts of data at a variety of 

scales or resolutions (some of which may not be experimentally measurable using current 

methods) or assumptions about the mathematical structure and relationships between 

parameters and/or variables. In contrast, low-order models may over-simplify the biology 

(e.g., “inflammation” vs. explicit cytokine equations), but formal mathematical analysis is 

facilitated by such structures. Our previously-developed low-order model [14] consisted of 

an inflammatory stimulus (pathogen) and early-and-late pro-inflammatory mediators which 

captured a variety of clinically relevant scenarios, including return to health, sterile death 

(pathogen free), and septic death (pathogen overload). We later extended the model by 

incorporating anti-inflammatory mediators, based on their value in restoring health and 

preventing sterile death [26]. Although these models provided insight into key drivers of 

inflammatory response outcome, they only qualitatively described inflammation response 

and were not calibrated to experimental data. Hence, the existing low-order models are not 

quantitatively predictive, nor would they be appropriate for use in treatment design where 

quantitative understanding of cytokine dynamics and how to modify such a response is 

needed.

1.4. Endotoxemia: A Model of Sepsis

Bacterial endotoxin is a key and highly conserved component of the cell wall of a large 

number of bacteria responsible for sepsis. The immune system promptly recognizes and 

responds to bacterial endotoxin initiating a vigorous, cytokine-mediated systemic 

inflammatory response that is highly reproducible and similar to the response observed in 

sepsis, including fever, low blood pressure, and accelerated respiratory and cardiac rates. In 

high doses, endotoxin may lead to organ dysfunction and death. Administration of endotoxin 

in laboratory animals serves as a laboratory model of sepsis and acute inflammation [27,28].
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1.5. Hemoadsorption: A Potential Treatment for Sepsis

Hemoadsorption (HA) is a blood purification treatment that has been shown to improve 

short term survival in septic rat models, presumably through nonspecific removal of 

inflammatory mediators [29,30]). A portion of the septic animal’s blood is circulated 

through an ex vivo circuit including the HA device: a column packed with small adsorptive 

beads. Key inflammatory cytokines responsible for the propagation of the inflammatory 

response, including TNF, interleukin(IL)-6, and IL-10, are captured by the device [29]. A 

calibrated model of cytokine capture was presented by DiLeo et al. [31,32] There is 

preliminary evidence that existing HA devices directly interact with circulating WBCs, the 

distal effectors of systemic inflammation. Research is ongoing to characterize the specific 

nature of the interaction between the HA device and subpopulations of WBCs [33].

1.6. Model-Based Treatment

Models of acute inflammation have potential to guide treatment decisions. The endotoxemia 

model in Section 2.2 predicts WBC activation, cytokine levels and tissue damage following 

an endotoxin challenge. System response to external perturbations of model variables, 

including cytokines TNF, IL-6 and IL-10, is captured through the interactions modeled in 

Section 2.2. When the effect of treatment on a model variable can be quantified, the system 

response can be predicted. HA treatment, which captures cytokines and potentially WBCs, is 

an ideal candidate for such exploration since its effect on model variables can be quantified.

The effect of HA will be dependent on the underlying inflammatory state. Consequently, an 

ideal treatment strategy might adapt in response to changes in the subject’s health. Adaptive 

treatment requires two components: a method for choosing an appropriate treatment regimen 

based on the inflammatory state; and a method of identifying the inflammatory state based 

on noisy and sparse measurements. Control theoretic methods provide a solution to the first 

problem, while state estimation techniques address the second.

1.6.1. Model Predictive Control—Model predictive control (MPC) is a popular control 

methodology for addressing biomedical systems control problems [34,35], based on its 

ability to robustly manage subject-model mismatch in a variety of disease case studies. MPC 

uses the predictive capacity of a model to manipulate inputs and guide a dynamic process 

towards a target trajectory [36]. MPC is a receding finite horizon method, where the control 

decision is based only on the predicted trajectory over a finite time window (i.e., horizon). 

As time advances, the horizon slides and new control decisions are based on the latest 

system observations. In the case of acute illness, MPC of HA could maintain homeostasis 

and guide the patient to health based on observations of biomarkers and vital signs. MPC has 

been applied towards the modulation of acute inflammation in the context of a four equation 

model of pathogen infection [37].

1.6.2. State Estimation: Mapping Diagnostics into Model Representations—
In clinical application, state estimation corresponds to the process of translating patient 

diagnostic measurements into state information using a model-based description that is 

suitable for predicting outcomes and selecting treatments. It is impractical or even 

impossible to measure every variable represented in the endotoxemia model. Measuring 
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serum cytokines in blood samples is straightforward, although sampling frequency and noise 

limit resolution. In contrast, there is no direct way to measure abstract states such as tissue 

damage (D) and long acting anti-inflammatory meditators (CA). Consequently, a method of 

estimating the model state based on partial and noisy observations is necessary. Rawlings 

and Bakshi describe a variety of methods for nonlinear state estimation in the context of 

MPC [38].

The Particle filter (PF) is a stochastic state estimation method described as “survival of the 

fittest” [39], which can also be used in parameter estimation. A number of parallel 

simulations (“particles”) are randomly initialized from a prior distribution of states. 

Following an observation, simulations are weighted by the posterior probability that the 

observation was generated by the particle. The particles are then resampled (with 

replacement) from the weighted distribution, and the resampled particle simulations are 

evolved dynamically to the next observation time point. The expected state values are 

calculated as the weighted average of the particle states. PF is appealing due to its generality 

and ease of implementation, though computational effort may be prohibitive in complex 

models. Nonlinear models with non-Gaussian noise distributions, such as the endotoxemia 

model, are notable candidates for PF application.

1.7. Manuscript Overview

In this work, we synthesize an intermediate-order model of acute inflammatory response to 

endotoxin challenge and calibrate the model parameters to data from rat studies. Major pro-

inflammatory cytokines, like IL-6 and TNF, as well as anti-inflammatory cytokines, like 

IL-10 and CA (a biologically-motivated lumped surrogate representing slow acting anti-

inflammatory mediators, such as the Transforming Growth Factor-β1 (TGF-β1) cytokine 

and cortisol) were incorporated in the model. Similar to [26], a non-measurable tissue 

damage marker was also included in the model to quantify the tissue damage caused due to 

the endotoxin challenge and activated phagocytic cells (N). The modeling objective of this 

work was to ground the intermediate inflammatory response model in experimental data, 

thereby providing a model that captures the dynamic blood concentrations of the major pro- 

and anti-inflammatory cytokines resulting from introduction of an endotoxin challenge (P(t)) 
in rats. Using the model explicitly, a model-based treatment design system is constructed 

using the MPC framework. A PF is used to estimate the current state, for use in tailoring 

hemofiltration treatment to inflammatory response. The closed-loop system is evaluated in 
silico for its ability to control cytokine levels after pro-inflammatory endotoxin challenge.

2. Materials and Methods

2.1. Experimental Data

Experiments on three cohorts of Sprague-Dawley rats were performed, in accordance with 

an IACUC-approved protocol at the University of Pittsburgh, to study the acute 

inflammatory response to endotoxin insults at various dose levels. Rats weighed 

approximately 200 g, and rats received endotoxin (Escherichia Coli) at dose levels of either 

3, 6, or 12 mg/kg, intraperitoneally. Blood samples were collected when rats were sacrificed 

at 0, 1, 2, 4, 8, 12, and 24 h after endotoxin administration (4 rats sacrificed per time point 
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per endotoxin dose level). Concentrations of IL-6, IL-10, and TNF were measured in 

triplicate using commercially available ELISA kits (R & D Systems, Minneapolis, MN, 

USA).

2.2. Mathematical Model of Acute Inflammation

The starting point for the present model comes from [26], a 4-state phenomenological 

description of the inflammatory response process.

dP(t)
dt = kpgP(t) 1 − P(t)

p∞
− kpmsmP(t)

μm + kmpP(t) − kpnf N*(t) P(t) (1)

dN*(t)
dt = smR

μnr + R − μnN*(t) (2)

dD(t)
dt = kdnfs f N*(t) − μdD(t) (3)

dCA(t)
dt = sc + kcnf N*(t) + kcndD(t)

1 + f N*(t) + kcndD(t) − μcCA(t) (4)

Here

R = f knnN*(t) + knpP(t) + kndD(t)

f(V ) = V

1 +
CA(t)

c∞

2

fs(V ) = V 6

xdn
6 + V 6

Pathogen, P, induces inflammatory response leading to activated phagocytic cells, N*. This 

cell activation leads to pathogen death and also tissue damage, D. Moderation of the 

inflammatory response is provided by anti-inflammatory mediators, represented by CA. This 

abstract model of the inflammatory response to pathogen provides multiple steady states and 

the ability to achieve clinically-relevant states of recovery (low P and D at long time), septic 

sepsis (high P and D at long time), and aseptic sepsis (high N* and D, but P = 0, at long 

time).

The acute inflammation model developed herein consists of eight ordinary differential 

equations (ODEs). The dependent variables used in the model include: endotoxin 

concentration (P(t)); total number of activated phagocytic cells (N(t)), which includes all the 
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activated immune response cells (such as neutrophils, monocytes, etc.); a non-accessible 

tissue damage marker (D(t)); concentrations of pro-inflammatory cytokines IL-6 ([IL6]) and 

TNF ([TNF]); concentration of the anti-inflammatory cytokine IL-10 ([IL10]); a tissue 

damage driven non-accessible IL-10 promoter (ϒIL10(t)); and a non-accessible state 

representing slow acting anti-inflammatory mediators (CA(t)).

A schematic diagram of the model capturing all the major interactions between the eight 

states is shown in Figure 1. Introduction of P into the system activates N. Once activated, N 
up-regulates production/release of all the inflammatory mediators (TNF, IL-6, IL-10, and 

CA) [40]. The pro-inflammatory cytokines have a positive feedback on the system; thereby, 

they further activate N, and up-regulate other cytokines [40,41]. On the other hand, the anti-

inflammatory cytokine and mediators have a negative feedback on the system. Hence, IL-10 

and CA inhibit the activation of N and up-regulation of other cytokines [42,43]. 

Mathematically, CA also serves to provide overall stability to the model (i.e., a low standing 

level of CA, serves to return inflammation to its baseline value after small perturbations). 

The model also incorporates tissue damage due to activated phagocytic cells, represented by 

a damage marker, D; this corresponds biologically to neutrophil-induced damage to lung 

tissue after a systemic inflammatory response. Tissue damage further up-regulates activation 

of N [44] and also contributes to up-regulation of IL-10 [45,46].

The endotoxin insult is injected intraperitoneally in the rats as a bolus administration, which 

initiates the inflammatory cascade. The ODE describing the dynamics of P(t) can be written 

as:

dP(t)
dt = − dPP(t) (5)

P(t) decays exponentially with a rate equal to dP. The decay rate was fixed at 3 h−1, which is 

consistent with the values obtained from published literature [47–49]. The initial conditions 

(t = 0) for Equation (5) are either 3, 6, or 12 mg/kg depending on the endotoxin dose level.

Resting phagocytic cells are activated by the presence of endotoxin in the system. The 

equations representing activation of N(t) can be mathematically written as:

dN(t)
dt = kN

R(t)
xN + R(t) − dNN(t) (6)

R(t) = kNPP(t) + kNDD(t) 1 + kNTNFfUPNTNF(t) 1 + kNIL6fUPNIL6(t)
fDNNCA(t)fDNNIL10(t) (7)

fUPNTNF(t) = [TNF]
xNTNF + [TNF] (8)
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fUPNIL6(t) = [IL6]
xNIL6 + [IL6] (9)

fDNNCA(t) = xNCA
xNCA + CA(t) (10)

fDNNIL10(t) = xNIL10
xNIL10 + [IL10] (11)

Here, Equation (6) represents the total number of activated phagocytic cells (N(t)). 
Parameters kN and dN represent the rate of activation and elimination of N(t), respectively. 

Activation of N(t) is driven by P(t) and D(t), through R(t), as shown in Equation (7). 

Throughout this work, functions with nomenclature fUPij(t) and fDNij(t) represent up-

regulating (UP) and down-regulating (DN) effects of inflammatory mediator j on mediator i. 
These up- or down-regulating functions are dimensionless and bounded, having values 

between 0 and 1. Functions, fUPNTNF(t) and fUPNIL6(t) indicate the up-regulating effects of 

[TNF] and [IL6] on N(t), respectively. Both these functions are Michaelis-Menten type 

equations, as shown in Equations (8) and (9). As the concentrations increase, the values of 

the up-regulating functions also increase, approaching 1 asymptotically. Gain parameters 

kNTNF and kNIL6 scale the up-regulating functions fUPNTNF(t) and fUPNIL6(t) to capture the 

appropriate effects on N(t), respectively. The inhibitory effects of CA(t) and [IL10](t) are 

captured by the down-regulating functions fDNNCA(t) and fDNNIL10(t), respectively. Here, 

as the variables increase, the values of the functions decrease, approaching 0 asymptotically 

(see Equations (10) and (11)). Parameters xN, xNTNF, xNIL6, xNCA, and xNIL10 are the half-

saturation constants determining the concentration level of the variables at which the 

corresponding up-regulating or down-regulating function will reach half of its saturation 

point. The initial condition (t = 0) for Equation (6) is N(0) = 0.

The tissue damage caused by the inflammatory response to endotoxin challenge is modeled 

as follows:

dD(t)
dt = kD

N(t)6

xD
6 + N(t)6 − dDD(t) (12)

Parameters kD and dD represent the rate of generation and the rate of elimination of the 

unobserved tissue damage marker, D(t). Elevated D(t) further contributes to the activation of 

N(t) (7) [44] and production of IL-10 [45,46]. Parameter xD is the half-saturation constant. A 

6th-order Hill function was utilized in order to accurately capture the data. Further 

explanation regarding the choice of the Hill function coefficient is provided in the Appendix 

A. The initial condition (t = 0) for Equation (12) is D(0) = 0.

Parker et al. Page 8

Processes (Basel). Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The anti-inflammatory mediator, CA(t), represents a combination of various inflammation 

inhibitory mediators, including the cytokine Transforming Growth Factor-β1 (TGF-β1) and 

cortisol. The CA(t) equation is written as:

dCA(t)
dt = kCAN(t) − dCACA(t) + sCA (13)

Parameters kCA and dCA represent the rate of CA(t) production/secretion and clearance, 

respectively. At basal conditions, the system is assumed to be slightly anti-inflammatory. 

This was achieved by introducing a constant, sCA, into Equation (13). Hence, at t = 0 and 

N(0) = 0, CA(0) =
sCA
dCA

.

The dynamics of IL-6, which is predominantly considered a pro-inflammatory mediator, can 

be mathematically written as:

d[IL6](t)
dt = kIL6

(N(t))4

xIL6
4 + (N(t))4 [1 + kIL6TNFfUPIL6TNF(t)

+ kIL6IL6fUPIL6IL6(t)]fDNIL6IL10(t) − dIL6[IL6](t)
(14)

fUPIL6TNF(t) = ([TNF](t))4

xIL6TNF
4 + ([TNF](t))4 (15)

fUPIL6IL6(t) = [IL6](t)
xIL6IL6 + [IL6](t) (16)

fDNIL6IL10(t) = xIL6IL10
xIL6IL10 + [IL10](t) (17)

The up-regulation of IL-6 production is governed by activated N(t). Production of IL-6 is 

further up-regulated by the presence of elevated [TNF](t) and [IL6](t) itself, and this is 

captured by the up-regulating functions f UPIL6TNF and fUPIL6IL6(t), respectively. The 

inhibitory effects of the anti-inflammatory cytokines were captured by the down-regulating 

function fDNIL6IL10(t). The clearance rate of IL-6 is represented by the parameter dIL6(t). 
Once again, Section A further explains the selection of the Hill function coefficient. 

Parameters xIL6, xIL6TNF, xIL6IL6, and xIL6IL10 are the half-saturation constants. The initial 

condition (t = 0) for Equation (15) is [IL6](0) = 0.

Pro-inflammatory TNF concentration can be represented by the following equations:

d[TNF](t)
dt = kTNF(N(t))1.5fDNTNFCA(t)fDNTNFIL6(t) − dTNF[TNF](t) (18)

Parker et al. Page 9

Processes (Basel). Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fDNTNFCA(t) =
xTNFCA

6

xTNFCA
6 + CA(t) 6 (19)

fDNTNFIL6(t) = xTNFIL6
xTNFIL6 + [IL6](t) (20)

The rate of production of TNF due to activation of N(t) is governed by the parameter kTNF, 

and the rate of clearance of TNF is represented by the parameter dTNF. A power of 1.5 was 

assigned to N(t) instead of a Michaelis-Menten or Hill type expression in order to capture 

the rapid production and elimination of TNF. Further justification for the proposed [TNF]-

state (Equation (18)) is provided in Appendix A. The function fUPTNFTNF(t) represents the 

up-regulating effect of [TNF](t) on its own production. The functions fDNTNFCA(t) and 

fDNTNFIL6(t) represent the inhibitory effect of anti-inflammatory cytokine CA(t) and pro-

inflammatory cytokine IL-6 (which in some instances, such as this, acts as an anti-

inflammatory mediator [50]), respectively. Parameters xTNFTNF, xTNFCA, and xTNFIL6 are 

the half-saturation constants. A 6th-order Hill function for fDNTNFCA(t) modeled the rapid 

suppression of CA on the [TNF](t) dynamics. The initial condition (t = 0) for Equation (18) 

is TNF(0) = 0.

The dynamics of [IL10](t), which is a strong anti-inflammatory cytokine, can be represented 

by the following equations:

d[IL10]
dt = kIL10

(N(t))3

xIL10
3 + (N(t))3 1 + kIL10IL6fUPIL10IL6(t)

− dIL10fDNIL10IL10(t)[IL10](t) + Y IL10(t) + sIL10

(21)

dY IL10(t)
dt = kIL10Y

(D(t))4

xIL10Y
4 + (D(t))4 − dIL10Y Y IL10(t) (22)

fUPIL10IL6(t) = ([IL6](t))4

xIL10IL6
4 + ([IL6](t))4 (23)

fDNIL10IL10(t) = xIL10IL10
xIL10IL10 + [IL10](t) (24)

Here, Equation (22) captures the circulating [IL10](t) levels. Unlike the other measured 

cytokines, the [IL10](t) dynamics demonstrate two distinct peaks separated by 

approximately 4 to 6 h when perturbed by endotoxin challenge. The first surge of IL-10 

production is predominantly attributed to N(t), which is captured by a 3rd-order Hill 

equation multiplied by the parameter kIL10 (first RHS term of Equation (22)). Production of 
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IL-10 is further up-regulated by the presence of elevated pro-inflammatory cytokines like 

IL-6, which is represented by the up-regulation function fUPIL10IL6(t). The production of 

IL-10 in the basal state is represented by the constant sIL10 (as observed in experimental 

data). Hence, at t = 0 and N(0) = 0, [IL10](0) =
sIL10 ⋅ xIL10IL10

dIL10xIL10IL10 − sIL10
. It has been shown 

that the rate of elimination of IL-10 is inversely proportional to circulating [IL10](t) [51]. 

This phenomenon is captured by a down-regulating function, fDNIL10IL10(t), coupled with 

the parameter dIL10, as shown in Equation (22). Further discussion of the Equation (22) 

structure is presented in Appendix A.

The second surge in IL-10 production is attributed to tissue damage D(t) [45,46], and the 

dynamics of this D-induced effect are captured by the variable YIL10(t) in Equation (22). 

The dynamics of YIL10(t) are represented by the ODE (22); here the rate of production of 

YIL10(t) is represented by the parameter kIL10Y coupled with a 4th-order Hill equation (first 

term in RHS of Equation (22)), which is driven by D(t). Once again, this is data-motivated 

(see the further discussion in Appendix A). The rate of elimination of YIL10(t) is given by 

parameter dIL10Y. Parameters xIL10, xIL10Y, xIL10IL6, and xIL10IL10 are the half-saturation 

constants.

The model developed above is a simplification of our earlier model [27,52] that eliminates 

nonlinear up- and down-regulatory functions that did not display significant dynamics over 

the endotoxin challenge range employed here. The parameter values used here are those 

published in Table 1 of [27]. Alternative modeling options for the various interactions are 

discussed in Appendix A.

2.3. Parametric Sensitivity by Finite Difference Method

The model parameters in Equations (5)–(24) will vary in their effect on state and output 

dynamics as a function of operating state and time. Sensitivity analysis, as calculated by 

finite difference [53,54], is employed to identify the model parameters that have significant 

impact on model predictions. Though local, this knowledge can be used to inform the design 

of future experiments for elucidating model dynamics and parameter values. A drawback of 

finite difference-based sensitivity analysis is that the information is not global, but the 

constrained nature of the parameter region (e.g., parameter estimates will not change sign) 

makes global analysis highly conservative and beyond the scope of the present study.

The inflammation model can be expressed as a set of Qx differential equations with Qx states 

(x) and M parameters (q). The Qx by M parameter sensitivity matrix can be calculated by 

using the finite difference approximation method, in which the sensitivity coefficients (si,j) 

are calculated from the difference of nominal and perturbed solutions [53,54], as follows:

si, j(t) = ∂xi(t)
∂θj

= xi θj + Δθj, t − xi θj, t
Δθj

(25)

Here, i ∈ [1, Qx], j ∈ [1, M]. To facilitate direct comparison of responses across different 

parameters, normalized sensitivity coefficients si, j(t)  are calculated [53]:

Parker et al. Page 11

Processes (Basel). Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



si, j(t) = ∂xi(t)
∂θj

θj
xi

(26)

For the evaluation of dynamic sensitivity, an L2-norm operation is performed to calculate the 

relative sensitivity (RS) aggregated over time. RS can be mathematically expressed as:

RSi, j = 1
QT

∑
k = 1

QT
si, j tk 2 (27)

Here, tk (k ∈ [1, QT]) are the times when a sample was collected, and QT is the number of 

sample points observed for a given entity (e.g., [IL6](t), [TNF](t), etc.).

2.4. In Silico Treatment

Rat endotoxemia was simulated using the calibrated model equilibrated with zero endotoxin, 

and then stimulated with P = 3–12 mg/kg endotoxin at t = 0. A hemoadsorption device 

model (Section 2.7) was coupled to the endotoxemia model to simulate blood purification 

treatment via the capture of cytokines and cells from the blood. Figure 2A illustrates the 

coupling mechanism between the endotoxemia model and the HA device. The flow rate of 

blood through the device was the manipulated variable in subsequent control simulations.

2.5. Stochastic Endotoxemia Model

A stochastic variant of the endotoxemia model was constructed by supplementing the 

deterministic model with a geometric noise process. The stochastic equation for each state xi 

was:

dxi(t) = fi(x (t))dt + σxi(t)dWt

where x  is the state vector, Wt is a Wiener process, and fi(x (t)) is the deterministic 

derivative function. Process noise was applied independently to each state variable. The 

stochastic model was integrated using the Euler-Maruyama method:

xi(t + Δt) = ∫τ = t
t + Δt

fi(x (τ))dτ + xi(t)N 0, σ2Δt .

All stochastic simulations were performed with σ = 0.05/h and Δt = 0.1 h. The deterministic 

component was integrated for control simulation purposes using the SUNDIALS CVODE 

library [55].

2.6. Observation Model

Observations of cytokines IL-6, TNF and IL-10 were generated from the distribution Yi (xi) 

~ log-N (μi (xi) , σi). Under the assumption that cytokine state xi = E[Yi(xi)], we obtain:
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μi xi = log E Yi xi − σi2/2 = log xi − σi2/2 .

Due to the limited number of samples obtained from experiments, σi is assumed to be 

independent of state value. For each cytokine i, σi was computed as the time and dose 

averaged standard deviation of log-measurements. The resulting noise parameters were σIL6 

= 0.26, sTNF = 0.20, and sIL10 = 0.22.

2.7. Hemoadsorption Model

The HA device, a schematic of which is shown in Figure 2, is modeled using a spatial 

discretization (n = 20) approximation of the partial differential equation to yield a set of 

ordinary differential equations. Discretization for each cytokine was modeled using the 

following equations:

dCi(t)
dt = Fd

V d
Ci − 1(t) − Ci(t) − kadCi(t) + V s

V d
kdesSi(t) (28)

dSi(t)
dt = V d

V s
kadCi(t) − kdes + kbnd Si(t) (29)

The fluid volume of a discretization is given by Vd, and the fluid flow through the HA 

device is given by Fd. The first right-hand side term of Equation (28) models convection 

through the device, with entering concentration Ci−1(t) and exiting concentration Ci(t), 
assuming the liquid in a given discretization is well mixed. The last two terms capture 

cytokine adsorption to, and desorption from, the bead bed surface. Adsorption and 

desorption here represent reversible capture at/near the bead surface, with surface 

concentration Si defined by Equation (29). The last constant in Equation (29), kbnd, 

represents irreversible uptake of cytokine into the bead pores . In order to keep the k’s in rate 

units (1/min), the volume to surface area correction 
V s
V d

= 73.3cm−1 was used. The 

experimental data was generated using a device flow rate of Fd =0.8 cm3/min.

Parameter identification was performed using the system dynamic model in Equations (28) 

and (29). The inlet to the first liquid discretization came from the cytokine bath (a 

continuously-stirred tank), and the liquid outlet of the 20th discretization was returned to the 

bath; additional experimental details can be found in [56]. The initial concentration of 

cytokines in each HA device discretization was 0 pg/mL. Least-squares optimization was 

used to fit the parameters kad, kdes, and kbnd independently for each cytokine. Parameter 

values can be found in Table 1. For validation, a low flow rate (Fd =0.08 cm3/min) 

simulation was executed with no change in adsorption parameters, and the output was 

compared to data for IL-6 [32] (figure not shown). The simulated bath concentration was 

within the spread of the experimental data at all time points.
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2.8. WBC Capture Model

Fifteen mL of heparin treated blood, obtained from septic or healthy donors, was circulated 

through a 1.5 mL HA or sham device. WBC counts were obtained at the start of the 

experiment and following 4 h of circulation through the device at 0.75 mL/min via a closed 

miniaturized extracorporeal circuit. At 4 h, WBC counts in septic blood fell to 27% of 

baseline with the HA device versus 71% with the sham device (N = 21). Similarly, WBC 

counts in healthy blood fell to 34% versus 82% of baseline with HA and sham device, 

respectively (N = 5). Experimental details and additional results are published [57,58].

A simple model of HA cell capture was calibrated to WBC differentials measured in septic 

blood. We utilized the form of the cytokine capture model, but assumed that cell binding was 

reversible (i.e., kbnd = 0). WBC counts in the sham circuit were used to calibrate a first-order 

WBC decay constant that was applied to both sham and HA circuits. Parameters kad and kdes 

were calibrated to WBC differentials in the HA circuit under a least squares criterion. Since 

only one differential was measured for HA, many parameter pairs satisfied the best-fit 

criterion. Preferring an underestimate of the cell capture rate, we chose kad to be slightly 

larger than the minimum possible value.

2.9. HA Device Configurations

The four HA device configurations simulated in this study are described in Table 2. 

Configuration A corresponds to a 1.5 mL device with experimentally calibrated capture of 

cytokines TNF, IL-6 and IL-10. Device B assumes that, in addition to cytokines, activated 

WBCs (N) are captured by the device. Configurations C and D represent hypothetical HA 

devices comprised of two or more columns with differing target specificities. The columns 

are arranged in parallel circuits with independent control of the blood flow rates.

2.10. Model Predictive Control

A nonlinear MPC (NMPC) algorithm was implemented using HA device flow rate(s) as the 

manipulated variable(s); the controlled variables were activated phagocytes (N); damage 

(D); and circulating cytokine levels IL-6, TNF and IL-10. The reference trajectory was 

defined by the system response to a 3 mg/kg endotoxin dose, which is uniformly survivable 

without treatment. More precisely, let x nul p0, t  be the system state at time t following an 

endotoxin dose of p0 mg/kg and null treatment. The reference for the controlled variable i at 

step k is defined:

R i(k) = xinul 3, tk , xinul 3, tk + 1 , …, xinul 3, tk + p − 1 .

The NMPC objective function was:

min
u (k |k)

‖ Γy (X (k + 1|k) − R (k + 1))‖2
2 + ‖ Γu U (k |k)‖2

2 + ‖ ΓΔu ΔU (k |k)‖2
2

(30)

s . t . 0 ≤ U (k |k) (31)
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∑
j = 1

c
U j(k |k) ≤ umax = 1.2mL/min∀m (32)

These terms penalize predicted error in the controlled variable (X ) from the reference (R )

changes in the flow rates (ΔU ) , and the use of large HA flow rates (U ) when the effect is 

negligible. Standard statistical notation is employed throughout (prediction at time k + 1 

given information up to time k). Weights for each controlled variable i are given by:

γx, i = 200
maxt = 0

24 xinul(3, t)

Weights for manipulated variables are given by: ΓΔu = 1/ umax c I and Γu = 1/ 4umax c I
where c is the number of independent adsorption columns in the HA device. The size of 

U (k |k) was m * c, with the HA configuration establishing the number of adjustable flow 

rates. Flow rates were constrained to be non-negative, while the sum of flows was 

constrained to be less than umax = 1.2 mL/min.

The MPC time step was Δt = 1 h, the prediction horizon was p = 4 steps, and the move 

horizon was m = 2. Control simulations were also performed with p = 6 and m = 3, but no 

substantial difference in performance was observed. Predicted trajectories were based on the 

deterministic endotoxemia model coupled to an HA device model with n = 20 or n = 5 

discretizations (five discretizations used in conjunction with PF). Constrained minimization 

was performed using fmincon in MATLAB with multiple initializations at each time step.

NMPC was performed with and without state estimation. In the former case, the full system 

state was passed to the controller at each time step (Figure 2B). In the later, state estimates 

based on serial cytokine measurements were generated by a PF algorithm (Figure 2C).

2.11. HA Performance Metric

HA performance was evaluated by a relative absolute error (RAE) metric, defined with 

respect to the reference trajectory, and relative to a null treatment simulation:

RAEHA = 1
5 ∑

i ∈ C

∑t xi p0, t − xinul(3, t)
∑t xinul p0, t − xinul(3, t)

(33)

Here x is the model trajectory with MPC of HA, xnul is the model trajectory without 

treatment, and p0 is the initial endotoxin dose. C is the set of controlled states in the 

endotoxemia model: N(t), D(t), [IL − 6](t), [TNF](t), and [IL − 10](t). In the case of 

stochastic simulations, RAEHA is reported as the average of N = 8 simulations.
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2.12. Particle Filter State Estimation

PF was implemented according to a standard algorithm [59]. Each particle was simulated by 

the stochastic endotoxemia model coupled to an HA device model with n = 5 discretizations. 

Particles were initialized with a random endotoxin dose of 3–12 mg/kg, and simulated for a 

random interval of 0–6 h before the first observation.

Cytokines IL-6, TNF and IL-10 were sampled hourly, with observations generated as 

previously described. Samples were collected 20 min prior to each control step to mimic 

laboratory processing time. Based on the observation, particles were weighted and 

resampled at the sampling timepoint. Particles were then simulated up to the control step 

before state estimates were computed and passed to the MPC unit.

PF was modified to generate an estimate of time elapsed since endotoxin administration. 

Each particle was assigned a variable to track its internal time. The elapsed time was 

estimated by the weighted average of internal particle times. Elapsed time estimates permits 

the MPC to compare predicted trajectories to the reference trajectory.

2.13. State Estimation Performance Metric

The accuracy of PF state estimation was quantified by relative absolute error (RAE) of the 

state estimate with respect to the true state:

RAEPF = 1
7 ∑

i ∈ S−p

∑t = t0
24 xi p0, t − xi p0, t

∑t = t0
24 xi p0, t

, (34)

where t0 is the first observed time point, x is the state estimate, x is the true state, and S−p is 

the set of states in the endotoxemia model excluding P.

3. Results

3.1. Parameter Sensitivity Analysis

A parametric relative sensitivity matrix (RSi,j) was generated using the finite difference 

method as described in Section 2.3. The matrix was comprised of 8 rows (i ∈ [1, 8]), 

representing the states, and 40 columns (j ∈ [1, 40]), representing all the parameters of the 

model. A graphical representation of the RSi,j values is provided in Figure 3. The x-axis lists 

parameters by number; this mapping is provided in Table 3. Each of the subplots in Figure 3 

represent the parametric relative sensitivity values corresponding to a particular state (as 

shown in figure sub-titles). A higher RSi,j value indicates the state is more sensitive to the 

specified parameter.

In order to investigate the interactions between the various states of the proposed model, the 

parameters were grouped according to their association with each state, as indicated in Table 

4. In Table 5, the contributions of each of these parameter groups, in terms of percentage 

relative sensitivity (%RS), to a particular state are listed. The %RS of a parameter group for 

each state is calculated by taking the sum of the relative sensitivity of each parameter in that 
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particular group divided by the sum of relative sensitivity of the entire parameter set (M = 

40) for that specific state.

It is evident from the %RS values of Table 5 that each state is sensitive to changes in its own 

parameters and the parameters associated with states P(t) (as endotoxin is the initiator) and 

N(t) (as activated phagocytic cells are the primary driving force of the inflammatory action). 

In addition, the individual states are variably sensitive to other states when measured 

directly. The dynamics of the activated phagocytic cells, N(t), are more sensitive to 

parameter changes associated with [IL10](t) (θIL10) than to those of [IL6](t) (θIL6) and 

[TNF](t) (θTNF). State [IL6](t) also demonstrates higher sensitivity to parameters associated 

with [IL10](t) (θIL10) than [TNF](t). For the [TNF](t) state, sensitivities to parameters 

associated with CA(t) (θCA) are dramatically higher than [IL6](t) (θIL6) and [IL10](t) 
(θIL10). The [IL10](t) state and the unobserved filter, ϒIL10(t) are primarily sensitive to 

parameters associated with D(t) (θD) and the parameters of the unobserved state, ϒIL10(t). 
Other cytokine state parameters show lower sensitivity to [IL10](t) directly, meaning 

systemic anti-inflammatory response is accomplished through secondary effects of [IL10](t) 
on N(t) and D(t).

3.2. Controlling the Inflammatory Response

3.2.1. MPC Using HA—To establish the upper performance bound of MPC using HA, 

endotoxemia was simulated using the deterministic model and assuming the controller 

observes the full state space without noise. MPC of HA was simulated using four device 

configurations described in Table 2. Endotoxin was administered in 8 or 12 mg/kg doses and 

HA intervention began immediately at t = 0 or after delays of 1–6 h. The reference trajectory 

was defined by the model response to a small endotoxin dose (3 mg/kg), without 

intervention.

Figure 4 plots MPC performance for each combination of dose, intervention time, and HA 

device configuration. Performance is quantified by relative absolute error (RAEHA, Equation 

(33)), which measures the absolute error of the HA model trajectory (versus the reference 

trajectory) relative to the absolute error of the null treatment trajectory. Performance declines 

when intervention is delayed since error is calculated from t = 0 through 24 h.

3.2.2. HA Efficacy: Cytokine Versus WBC Capture—To evaluate the contribution 

of WBC capture, we simulated the HA device with and without WBC capture. Configuration 

A implements a device that captures cytokines only, while B is a device that captures both 

WBC and cytokines. Figures 5 and 6 plot simulation trajectories with and without HA 

treatment following a 12 mg/kg endotoxin dose.

The cytokine-only device is able to drive circulating IL-6 levels to the reference, but does 

not substantially impact other cytokines, activated phagocytes (N), or tissue damage (D). In 

contrast, the cell capture device has the capacity to drive the inflammatory response to the 

reference trajectory. Figure 4 shows that MPC performance with WBC capture (panel B) is a 

substantial improvement over cytokine-only capture (panel A) across a range of doses and 

intervention times. Average RAEHA over dose and intervention time was 0.83 for the 

cytokine-only device versus 0.40 for the WBC capture device.
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3.2.3. Differential Capture of Inflammatory Mediators—HA efficacy could be 

improved by achieving differential capture of inflammatory mediators. We designed two 

hypothetical devices composed of two or more HA columns arranged in a parallel circuit. 

Each column is designed to capture a specific subset of cytokines or WBCs. Blood flows 

through the columns are independently controlled, enabling selective removal of mediators 

by HA under MPC. Configuration C has one column designed to capture WBCs, while the 

second column captures all cytokines. Configuration D is composed of three columns with 

specificity to WBCs; TNF and IL-6; and IL-10, respectively.

Figure 7 shows sample control schemes for each HA configuration following a 12 mg/kg 

endotoxin dose and immediate intervention. With device C, MPC divides the blood flow 

between the WBC capture column and the cytokine capture column at start of intervention, 

then both flows are dropped to near zero within two hours. After 12 h, the flow rate to the 

cytokine column is increased to reduce the circulating levels of cytokines. Device D, splits 

the early flow rate between WBC capture and TNF/IL-6 capture. At two hours, the 

controller stops flow to WBC and TNF/IL-6 devices and increases flow to the IL-10 device.

Panels C and D of Figure 4 plot the performance of differential capture devices across a 

range of doses and intervention times. As a point of reference, panel B shows the 

indiscriminate device with cytokine and WBC capture. The differential capture devices 

performed slightly better on average than the indiscriminate device. Average RAEHA was 

0.40, 0.379 and 0.386 for device B, C and D, respectively.

3.2.4. Particle Filter State Estimation—We implemented a PF state estimation 

algorithm and tested the performance in silico. The stochastic endotoxemia model was 

stimulated with a randomized dose of endotoxin ranging from 3–12 mg/kg. The time to HA 

intervention was randomized from 0–6 h. Dose and intervention time was hidden from the 

PF to replicate conditions expected in a clinical setting. Cytokine states IL-6, TNF and IL-10 

were observed in one hour intervals through a log-normal noise distribution. Figure 8 shows 

a sample simulation with PF state estimation.

The PF was initialized with various numbers of particles, from 16 to 16,384, and 36 

randomized endotoxin trials were simulated for each case. Accuracy was measured by the 

average relative absolute error, RAEPF, across all endotoxin model states, excluding the 

endotoxin variable, P. We chose to exclude P due to rapid elimination, which amplified 

small absolute errors into large relative errors. Median RAEPF converged to ≈0.08 around 

256 particles, but outliers with larger error remained until the PF contained 2048 particles 

(data not shown). We chose N = 4096 particles for the following simulations, favoring 

accuracy over fast computations.

3.2.5. Hemoadsorption Control with State Estimation—We developed and tested 

a framework for realtime control of HA based on MPC and PF state estimation. A schematic 

of the in silico experiment is shown in Figure 2C. The rat subject was simulated using the 

stochastic endotoxemia model coupled to the HA device model. Cytokines were sampled 

once per hour, 20 min prior to the following control step. At each control step, the PF 

generated a state estimate for MPC computations. MPC with state estimation was simulated 
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for each combination of 8 and 12 mg/kg endotoxin doses; 0, 1, 2, 4, or 6 h intervention 

delays; and the four HA device configurations. Endotoxin dose and intervention delay were 

not provided to the PF and MPC algorithms. A sample trajectory of MPC of HA with a 12 

mg/kg endotoxin challenge and 2 h intervention delay is shown in Figure 9.

Performance of MPC with PF state estimation (stochastic subject with partial, noisy 

observations) was compared to MPC without state estimation (deterministic subject with 

complete, perfect observations). MPC with PF has reduced performance across the range of 

doses, intervention times and HA devices (Figure 2). However, performance is substantially 

better than the null treatment control. Our results demonstrate that the control framework is 

robust to a variety of confounding variables, including process noise, partial and noisy 

observations, and uncertainty in endotoxin dose and administration time.

4. Discussion

This work presents and analyzes an 8-state differential equation model of the acute 

inflammatory response system [27], explicitly representing the dynamics of a variety of 

specific cytokines that were treated as more abstract factors in previously developed 3-state 

model of the acute inflammatory response to pathogen or endotoxin. The present focus is 

analyzing the dynamics of this more detailed model to identify model structures that are 

consistent, in a least-squares sense, with longitudinal rat experimental data for 3 of the 8 

state variables, which were measured following endotoxin dose challenges at 3, 6, and 12 

mg/kg. The model also described the time course of the unobserved activation of phagocytic 

cells by endotoxin, as well as unaccessible variables, like tissue damage (D) caused by the 

activated phagocytic cells and the slow-acting anti-inflammatory mediator (CA). The data 

and the resulting model response display significant nonlinearity across the three challenge 

levels [27]. Hence, the accurate prediction of the intermediate dose without the need for 

additional parameters or parameter value changes supports the validity of the model 

structure, as well as its interpolative, and possibly extrapolative, utility.

4.1. Trading Off Biological Fidelity and Model Structure

Improving biological fidelity and reproducing data accurately were of prime importance in 

this work; care was taken that the added complexity reflected known inflammatory 

physiology. This came at a cost of a considerable increase in the number of equations and 

parameters. This exercise is representative of the ongoing challenge of balancing biological 

fidelity, often yielding large equation dimension and highly parameterized models, with 

accuracy of, and confidence in, model parameters based on fits to experimental data. Unlike 

chemical or physical interactions, which are generally well characterized, biological 

interactions are often poorly quantified and causality is often not established with certainty. 

Hence, the problem of synthesizing and identifying the simplest system that can be expected 

to provide reasonable quantitative predictions is difficult and pervasive. System simplicity 

can be debated on (non)linear, dimensional, and parametric grounds, even without the added 

complexity of dynamics. In the present case, we opted to minimize the number of state 

variables and to avoid explicit time delays; the price was increased nonlinearity in the 

model. The Hill-type nonlinearities in (15), for example, were used to approximate a time 
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delay rather than using a hard-to-identify model parameter. The alternatives, including 

additional intermediate states (first-order filter equations) or explicit delays would have 

significantly reduced the need for Hill equation-type nonlinearities at the cost of state 

dimension and parameter identification complexity. It could also be argued that our use of 

sigmoidal activation functions is not rooted on any demonstrable cooperativity phenomena. 

In their favor, these functions avoid the use of pure delays, which present additional 

challenges to simulators and optimization algorithms, without significantly increasing the 

number of parameters that must be identified. Sigmoids also recapitulate, in a heuristic 

fashion, biological constraints imposed by limited numbers of downstream molecular 

effectors (such as cell surface receptors) and thus, saturation of effect, as well as competition 

for limited pools of energy and chemical substrates.

Beyond model structure is the evaluation of model performance; how well does the model fit 

or predict the data? The present model generates substantially better fits than those obtained 

with our previous models [14,47]. A critique of our fitting efforts could be our lack of a 12-h 

time point, which would allow for a better characterization of the later phase of the 

inflammatory dynamics. Unfortunately, it was impractical to maintain personnel overnight 

for that purpose. In synthesizing the model, we found that appropriate interdisciplinary 

input, from expert inflammation biologists and experimentalists, was of great value in 

determining appropriate experimental time points and in defining heuristically appropriate 

behavior of the model. The term “heuristically appropriate” refers to the process of defining 

biologically motivated or consistent accessory constraints to assist the parameter estimation 

process. For example, since all animals survived the insult, we imposed the constraint that 

damage asymptotically returned to zero. As a result, we have not characterized the transition 

in endotoxin dose that would shift the behaviors from clearing the challenge and returning to 

health (guaranteed for the selected value of dP) to endotoxin-induced death. While this is a 

limitation of the proposed model, the ability to quantitatively capture the response of 

cytokines as a function of time after a range of endotoxin challenges provides an advance 

beyond existing models. Similar to the requirement that damage return to zero, parameter 

ranges explored by the fitting algorithm were restricted based on inferences from the 

literature or expert opinion. In cases where our data could not be used to support parameters/

functionality, such as characterizing the damage-induced transition from survival to death 

through a (non)linear function of D(t), we have not incorporated such functionality in the 

model. Those continuing to look at the endotoxin challenge problem therefore have a 

jumping-off point for a model that can be further extended to non-survivor cases.

A second concern in mapping a model such as the one developed here into a clinical 

application is the requirement that pathogen clear. The clearance rate for endotoxin, dP, was 

fixed, and endotoxin itself did not lead to additional P. In a bacterial infection, Equation (5) 

would need an additional term to represent the ability of the invading bacteria to replicate, 

thereby sustaining P(t), potentially indefinitely even in the face of an immune system 

response (another element not incorporated in the present model). For these reasons, this 

work is limited to endotoxin challenge, which may not readily extend to more broadly 

defined pathogen-induced inflammatory challenges. In fact, our ongoing work has 

transitioned from endotoxin to cecal ligation and puncture (CLP) as a more translationally-
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relevant inflammatory challenge. More complex models, e.g., [33], are more representative 

of the sepsis challenge.

4.2. Biological Fidelity Challenges Parameter Estimation

Parameter fitting was performed using a gradient-based optimization routine. Given the 

nonlinear nature and ill-posedness of parameter estimation from data for dynamic models, it 

can be expected that other parameter sets could have yielded fits of similar quality. Lower 

(state) order models will typically have smoother objective function surfaces due to the 

monotonic nonlinearities used in the model and the smaller number of parameters requiring 

identification. Hence, reducing the number of non-identifiable parameters should result in a 

smaller number of different parameter sets yielding high-quality fits. Much like statistical 

models, parsimony may improve the chances of broader validity, yet it usually results in a 

decreased ability to fit data well. However, contrary to statistical modeling, parsimony 

cannot overrule biological plausibility, as broader validity of biological models is rooted in 

their ability to represent mechanisms active in the biological system. Accordingly, there is 

no preferred technique to reduce biologically-motivated dynamical models beyond taking 

advantage of time scale differences and algebraic dependencies.

A logical first step in reducing parameter dimension in a nonlinear model is parametric 

sensitivity analysis, with sensitivities calculated at all available time points. Insensitivity 

implies that either the parameter is varied outside of the biologically relevant range, or the 

biology represented by the insensitive parameter does not impact the outcome of interest in a 

significant way. Because of the first possibility, insensitivity should not immediately dictate 

model reduction. High sensitivity, on the other hand, may help guide model reduction [54], 

specifically when sensitivities between two parameters are correlated. Accordingly, such 

prediction is most appropriate if sensitivity is observed to be consistent across parameter sets 

of an ensemble of fits to a given dataset [27]. Model reduction techniques arguably stand on 

firmer ground if such a consistency is observed. The ultimate goal of our model 

development and fitting efforts is to create an ensemble of models that reflect, given the 

variability of the observed data, the range of parameter sets that could have generated this 

data (see also [27]).

In contrast to the biologically-motivated, but heuristic, approach to model structure analysis 

and parameter identification discussed above, a mathematically rigorous analysis of the 

experiment would have the ability to establish shortcomings in the model-data combination, 

leading to changes in either the model or experiment to better couple the model and data. A 

formal test of a model structure and data set for well-posedness of the parameter estimation 

problem is to evaluate the a priori identifiability of the model given the data [60–62]. The 

theory states that a model is a priori identifiable if, under the ideal conditions of noise free 

measurements and error free model structure, the unknown parameters of the proposed 

model can be uniquely recovered from the measured data collected during the experiment 

[60]. A variety of methods have been developed for (non)linear a priori global identifiability, 

including power series [63], similarity transform [61], and differential algebra [62,64]. The 

work of [64] employs Gröbner basis techniques to evaluate identifiability for nonlinear 

polynomial (or rational) systems. Given the class of saturating nonlinearities used in the 
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present work, a detailed analysis of the proposed model via functional approximation or 

another transformation is beyond the scope of the present work.

4.3. Cell Capture Is Predicted Key to HA Efficacy

Experimental studies have shown that the HA device captures cytokines in both in vivo and 

ex vivo studies [29,31]. New experiments by our colleagues suggest that the HA device 

captures WBCs, especially cytokine producing activated neutrophils – immune effectors 

cells – from both septic and healthy blood. It remains uncertain whether the cell capture 

plays an important role toward improving animal survival in sepsis studies. To examine the 

effect of cell capture, we simulated HA devices with and without cell capture. Across a 

range of endotoxin doses and intervention times, the device with cell capture performed 

significantly better than the cytokine-only device. The cytokine-only device was able to 

impact IL-6 substantially, but had only a modest effect on TNF and IL-10, and very little 

effect on activated phagocytes or tissue damage variables. Consequently, our model predicts 

that inflammatory modulation is primarily due to cell capture, while cytokine capture plays a 

secondary role.

4.4. HA Devices with Differential Cytokine and WBC Capture May Have Little Benefit

Since the HA device captures a broad spectrum of soluble mediators as well as WBCs, we 

speculated that device efficacy might be improved by differential capture of cells and 

mediators. In sepsis, inflammation follows an early hyperreactive course followed by a late 

hyporeactive phase [65]. Consequently, targeted capture of pro-inflammatory cytokines in 

the early phase, followed by selective capture of anti-inflammatory cytokines in the late 

phase, may improve treatment results. To examine this hypothesis, we implemented two 

hypothetical HA devices: configuration C, with independent capture of WBCs and 

cytokines; and D, with independent capture of WBCs (N), TNF/IL-6, and IL-10. These 

devices were conceived as multiple HA columns arranged in parallel, with each having 

specificity for a particular set of mediators. Across a range of endotoxin doses and 

intervention times, the differential capture devices performed only slightly better than the 

simple broad spectrum device. Thus, we conclude that differential capture devices will not 

substantially improve the efficacy of HA for treatment of endotoxemia. This does not 

preclude the possibility that differential capture will improve treatment of sepsis, where an 

active infection is present.

Ideally, a healthy response to bacterial infection involves a robust local production of 

cytokines at the site of infection by surveillance cells, triggering the appropriate targeting of 

circulating neutrophils and eradication of the local infection. When this ideal scenario does 

not play out, because local controls are overwhelmed, or the systemic response is large, the 

clinical syndrome of sepsis ensues. The evolving concept of sepsis, recently reviewed [66], 

insists on the importance of organ dysfunction as part of an unhealthy response to infection. 

There is strong evidence that organ dysfunction relates to the non-local effects of both 

cytokines and poorly targeted neutrophils. For example, TNF-receptor deficient animals do 

not experience sepsis-related renal failure [67] and individuals with poorly functioning (or 

low baseline counts) neutrophils do not experience lung dysfunction although their 

prognosis is not necessarily better [68,69]. Therefore, different organs fail in different ways 
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in severe infections and there is likely a differential contribution of cytokines and neutrophils 

which is organ dependent. Our model does not represent the complexity of the interaction 

between neutrophils, cytokines and organ damage. Any real life application will have to 

consider the possibility of differential capture depending on clinical context (which organs 

are currently jeopardized).

4.5. MPC Reference Trajectory

There is no clear, biologically-motivated, optimal MPC reference trajectory in our 

simulations. Forcing the system towards zero response might be counterproductive, as 

inflammation is necessary for clearing infection and initiating healing. On the other hand, 

forcing a large inflammatory response can result in excessive damage to tissues and organs. 

Our choice of reference trajectory was an attempt to balance the necessity of inflammation 

for infectious control against the risk of organ damage due to excessive inflammation. The 

inflammatory response to a 3 mg/kg endotoxin dose was chosen as a representative 

inflammatory course that strikes a reasonable balance between these conflicting goals.

4.6. State Estimation

The extended and unscented Kalman filters (EKF, UFK) are popular state estimation 

techniques applied to nonlinear models. These methods assume state estimates are normally 

distributed [39]. This is a poor assumption for models of sepsis, where distributions of 

cytokine measurements are highly positively skewed with variance positively correlated to 

their mean. PF permits state estimation in nonlinear models with arbitrary distributions. We 

chose PF state estimation due to its generality and ease of implementation.

The key limitation of PF is the computational burden as the dimensionality of the system 

increases. For our purposes, PF state estimation and MPC computation was fast enough for 

online implementation. On a typical PC, state estimation with 4096 particles and MPC 

required less than 1 min of computation time per hour of simulated time. Computational cost 

may become prohibitive in models with larger state spaces, where larger particle sets may be 

required. Future work is needed to determine scalability to higher dimensional models of 

inflammation.

4.7. Real-Time Control of HA

Our simulations of real-time control of HA included a variety of confounding factors to 

emulate the challenges of clinical application. Patient variability was represented by process 

noise in the subject model. Observation noise and measurement delay mimicked the current 

state of cytokine assays available in laboratories and clinics. Randomized endotoxin dose 

and intervention time accounted for the real-life variability of inflammatory challenge and 

time of patient admission to care. Despite less than ideal circumstances, performance 

declined only modestly in comparison to noise-free simulations. We are cautiously 

optimistic, based on these results, that our framework can translate to application in the 

laboratory and clinic.
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4.8. Limitations

This work assumed that rapid measurements of the cytokines were available at point-of-care. 

In current clinical practice, IL-6 measurements are available at the bedside within 20 min of 

blood sample [70,71]. Similar assays are not yet available for other cytokines. Efforts to 

develop point-of-care inflammatory profiles are underway, but the lack of complete cytokine 

profiles at bedside is currently a barrier to clinical application. We did not extensively 

examine the impact of providing the controller with delayed information in the various 

cytokine measurement channels. In real life applications, additional, less granular 

information might be available regarding unobserved states that might be of significant help 

to the controller [72].

Our results are based on a rat endotoxemia model of acute inflammation. While 

endotoxemia models have a long history in the experimental literature, the rapid 

inflammatory course is a stark contrast to the slow course observed in clinical sepsis [28]. 

Endotoxin models lack an active infection that accompanies clinical sepsis. A balanced 

inflammatory response must be capable of eliminating infection, while limiting collateral 

organ damage due to excess response. Thus, the dynamics of sepsis may not be adequately 

reproduced by a model that lacks infection. The cecal ligation and puncture (CLP) model is 

considered to be more representative of sepsis. In CLP, the cecum of a test animal is ligated 

and punctured. The punctured cecum leaks gut bacteria into the peritoneal space, resulting in 

slow development of inflammation over the course of a day. In comparison to sublethal 

models, lethal CLP leads to reduced WBC recruitment to the site of infection, while 

migration to the lung increases [73]. Among other factors, dysregulated recruitment is 

associated with loss of chemokine gradients during severe inflammation [74]. A complete 

understanding of these phenomenon will require mathematical models that represent both 

infection and multiple organs. Consequently, the results presented here may have limited 

applicability in clinical sepsis. The control framework developed here is generally applicable 

to a wide range of equation-based models, and we plan to apply these methods to a 

calibrated CLP model currently under development. Finally, despite our best efforts, there 

may be biological phenomena that are not accurately represented in our endotoxemia model.

5. Conclusions

We present a biologically-inspired equation-based model of endotoxemia response including 

activated phagocytic cells and cytokines. The model was fit to, and validated against, 

preclinical data. A model-based control system, using hemofiltration to decrease circulating 

cytokines and phagocytic cells, can modulate inflammation, while cytokine removal alone 

does not provide suitable reduction in inflammatory response. The challenges in developing 

a data-calibrated model with biological insight were many, leading to a generalizable 

approach where the development of top-down models of biological processes that target 

quantitative validation and prediction should: (i) primarily reflect known biological 

interactions among model components; (ii) be developed by interdisciplinary teams where 

data collection is planned with modeling as a primary consideration; and (iii) apply relevant 

literature and appropriate heuristics, based on experimental observations, to guide model 

development. Thereafter, sensitivity and identifiability analysis-guided model reduction 
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(both dimensional and parametric) can be employed to reduce model complexity. Finally, 

ensemble creation and validation on separate datasets are necessary steps to the formulation 

of biologically relevant, quantitatively accurate dynamical models of complex processes.
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Appendix A. Model Structure Justification

Appendix A.1.: Model Selection Technique

Akaike’s Information Criterion (AIC) [75] and Bayes Information Criterion (BIC) [76] were 

employed to establish a quantitative comparison between the proposed inflammation model 

structure and candidate simplifications. When comparing two models containing different 

values of M, the model with the lower AIC and BIC values is preferred. The value of AIC 

can be calculated from the following equation [75]:

AIC = QP ln R2

QP
+ 2M (A1)

Similarly, the value of BIC can be calculated as shown below [76]:

BIC = QP ln R2

QP
+  Mln  QP (A2)

AIC and BIC may be minimized over the choices of M (the number of model parameters) to 

yield a trade-off between the quality of fit of the model, which lowers the sum squared error 

(R2, calculated as RN
2  from Equation (A3) with weights σi = 1), and the model’s complexity, 

as measured by M. Both are statistically-motivated methods; a slight variation in the second 

term of Equations (A1) and (A2) is the difference in the two metrics. This term quantitates 

the model complexity, and the BIC penalizes free parameters more strongly than the AIC 

does. While there are other methods for model selection (e.g., the hierarchical likelihood 

ratio test, and the general likelihood ratio), these two metrics provide advantages [77] and 

are used herein.

Both AIC and BIC techniques are widely used statistical methods for quantifying the trade-

off between model fit and model complexity, as measured by the total number of parameters. 

While modeling biological systems where a limited number of measured data points are 

available, over-fitting, over-parameterization, and the introduction of under-justified 

nonlinearities are significant concerns. Parameter identifiability (a priori), estimation quality, 

and model uniqueness must be addressed when complex models are developed from small 

data sets. In contrast, compact low parameter count models may be structurally identifiable a 

priori, but they may also yield poor predictive accuracy as measured by model fit (e.g., least-

squares error). Hence, a balance should be reached in terms of model complexity and 
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accuracy, and AIC in conjunction with BIC provide such a balancing metric. The remainder 

of this section presents a series of alternate versions of the proposed model. Both the AIC 

and BIC values were calculated for each of the alternate versions and were compared with 

the proposed model. In order to compute the AIC and BIC values, parameters of the 

alternate version models (except parameter numbers 1, 18, and 36 from Table 3) were re-

estimated.

Appendix A.2.: Model Selection Comparisons

In modeling [IL6] with Equation (15), a 4th-order Hill function N(t)4/ x1L6
4 + N(t)4  was 

introduced to capture the one hour delay in [IL6] response to endotoxin challenge. The 

inclusion of this function was necessary to capture the data accurately, where accuracy is 

quantitated in a least-squares sense as follows

minθ1…θM RN
2 ≡ ∑j = 1Ny∑i = 1

Qp zj ti − yj ti, θ1…θM
σij

2

s . t .   (5) − (24)

θm ≥ 0 ∀m ∈ [1, M]

(A3)

Addition of this nonlinearity increased the model complexity by one parameter (xIL6) versus 

a linear-in-N(t) version of Equation (15) without a Hill function, which can be written as:

d[IL6]
dt = kIL6 ⋅ N(t) ⋅ [1 + kIL6TNF ⋅ fUPIL6TNF(t) + kIL6IL6 ⋅ fUPIL6IL6

(t)] fDNIL6IL10(t) − dIL6 ⋅ [IL6]
(A4)

A comparison of [IL6] predictions from the proposed model (Equation (15), solid line) and 

an alternate version of the model, AV-1 (Equation (A4)), is provided as the dashed line in 

Figure A1.
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Figure A1. 
Model simulation comparison of IL-6 between the proposed model Equation (15) (solid 

line) and its alternate versions, AV-1, Equation (A4) (dashed line) and, AV-2, Equation (A5) 

(dotted line), against experimental data (circle) (mean ± SD) in response to endotoxin 

challenge of 3 mg/kg (top) and 12 mg/kg (bottom).

Calculated AIC and BIC values of both models are given in Table A1. It is clear from the 

AIC and BIC values and the Figure that the nonlinear model is superior to the linear-in-N(t) 
version.

Furthermore, any Hill function with order <4 in the [IL6] state compromised the model 

accuracy. The [IL6] state with a 3rd-order Hill function can be written as:

d[IL6]
dt = kIL6 ⋅ N(t)3

xIL6
3 + N(t)3 ⋅ [1 + kIL6TNF ⋅ fUPIL6TNF(t) + kIL6IL6

⋅ fUPIL6IL6(t)] ⋅ fDNIL6IL10(t) − dIL6 ⋅ [IL6]
(A5)

The prediction for model AV-2, in Equation (A5), is provided as the dotted line in Figure 

A1. Once again, from Table A1 it is evident that the AIC and BIC values indicate the 

superiority of the proposed model over AV-2.

The rapid rise and fall of [TNF] necessitated the use of two nonlinear terms to capture the 

dynamic profile. This was primarily captured by assigning the N(t) forcing term a power of 

1.5. A second effect included was a 6th-order Hill function for fDNTNFCA(t) in Equation 

(19) to rapidly suppress the [TNF] levels after a challenge. Any order lower than 6 
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compromised the model accuracy for TNF production, particularly after the 2 h time point. 

For comparison, a simplified version (eliminating the N(t) nonlinearity) of Equation (18) can 

be written as (AV-3):

d[TNF]
dt = kTNF ⋅ N(t) ⋅ fDNTNFCA(t) ⋅ fDNTNFIL6 − dTNF ⋅ [TNF] (A6)

The [TNF] predictions from the proposed model (solid line) and AV-3 (Equation (A6), 

dashed line) are provided in Figure A2. It is evident that the [TNF] dynamics predicted by 

AV-3 are not as rapid as that observed in the experimental data. For structural consistency, 

another version of the [TNF]-state with a Michaelis-Menten expression was formulated as 

follows (AV-4):

d[TNF]
dt = kTNF ⋅ N(t) N(t)

xTNF + N(t) ⋅ fDNTNFCA(t) ⋅ fDNTNFIL6

− dTNF ⋅ [TNF]
(A7)

Figure A2. 
Model simulation comparison of TNF between the proposed model Equation (18) (solid 

line), AV-3 Equation (A6) (dashed line), and AV-4 Equation (A7) (dotted line), against 

experimental data (circle) (mean ± SD) in response to endotoxin challenge of 3 mg/kg (top) 

and 12 mg/kg (bottom).

The model prediction from AV-4 (dotted line) is also presented in Figure A2. Once again, it 

is clear that a Michaelis-Menten formulation, which added an extra parameter (xTNF), is 
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inadequate to capture accurately the fast dynamics of [TNF]. The calculated AIC and BIC 

values from Table A1 reveal that the proposed model is superior to the two alternate model 

structures.

The dynamic profile of IL-10 response to the endotoxin challenge justifies further nonlinear 

terms in the model. The 2-h data point mean value for the 12 mg/kg challenge is 3.6 times 

higher than that for the 3 mg/kg challenge. To capture this nonlinear scaling, a 3rd-order Hill 

function N(t)3/ xIL10
3 + N(t)3  was used, as shown in Equation (22). While the inclusion of 

this nonlinearity added an extra parameter (xIL10), comparison with simpler models 

demonstrates its need. An alternate linear (in terms of N(t)) version of the [IL10]-state can 

be written as follows (AV-5):

d[IL10]
dt = kIL10 ⋅ N(t) ⋅ 1 + kIL10IL6 ⋅ fUPIL10IL6(t) − dIL10

⋅ fDNIL10lL10(t) ⋅ [IL10] + Y IL10(t) + sIL10
(A8)

This reduced the model complexity by one parameter (xIL10). A comparison of the model 

predictions from the proposed model (solid lines) and the alternate version (dashed lines) is 

provided in Figure A3. It is clear that AV-5 is unable to capture the nonlinearities that exist 

in the [IL10] dynamics between endotoxin dose levels of 3 and 12 mg/kg, especially during 

the first peak.

[IL10] dynamics after the initial peak, are affected by [IL6]. A 4th-order Hill function for 

the fUPIL10IL6(t) dynamics (Equation (23)) was necessary to delay the effects of [IL6] on 

[IL10], as any lower-order Hill expression resulted in a faster elimination of IL-10 after 

reaching the first peak thus causing the model to under-predict the [IL10] dynamics at the 4 

h time point.

The tissue damage-mediated second surge of IL-10 concentration required the use of a 6th-

order Hill function (N(t)n/ xD
n + N(t)n , where n = 6) in Equation (12). The higher-order Hill 

function was necessary to accurately capture the second peak in the [IL10], which occurred 

after an initial decrease as observed at the 4 h time point in the experimental data. A 

comparison of model predictions between the proposed model and alternate versions of 

Equation (12) represented by 4th-order (n = 4), AV-7, and 2nd-order (n = 2), AV-8, Hill 

functions are presented in Figure A4. It is evident that lower-order (n < 6) Hill expressions 

in Equation (12) result in slower [IL10] dynamics, especially after the 4 h time point. The 

calculated AIC and BIC values presented in Table A1 clearly indicate that the proposed 

model is again superior to these alternate versions, particularly for fitting the 3 mg/kg dose 

results. Related to this damage-induced peak in IL-10, a data-motivated 4th order Hill 

function was used in Equation (22); any lower-order Hill function proved to be inadequate to 

capture the second [IL10] peak simultaneously for both endotoxin dose levels (3 and 12 mg/

kg). However, such a bi-phasic [IL10] dynamics were not observed in the studies performed 

by Hadley et al. in human subjects [78]. In order to better understand the disconnect between 

animal and human models [79] of endotoxin response, and to improve fidelity of the 

proposed model, further investigation of the [IL10] dynamics may be necessary.
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Figure A3. 
Model simulation comparison of IL-10 between the proposed model, Equation (22), (solid 

line), AV-5 Equation (A8) (dashed line), and AV-6 Equation (A9) (dotted line), against 

experimental data (circle) (mean ± SD) in response to endotoxin challenge of 3 mg/kg (top) 

and 12 mg/kg (bottom).

To accurately capture the [IL10] dynamics (22) at longer times for various endotoxin 

challenge levels, it was necessary to reduce the rate of elimination of IL-10 with increasing 

endotoxin dose level. This was achieved by introducing the down-regulating function, 

fDNIL10IL10 (Equation (24)). The down-regulation in the model is physiologically motivated 

by studies showing that elevated levels of [IL10] reduce its own rate of elimination from the 

blood stream [51]. An alternate version of Equation (22) without the fDNIL10IL10 function 

can be written as (AV-6):

d[IL10]
dt = kIL10 ⋅ N(t)3

xIL10
3 + N(t)3 ⋅ 1 + kIL10IL6 ⋅ fUPIL10IL6(t) − dIL10 ⋅

[IL10] + Y IL10(t) + sIL10

(A9)

Due to the absence of the fDNIL10IL10 term, AV-6 has one less parameter (xIL10IL10). Figure 

A3 shows the model prediction of [IL10] from AV-6 (dotted lines). Looking at the AIC and 

BIC values in Table A1, once again it is clear that the proposed model Equation (22) is 

superior to both alternate versions.
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Figure A4. 
Model simulation comparison of damage-mediated IL-10 between the proposed model with 

a 6th-order Hill function in Equation (22) (solid line), AV-7 with a 4th-order Hill function in 

Equation (22) (dashed line), and AV-8 with a 2nd-order Hill function in Equation (22) 

(dotted line) against experimental data (circle) (mean ± SD) in response to endotoxin 

challenge of 3 mg/kg (top) and 12 mg/kg (bottom).

Table A1.

Calculated AIC and BIC values (based on 3 mg/kg and 12 mg/kg data) of the proposed 

model and its alternate versions. Note: all base models have the same AIC and BIC values, 

they are reported separately for convenient comparison of related submodels.

Model (Equation) AIC BIC

IL-6 (Equation (15)) 274.1 299.7

AV-1 (Equation (A4)) 303.3 328.2

AV-2 (Equation (A5)) 280.0 305.6

TNF (Equation (18)) 274.1 299.7

AV-3 (Equation (A6)) 282.2 307.8

AV-4 (Equation (A7)) 277.0 303.2

IL-10 (Equation (22)) 274.1 299.7

AV-5 (Equation (A8)) 290.2 315.1

AV-6 (Equation (A9)) 287.4 312.4

Effect of D on IL-10 (Equation (12)) 274.1 299.7
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Model (Equation) AIC BIC

AV-7 279.4 305.0

AV-8 281.1 306.7
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Figure 1. 
Schematic diagram of inflammatory response system challenged by endotoxin.
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Figure 2. 
(A) Diagram of endotoxemia model coupled to a hemoadorption (HA) device model. N, 

interleukin (IL)-6, tumor necrosis factor (TNF) and IL-10 are assumed to circulate through 

the ex vivo HA circuit. Cytokine capture is modeled in a two step process: reversible 

diffusive entry into bead pores, followed by irreversible binding to the internal bead surface. 

White blood cell (WBC) capture is treated as reversible binding at the bead surface. (B) 

Schematic of in silico HA control experiments without state estimation. Subject is modeled 

by the deterministic endotoxin model. Complete state information is passed to the controller 

once per hour. (C) Schematic of in silico HA control experiments with PF state estimation. 

Subject is modeled by the stochastic endotoxin model. State estimates are based on noisy 

cytokine measurements obtained once per hour.

Parker et al. Page 37

Processes (Basel). Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Parametric relative sensitivity analysis of the inflammation model for the eight model states.
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Figure 4. 
HA performance is measured by relative absolute error, RAEHA, calculated from time of 

intervention through 24 h. RAEHA = 0 implies perfect control, while RAEHA = 1 indicates 

the controller performed no better than null treatment. The x-axis corresponds to the time of 

HA intervention, where t = 0 is the time of endotoxin administration. Control simulations 

were based on the deterministic endotoxemia model (solid lines) or stochastic model with 

PF state estimation (dashed lines). Panels correspond to HA device configurations in Table 

2. (A) Configuration A, which captures cytokines only, performs poorly. Configurations that 

capture white blood cells, (B–D), perform well. Hypothetical multi-channel HA devices with 

differential specificity (C,D) do not substantially improve performance over (B). In all cases, 

HA performance declines when treatment is delayed.
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Figure 5. 
Simulated endotoxemia with model predictive control (MPC) of HA device A (blue) or null 

treatment (red). Device A captures cytokines but not WBC. MPC guides IL-6 levels close to 

the target trajectory, but other cytokines, activated phagocytes (N) and tissue damage (D) are 

not substantially impacted. Endotoxin dose was 12 mg/kg and HA intervention began 

immediately at t = 0.
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Figure 6. 
Simulated endotoxemia with MPC of HA device B (blue) or null treatment (red). MPC with 

device B, which captures both cytokines and WBC, is able to guide the inflammatory state 

to the reference trajectory. Endotoxin dose was 12 mg/kg and HA intervention began 

immediately at t = 0.
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Figure 7. 
Trajectories of manipulated variables for the device configurations in Table 2; panel labels 

correspond to device configurations. Response is to a 12 mg/kg endotoxin simulation with 

immediate HA intervention. Higher HA flow rates are required to achieve control without A 
vs. with B WBC capture. Differential column configurations C and D demonstrate time-

dependent HA column flow for separate columns.
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Figure 8. 
An example of particle filter state estimation on simulated data. circles mark observed 

cytokine measurements, error bars indicate the standard deviation of the state estimate, lines 

show the true model state.
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Figure 9. 
Sample simulation of the stochastic endotoxemia model with MPC of HA (blue) or null 

treatment (red). State estimates based on noisy cytokine measurements were generated by 

PF. Endotoxin dose was 12 mg/kg with intervention at 2 h. HA was applied using 

configuration D.
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Table 1.

Best-fit parameter values (units of min−1) for the HA device.

IL-6 TNF IL-10 N

kad 0.62 0.188 0.682 0.177

kdes 0.013 0.015 0.072 0.010

kbnd 0.006 0.007 0.022 0
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Table 2.

Hemoadsorption device configurations.

HA Specificity

Configuration Column 1 Column 2 Column 3

A TNF, IL-6, IL-10 - -

B N, TNF, IL-6, IL-10 - -

C N TNF, IL-6, IL-10 -

D N TNF, IL-6 IL-10
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Table 3.

Parameter mapping in the inflammation model.

No. Parameter No. Parameter No. Parameter No. Parameter

1 dp 11 kNTNF 21 kIL6 31 kIL10IL6

2 kN 12 kNIL6 22 dIL6 32 xIL10IL6

3 xN 13 kD 23 xIL6 33 kIL10

4 dN 14 dD 24 xIL6IL10 34 dIL10

5 kNP 15 xD 25 kIL6IL6 35 xIL10

6 kND 16 kCA 26 xIL6IL6 36 sIL10

7 xNTNF 17 dCA 27 kTNF 37 xIL10IL10

8 xNIL6 18 sCA 28 dTNF 38 kIL10Y

9 xNCA 19 kIL6TNF 29 xTNFCA 39 dIL10Y

10 xNIL10 20 xIL6TNF 30 xTNFIL6 40 xIL10Y
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Table 4.

Parameters grouped according to their state association.

Parameter Groups Parameters

θp dp

θN kN, xN, dN, kNP, kND, xNTNF, xNIL6, xNCA, xNIL10, kNTNF, kNIL6

θD kD, dD, xD

θCA kCA,dCA,sCA

θIL6 kIL6TNF, xIL6TNF, kIL6, dIL6, xIL6, xIL6IL10, kIL6IL6, xIL6IL6

θTNF kTNF, dTNF, xTNFCA, xTNFIL6

θIL10 kIL10IL6, xIL10IL6, kIL10, dIL10, xIL10, sIL10, xIL10IL10

θYIL10 kIL10Y, dIL10Y, xIL10Y
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Table 5.

Percentage relative sensitivity (%RS) of grouped parameters for each state.

States Relative Sensitivity (%)

θP θN θD
θCA θIL6 θTNF θIL10

θYIL10

P(t) 100 0 0 0 0 0 0 0

N(t) 13.8 64 0.2 1.9 2.8 5.7 11 0.5

D(t) 11.8 41.0 28.7 1.6 2.4 4.9 9.4 0.3

CA (t) 13.0 45.8 0.1 23.3 2.3 5.1 10.0 0.2

[IL6] (t) 5.4 17.0 7.0 1.4 36.3 5.1 23.3 4.6

[TNF](t) 9.8 23.9 0.3 21.2 3.9 33.3 7.3 0.2

[IL10](t) 8.5 31.0 30.8 1.1 3.5 3.9 8.0 12.9

YIL10 (t) 8.7 29.6 33.2 1.1 1.6 3.6 6.9 15.3
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