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Abstract

Background: Lung neuroendocrine neoplasms (LNENs) are rare solid cancers, with most genomic studies including a
limited number of samples. Recently, generating the first multi-omic dataset for atypical pulmonary carcinoids and the first
methylation dataset for large-cell neuroendocrine carcinomas led us to the discovery of clinically relevant molecular
groups, as well as a new entity of pulmonary carcinoids (supra-carcinoids). Results: To promote the integration of LNENs
molecular data, we provide here detailed information on data generation and quality control for whole-genome/exome
sequencing, RNA sequencing, and EPIC 850K methylation arrays for a total of 84 patients with LNENs. We integrate the
transcriptomic data with other previously published data and generate the first comprehensive molecular map of LNENs
using the Uniform Manifold Approximation and Projection (UMAP) dimension reduction technique. We show that this map
captures the main biological findings of previous studies and can be used as reference to integrate datasets for which RNA
sequencing is available. The generated map can be interactively explored and interrogated on the UCSC TumorMap portal
(https://tumormap.ucsc.edu/?p=RCG lungNENomics/LNEN). The data, source code, and compute environments used to
generate and evaluate the map as well as the raw data are available, respectively, in a Nextjournal interactive notebook
(https://nextjournal.com/rarecancersgenomics/a-molecular-map-of-lung-neuroendocrine-neoplasms/) and at the
EMBL-EBI European Genome-phenome Archive and Gene Expression Omnibus data repositories. Conclusions: We provide
data and all resources needed to integrate them with future LNENs transcriptomic studies, allowing meaningful
conclusions to be drawn that will eventually lead to a better understanding of this rare understudied disease.
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Background

Lung neuroendocrine neoplasms (LNENs) are rare understud-
ied diseases with limited therapeutic opportunities. LNENs in-
clude poorly differentiated and highly aggressive lung neuroen-

docrine carcinomas (NECs)—i.e., small-cell lung cancer (SCLC)
and large-cell neuroendocrine carcinoma (LCNEC)—as well as
well-differentiated and less aggressive lung neuroendocrine tu-
mors (NETs), i.e., typical and atypical carcinoids (WHO classifica-
tion 2015 [1]). Over the past years several genomic studies have
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investigated the molecular characteristics of these diseases to
provide some evidence for more personalized clinical manage-
ment [2–8]. Although lung NECs and NETs are broadly consid-
ered different diseases, several recent studies have suggested
that they may share some molecular characteristics [7, 9–12].
However, owing to the rarity of these diseases, the sample sizes
of these studies individually are limited, and the integration of
independent datasets is not an easy task.

Providing a way to interactively visualize and analyze these
pan-LNEN data would be of great interest for the scientific com-
munity, not only to further explore the proposed molecular link
between lung NECs and NETs but also to integrate data from
studies including fewer samples to reach the statistical power
needed to draw meaningful conclusions.

Data Description

Recently [7], we performed the first integrative and compar-
ative genomic analysis of LNEN samples from all histological
types, based on newly sequenced data: whole-exome sequenc-
ing (WES) data (16 samples), whole-genome sequencing (WGS)
data (3 samples), RNA-sequencing (RNA-Seq) data (20 samples),
and EPIC 850K methylation data (76 samples), as well as pub-
licly available data. These data correspond to the most exten-
sive multi-omic dataset of LNENs, including the first methyla-
tion data for LCNEC and the first molecular characterization of
the rarest LNEN subtype (atypical carcinoids) [7]. This dataset,
which provides the missing pieces for a complete molecular
characterization of LNENs, has been deposited at the EMBL-
EBI European Genome-phenome Archive (EGA accession No.
EGAS00001003699). To facilitate the reuse of the data generated
for the previous publication [7], we provide here a complemen-
tary data descriptor by outlining the pre-processing and quality
control (QC) steps performed on each omic dataset available on
EGA.

Also, other studies have generated sequencing data and per-
formed a molecular characterization of LNEN samples: pul-
monary carcinoids (mostly typical carinoids) have been charac-
terized by Fernandez-Cuesta et al. [4] and Laddha et al. [8], LC-
NEC by George et al. [6], and SCLC by George et al. [5] and Peifer
et al. [2]. We therefore generate the first pan-LNEN molecular
tumor map by integrating the transcriptomic data from Alcala
et al. [7] and the other published LNEN transcriptomic data [2, 4–
6, 8]. This map provides an interactive way to explore the molec-
ular data and allows statistical interrogation, based on the UCSC
TumorMap portal [13]. The integrated transcriptomic dataset re-
sulting from these studies is available on GitHub [14].

Data quality controls

Fig. 1 provides a schematic view of the pre-processing steps and
the associated QC performed for each omic dataset generated
by Alcala and colleagues [7]. An overview of the available omics
and clinical data for each sample is provided in Supplementary
Table 1.

WES and WGS data

WES and WGS were performed, respectively, on 16 and 3 fresh-
frozen atypical carcinoids in the Cologne Centre for Genomics
and the Centre National de Recherche en Génomique Humaine.
For WES, the SeqCap EZ v2 Library capture kit from NimbleGen
(44 Mb) and the Illumina HiSeq 2000 machine (Illumina Inc., San
Diego, CA, USA) were used for the sequencing. For WGS, the Illu-

mina TruSeq DNA PCR-Free Library Preparation Kit was used for
library preparation and the HiSeqX5 platform from Illumina for
the sequencing as described in [7]. The sequencing reads from
the 16 atypical carcinoids’ whole exomes and the 3 carcinoids’
whole genomes were processed using the in-house Nextflow [15]
workflow available at the IARCbioinfo/alignment-nf [16] GitHub
repository, revision No. 9092214665. The pipeline consists in 3
steps: mapping reads to the reference genome (GRCh37), mark-
ing duplicates, and sorting reads using bwa v0.7.12-r1044 (BWA,
RRID:SCR 010910) [17], samblaster v0.1.22 (samblaster, RRID:SC
R 000468) [18], and sambamba v0.5.9 [19], respectively. For WES
samples, local realignment using ABRA v0.97b (ABRA, RRID:SC
R 003277) [20] was then run.

The QCs of the WES and WGS data were performed us-
ing FastQC v0.11.8 (FastQC, RRID:SCR 014583) [21] and Qual-
iMap v2.2.1 (QualiMap, RRID:SCR 001209) [22] using the in-house
Nextflow [15] workflows available at IARCbioinfo/fastqc-nf [23]
and IARCbioinfo/qualimap-nf [24] repositories, respectively, and
the results aggregated using MultiQC v1.7 (MultiQC, RRID:SCR 0
14982) [25] (Fig. 1, left panel).

Fig. 2A and B show the per base sequence quality scores (left
panels) and the per sequence mean quality scores (right panels).
Regarding the per base sequence quality scores, the majority of
the base calls were of very good quality (>28, green area, Fig. 2A
left panel) and of reasonable quality (>20, orange area, Fig. 2B
left panel) for WES and WGS data, respectively. The most fre-
quently observed sequence mean quality score was ∼30 for both
techniques, which is equivalent to an error probability of 0.1%.
Table 1 provides the general statistics associated with the WES
and WGS QCs. The observed median coverage for each sample
was above the expected coverage (30× for the WGS samples and
120× for the WES samples). Concerning the alignment quality,
all WES samples had >99% of the reads aligned and all WGS
samples had >98% of the reads aligned.

RNA-Seq data

RNA-Seq was performed on 20 fresh-frozen atypical samples.
The Illumina TruSeq RNA sample preparation Kit was used for
library preparation and the Illumina TruSeq PE Cluster Kit v3
and the Illumina TruSeq SBS Kit v3-HS kits were used on an
Illumina HiSeq 2000 sequencer. The data generated were pro-
cessed in 5 steps (Fig. 1, middle panel): (i) read trimming us-
ing Trim Galore v0.6.5 (Trim Galore, RRID:SCR 011847) [26], (ii)
read mapping to the reference genome (GRCh38, gencode ver-
sion 33 from bundle CTAT from 6 April 2020 [27]) using STAR
v.2.7.3a (STAR, RRID:SCR 015899) [28], (iii) realignment of the
reads using ABRA2 v2.22 (ABRA, RRID:SCR 003277) [29], (iv) base
quality score recalibration using GATK4 v4.0.5.1 (GATK, RRID:
SCR 001876) [30, 31], and (v) gene expression quantification us-
ing StringTie v2.1.1 (StringTie, RRID:SCR 016323) [32]. FastQC
v.0.11.9 (FastQC, RRID:SCR 014583) [21], RSeQC v3.0.1 (RSeQC,
RRID:SCR 005275) [33], and HTSeq v0.12.4 (HTSeq, RRID:SCR 0
05514) [34] were used to control the raw read quality and as-
signments, and the results aggregated using MultiQC v1.7 (Mul-
tiQC, RRID:SCR 014982) [25]. These steps were performed us-
ing our in-house Nextflow [15] pipelines available at the fol-
lowing GitHub repositories: IARCbioinfo/RNAseq-nf [35] release
v2.3, IARCbioinfo/abra-nf [36] release v3.0, IARCbioinfo/BQSR-nf
[37] release v1.1, and IARCbioinfo/RNAseq-transcript-nf [38] re-
lease v2.1.

Fig. 2C shows that the base calls, before trimming, are of
good quality because all samples have a mean per base sequence
quality score >28 (left panel) and for all samples the most fre-
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Figure 1: Bioinformatics workflows for data processing and associated quality controls (QC; green boxes). Bioinformatics tools used for the processing of the WES/WGS
data, RNA-Seq, and methylation data are represented in the left, middle, and right panels, respectively.

Table 1: General statistics associated with the quality controls of the WES and WGS data

Sample Sequencing
Median

coverage
Total No.
reads (M) >30× (%)

Aligned
(%)

GC content
(%)

Median insert
size Duplicates (%)

LNEN002 WES 148 113.3 95.5 99.7 53.7 194 13.9
LNEN003 WES 146 110.3 95.8 99.7 53.7 194 13.4
LNEN004 WES 150 115.3 95.4 99.8 54.3 193 13.1
LNEN005 WES 135 103.4 94.7 99.8 54.0 195 12.1
LNEN006 WES 126 93.6 94.6 99.8 53.5 197 12.5
LNEN007 WES 145 116.3 94.4 99.8 54.5 195 14.8
LNEN009 WES 123 98.4 92.9 99.7 54.1 195 12.4
LNEN010 WES 138 104.1 95.0 99.7 53.3 196 13.4
LNEN011 WES 161 125.8 95.8 99.8 54.3 196 14.8
LNEN013 WES 131 99.2 94.3 99.8 53.5 193 13.0
LNEN014 WES 132 102.6 94.0 99.8 54.1 195 13.3
LNEN015 WES 148 111.3 95.7 99.6 54.1 197 10.1
LNEN016 WES 133 98.0 94.3 99.6 54.3 194 9.0
LNEN017 WES 158 116.4 95.9 99.6 54.1 192 8.9
LNEN020 WES 187 144.7 96.6 99.7 53.6 192 14.5
S00716 B WES 133 99.8 95.4 99.7 52.8 194 14.3
LNEN041 WGS 36 923.5 77.5 98.9 41.0 366 13.3
LNEN042 WGS 41 993.7 88.1 98.8 41.5 388 9.4
LNEN043 WGS 43 1033.1 89.7 99.3 41.6 392 8.8

GC: guanine-cytosine.

quently observed per sequence mean quality is >35, correspond-
ing to an error probability of 0.03% (right panel). None of the
samples presented >1% of over-represented sequences, which
ensures a proper library diversity. RSeQC was used to control the
alignment quality and to assign mapped reads to different ge-
nomic features (coding regions, introns, intergenic regions, TSS,
TES). Fig. 2D (left panel) shows that every sample had >70% of
reads uniquely mapped and the read distribution for each sam-
ple is represented in Fig. 2D (middle panel). All samples had
>75% reads mapped in coding regions (CDS-exons, 5′ and 3′ un-
translated transcribed region exons). The read counting was per-
formed at the gene level for 59,607 genes (genecode annota-
tion, release 33) using HTSeq [34]. Fig. 2D (right panel) shows the
read assignments; the percentage of assigned reads ranges from
71.3 to 87.3%. STAR, RSeQC, and HTSeq metrics for each sample
are provided in Supplementary Tables 2–4. Note that 3 samples,
LNEN008, LNEN014, and LNEN017, have a higher proportion of

reads classified as “Unmapped too short” and “Mapped to mul-
tiple loci” (Fig. 2D, left panel), reads mapped in intronic regions
(Fig. 2D, middle panel), and a lower proportion of reads assigned
by HTSeq (Fig. 2D, right panel) in comparison with the other
samples. Unexpected results concerning those samples should
thus be considered with caution.

Finally, to apply dimensionality reduction methods to the
RNA-Seq data (see below), the DESeq2 package v1.26.0 (DESeq2,
RRID:SCR 015687) [39] was used to transform the read counts ob-
tained using StringTie to variance-stabilized read counts (vst),
enabling the comparison of samples with different library sizes.
To reduce sex influence on expression profiles, the genes located
on sex chromosomes were not considered for subsequent analy-
ses. Genes located on the mitochondrial chromosome were also
not considered.

https://scicrunch.org/resolver/RRID:SCR_015687
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Figure 2: Quality control (QC) performed on each omic dataset. (A) Read QC using FastQC for WES data. (B) Read QC using FastQC for WGS data. (C) Read QC using

FastQC for RNA-Seq data. For A, B, and C, the left panels correspond to the sequence quality plots, the x-axis representing the base position in the read and the y-axis
the mean quality value; the right panels correspond to the per sequence quality score plots, the x-axis representing the mean quality score and the y-axis the number
of reads. (D) QC of the RNA-Seq data after trimming. Left: Bar plot representing the percentage of reads uniquely mapped (“Uniquely mapped”), mapped to multiple loci
(“Mapped to multiple loci” or “Mapped to too many loci” if the number of loci is >10), unmapped because the mapped reads’ proportion was too small (“Unmapped:

too short”), unmapped because of too many mismatches (“Unmapped: mismatches”), or unmapped for other reasons (“Unmapped: other”). Middle: Cumulative bar
plot representing the percentages of reads mapped, using RSeQC, at different locations in the genome (exons, introns, 5′ and 3′ untranslated transcribed region [UTR],
intergenic regions, TSS, and TES). Right: Cumulative bar plot representing the cumulative percentages associated with the different read assignments using HTSeq
(“Assigned”: reads assigned to 1 gene, “Ambiguous”: reads assigned to multiple overlapping genes, “Aligned not unique”: reads assigned to multiple non-overlapping

genes, “No Feature”: reads assigned to none of the features). (E) Left: Samples’ quality based on log median intensities. The x-axis and y-axis correspond to the median
of log2 methylated and unmethylated intensities, respectively. Right: Representation of the between-sample similarities based on the 2 first multidimensional scaling
dimensions. (F) Histogram of the median detection P-value for each sample. (G) Distribution of the β-values for each sample before and after the filtering step (left and
right panel, respectively).

Methylation data

The methylation analyses were performed on the basis of the
EPIC 850K methylation arrays and the Infinium EPIC DNA methy-
lation beadchip platform (Illumina) for 33 typical carcinoids,
23 atypical carcinoids, 20 LCNECs, and 19 technical replicates

in total. These arrays interrogate >850,000 CpGs and contain
internal control probes that can be used to assess the over-
all efficiency of the sample preparation steps. The raw inten-
sity data (IDAT files) were processed using the R package minfi
v.1.24.0 (minfi, RRID:SCR 012830) [40]. Fig. 1 (right panel) pro-
vides the packages, functions, and publication used for the data

https://scicrunch.org/resolver/RRID:SCR_012830
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processing, QC, and filtering steps as implemented in the IAR-
Cbioinfo/Methylation analysis scripts [41] GitHub repository.

Fig. 2E shows that no outliers were detected: (i) the left panel,
representing the median log2 of the methylated and unmethy-
lated intensities, indicates that all samples cluster together with
a log median intensity >11 for both channels, which supports
the absence of failed samples; (ii)in the right panel, the multidi-
mensional scaling plot shows that the samples cluster together
by histological groups. We used the depectionP function (minfi
package), which compares the DNA signal to the background sig-
nal based on the negative control probes to provide a detection
P-value per probe, lower P-value indicating reliable CpGs. Fig. 2F
represents the mean detection P-values per sample and shows
that all samples’ mean detection P-values were <0.01. To correct
for the variability identified in the control probes, a normaliza-
tion step was applied to the raw intensities using the prepro-
cessFunnorm function from minfi.

After between-array normalization, different sets of probes
that could generate artifacts were removed successively from
the methylation dataset: (i) 19,634 probes on the sex chromo-
somes, in order to identify differences related to tumors but un-
related to sex chromosomes; (ii) 41,818 cross-reactive probes,
which are probes co-hybridizing with multiple CpGs on the
genome and not only to the one for which it has been designed
[42]; (iii) 10,588 probes associated with common SNPs (present
in dbSNP build 137); (iv) 24,363 probes with multi-modal β-value
distribution; and (v) 9,697 probes having a detection P-value
>0.01 in ≥1 sample. Supplementary Table 5 lists the sets of fil-
tered probes. To assess the experimental quality of the assay, the
distributions of the β-values were analyzed. As described previ-
ously, probes with multi-modal distributions were removed at
the filtering step and overall distributions of β-values for each
sample before and after filtering were plotted (Fig. 2G). As ex-
pected, after filtering all samples showed a bimodal profile, in-
dicative of the good quality of the experiment. No experimen-
tal batch effects were identified after functional normalization
(see Supplementary Fig. 33 from [7]). Based on all the QCs per-
formed, none of the samples analyzed were identified as outlier.
However, 1 sample available on EGA (201414140007 R06C01) was
removed from the analyses because it came from a metastatic
tumor rather than the primary tumor. Sample metadata are pro-
vided in Supplementary Table 6.

Generation of an integrative molecular map

Here we have generated a pan-LNEN molecular map with the
whole-transcriptomic (RNA-Seq) data available from individual
studies of each LNEN tumor type [2, 4–8]. This dataset includes
the RNA-Seq data for a total of 51 SCLCs, 69 LCNECs, and 118
carcinoids including 40 atypical and 75 typical carcinoids. The
different data underwent the same processing steps described
above because the generation of the molecular map requires a
homogenized dataset.

Dimensionality reduction using UMAP

UMAP method
The pan-LNEN map was obtained using the Uniform Manifold
Approximation and Projection (UMAP) method [43] on the genes
with the most variable expression (genes explaining 50% of the
total variance). UMAP is a dimensionality reduction method
based on manifold learning techniques, which are adapted to
non-linear data in contrast with the commonly used principal
component analysis (PCA) method. First, it builds a topologi-

cal representation of the high-dimensional data, and second it
finds the best low-dimensional representation of this topologi-
cal structure [43]. UMAP representations were generated using
the umap function from the R package umap (v. 0.2.5.0) [44].
All the parameters were set to their default values except the
n neighbors parameter. This parameter defines the number of
neighbors considered to learn the structure of the topological
space. Varying this parameter from small to large values enables
the user to find a trade-off between local and global preserva-
tion of the space, respectively. To preserve the global structure
of the data (see “quality control of the UMAP projection” section
below), we built the pan-LNEN map setting the n neighbors pa-
rameter to 238, which corresponds to the total number of sam-
ples.

Biological interpretation of the pan-LNEN TumorMap
Fig. 3 shows the pan-LNEN map available on TumorMap [45] (see
“Reuse potential” section below), with colors representing the
main molecular subtypes. To evaluate the accuracy of the gen-
erated pan-LNEN map we first verified whether it was consis-
tent with the main biological findings from the original stud-
ies, in particular whether it represented the molecular subtypes
of LNENs previously identified, and their relationship with his-
tological types. We specifically tested whether groups of sam-
ples previously described as having discordant molecular and
histopathological features were identified in our map. To do so,
given a focal molecular subtype and 2 reference histopatholog-
ical types, we assessed whether samples from the focal molec-
ular subtype were closer to 1 of the 2 references using a 1-sided
Wilcoxon test between the Euclidean distances of samples to the
centroid of each reference type.

First, the SCLC/LCNEC-like samples [6], which are histolog-
ical SCLCs presenting the molecular profile of LCNEC, tend to
cluster with the LCNECs rather than with the SCLCs (Wilcoxon P
= 6.2 × 10−4). Similarly, the LCNEC/SCLC-like samples [6], which
are histological LCNECs having the molecular profile of SCLC,
tend to cluster with the SCLCs rather than with the LCNECs
(Wilcoxon P = 3.3 × 10−3). In 2018, George et al. showed also
that LCNEC samples can be subdivided into Type I and Type II
molecular groups [6]. We observed that the Type I and Type II
LCNECs were closer to each other than to the SCLC/SCLC-like
(Wilcoxon P = 9.9 × 10−14) and that SCLC/LCNEC-like samples
were closer to Type II than to Type I LCNECs [6] (Wilcoxon P =
3.9 × 10−3). Like the LCNECs, pulmonary carcinoids have been
subdivided into molecular groups. Alcala et al. [7] identified 3
clinically relevant molecular clusters, using a multi-omics fac-
tor analysis: Carcinoid A1, Carcinoid A2, and Carcinoid B [7]. In
the pan-LNEN map generated using UMAP, those 3 clusters are
clearly visible (Fig. 3) and, respectively, correspond to the 3 clus-
ters identified in [8] named LC1, LC3, and LC2. Also, in the study
from Alcala and colleagues [7], 2 carcinoids that clustered with
the carcinoids B (S00118 and S00089) were borderline and lo-
cated between cluster A1 and B. Similarly, an LCNEC sample and
an SCLC sample clustered with the carcinoids A1 [7]. These ob-
servations are also visible on the TumorMap representation. Fi-
nally, in the same study, a novel entity of carcinoids, named the
“supra-carcinoids,” was unveiled. These samples were charac-
terized by a morphology similar to that of pulmonary carcinoids
but with the molecular features of LCNEC samples. In the pan-
LNEN TumorMap, the supra-carcinoids also clustered with the
LCNEC samples and were molecularly closer to LCNECs than to
SCLCs (Wilcoxon P = 5 × 10−2). We also note that 1 sample from
Laddha et al. [8] LC2 cluster (SRR7646258) clusters with LCNEC.
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Figure 3: Two-dimensional projection of LNEN transcriptome data using UMAP. The representation was obtained from the TumorMap portal, using the hexagonal grid
view, each hexagonal point representing a LNEN sample. Point colors correspond to the molecular clusters defined in the previous publications.

Quality control of the UMAP projection

In any dimensional reduction technique, there is a trade-off be-
tween preserving the global structure of the data and the fine-
scale details, and UMAP has been designed to reach a better bal-
ance compared with previous methods.

On the basis of the previously published analyses of LNEN
data [2, 4–8], we expect the global structure of the data to be
composed of 6 molecular groups (SCLCs, Type I and Type II LC-
NECs, Carcinoid A1, A2, and B). For this reason, an ideal projec-
tion able to capture this large-scale variation should contain 5
dimensions. To assess the quality of the 2D representation gen-
erated by UMAP, we propose a comparative analysis between
UMAP and the traditional PCA based on the 5 first principal com-
ponents of PCA (PCA-5D) as implemented in the dudi.pca func-
tion from the ade4 R package (v1.7-15) [46]. Because UMAP is
aiming at preserving the global structure in only 2 dimensions,
we also compared it to the traditional PCA based only on the 2
first principal components (PCA-2D). We evaluated the perfor-
mance of the methods on the basis of the preservation of (i) the
samples’ neighborhood and (ii) the spatial auto-correlations.

Preservation of the samples’ neighborhood
We used the sequence difference view (SD) metric (eq. 3 from
[47]) to evaluate the preservation of the samples’ neighborhood.
This dissimilarity metric compares, for a given sample, its neigh-
borhood in the low-dimensional space with that in the original
space, taking into account that preserving the rank of a close

neighbor is more important than for a distant neighbor (see [47]
for details). SD values are positive (SD ∈ [0 ; +∞)), with small val-
ues indicating a good preservation of the sample neighborhood.
We denote by SDk the value of SD averaged across samples for
a fixed number of neighbors k; SDk gives a sense of the overall
preservation of the neighborhood at different scales: local for
low k values and global for large k values. We calculated SDk for
PCA-5D, PCA-2D, UMAP with n neighbors = 238, and UMAP with
the default value n neighbors = 15. Because we are interested in
the relative values of SDk for the different dimensionality reduc-
tion methods, and because we use PCA as a reference, for each
dimensionality reduction method X we scaled the values of SDk

using that of PCA-5D and PCA-2D:

SD
′
k,X = SDk,X − SDk,PCA−5D

SDk,PCA−2D − SDk,PCA−5D
. (1)

By definition, SD
′
k,PCA−5D = 0 and SD

′
k,PCA−2D = 1. Thus values

of SD
′
k,X close to 0 indicate that X preserves k neighborhoods

as well as PCA-5D, whereas values close to 1 indicate that X
preserves k neighborhoods worse than PCA-5D but as well as
PCA-2D, and values >1 indicate that X preserves k neighbor-
hoods worse than PCA-2D and PCA-5D. Note that SD

′
k,X can be

negative if X preserves k neighborhoods better than SDk,PCA−5D.
For the UMAP projection, we iterated the computation of SD

′
k

1,000 times because the algorithm uses a stochastic optimiza-
tion step to define the projection.
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As expected, increasing the n neighbors UMAP parameter
from 15 to 238 leads to a better preservation of the global struc-
ture, clearly visible for k > 30 (Fig. 4A; mean SD

′
k>30 = 2.855 and

1.029, respectively), while only marginally reducing the preser-
vation of the local structure for k < 30 (mean SD

′
k<30 = −0.076 and

0.124, respectively), which is approximately the size of the small-
est cluster. Globally, the SD

′
k values over all k levels are lower for

an n neighbors value of 238 than 15 (paired t-test P = 6.09 × 10−8).
With n neighbors = 238, the UMAP projection provides a clear
improvement over PCA-2D for k ∼ 135 (mean SD

′
k < 1), offering a

good trade-off for visualization in only 2 dimensions while being
able to maintain the global structure of the data, in particular
the 6 molecular groups previously identified. This observation
highlights the importance of varying the n neighbors parame-
ter according to the purpose of the projection. Some analyses
would require the local structure of the sample neighborhood to
be maintained, while others, the global structure.

Preservation of spatial auto-correlations
Under the hypothesis that close points on projections share a
similar molecular profile, spatial auto-correlations were mea-
sured according to the Moran index (MI) metric [48]. MI val-
ues range from −1 to 1, the extreme values indicating negative
(nearby locations have dissimilar gene expression) or positive
(nearby locations have similar gene expression) spatial auto-
correlation, respectively. The spatial auto-correlation of the ex-
pression of each gene helps to identify the genes contributing to
the structure of the molecular map (MI 	 1), and conversely, the
genes that are randomly distributed spatially (MI 	 0). The com-
putation of MI requires a weight matrix that determines the spa-
tial scale at which auto-correlation is assessed; we gave a weight
of 1 to the k nearest neighbors based on Euclidean distance, and
0 otherwise, so that we can control the scale at which MI is com-
puted with parameter k. The mean MI across k values was com-
puted for all gene expression features for: (i) the original space,
(ii) the PCA-5D projection, and (iii) the UMAP projection (with
n neighbors = 238). We used the implementation of MI from the
Moran.I function of R package ape (v. 5.3) [49].

To evaluate the preservation of the spatial auto-correlations,
we ranked the top N genes based on the mean MI values for these
3 cases and calculated the overlap between the lists (Fig. 4B). We
found that the PCA-5D is only slightly more conservative of the
spatial auto-correlations found in the original space than UMAP
(unilateral paired t-test P = 2.2 × 10−16). For example, for N =
1,000 (see Euler diagram inserted in Fig. 4B), 88.8% of the genes
with the highest MI overlap between the PCA-5D, UMAP, and the
original space.

Reuse potential
An interactive TumorMap

Newton and colleagues have recently developed a portal called
TumorMap [13, 50], an online tool dedicated to omics data vi-
sualization. This new type of integrated genomics portal uses
the Google Maps technology designed to facilitate visualization,
exploration, and basic statistical interrogation of high dimen-
sional and complex datasets. The pan-LNEN molecular map that
we generated in this work (Fig. 3) has been shared on the Tu-
morMap platform. Along with the molecular map, the main clin-
ical, histopathological and molecular features highlighted in the
previous studies were uploaded as attributes. The interface en-
ables users to explore and navigate through the map: zooming in
and out, coloring and filtering samples based on attributes. The

users can also create their own attributes based on pre-existing
ones by using operators such as union or intersection. In addi-
tion, multiple statistical tests are pre-implemented and avail-
able, for example: comparison of attributes without considering
the samples positions on the map, comparison of attributes con-
sidering samples’ positions on the map, and ordering attributes
on the basis of their potential to differentiate 2 groups of sam-
ples. The interactive nature of the map and the fact that its ma-
nipulation does not require computational expertise, could en-
able the generation of new hypotheses and expand the reuse
potential of the dataset.

An interactive computational notebook

In the first part of the article, we described the pre-processing
and QC steps applied on the recently published LNEN multi-
omics dataset [7] in order to facilitate its reuse. To generate
the pan-LNEN molecular map, the same pre-processing steps
were followed to homogenize independently published tran-
scriptomic data [2, 4–8]. For that purpose, reproducible pipelines,
developed in house, were used and are available for reuse to the
scientific community on GitHub [51] (see the “data description”
section). In addition, the code used to generate the molecular
map and to evaluate the quality of the dimensionality reduction
is provided as a notebook published on Nextjournal [52]. Along
with the code, the notebook provides the data and the depen-
dencies required to run the analyses performed in this paper. In-
terested researchers can thus make a copy of this publicly avail-
able notebook (called “Remix”) to reproduce our results but also
interactively modify the code and explore the influence of dif-
ferent parameters.

Integration of new samples

The homogenized read counts of the pan-LNEN data are avail-
able on GitHub [14]. Along with the available code, these data
could be used to integrate new samples for which RNA-Seq data
are available. The raw read counts of the new samples should
firstly be generated following the same processing steps de-
scribed in the section “Data quality controls” (Fig. 1, middle
panel) and integrated to the pan-LNEN read counts. We also pro-
vide in the Nextjournal notebook, the Nextflow command lines
allowing to obtain the read counts. The vst (DESeq2 [39]) should
then be applied on the combined dataset and UMAP should fi-
nally be rerun to project all samples together in a 2D space. All
together, we provide the resources to integrate additional sam-
ples into our molecular map, starting from raw sequencing read
counts.

Discussion

Genomic projects focused on rare cancers encounter the limi-
tation of availability of high-quality biological material suitable
for such studies. This translates in small series of samples usu-
ally underpowered to draw meaningful conclusions. Thus, tools
facilitating the integration of independent datasets into larger
sample series will lead to more informative studies. Recently,
the first multi-omic dataset for the understudied atypical pul-
monary carcinoids and the first methylation dataset for LCNECs
was published [7]. Here we provide a parallel description of the
pre-processing of these molecular data and provide evidence of
the good quality of the different ’omics data generated. This data
collection associated with previous datasets [2, 4–6, 8] completes
the LNEN molecular landscape and thus provides a valuable re-
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Figure 4: Quality controls performed on the UMAP projection. (A) Comparison of the samples’ neighborhood preservation for UMAP, PCA-2D, and PCA-5D dimensionality

reductions. SD
′
k values are represented as a function of the number k of nearest neighbors considered, for different dimensionality reduction methods: PCA-2D in

purple, PCA-5D in blue, UMAP with n neighbors = 238 (UMAP-nn-238) in yellow, and UMAP with the default value n neighbors = 15 (UMAP-nn-15) in green. Error bars
correspond to the means ± standard deviations computed across 1,000 replicate simulations. (B) Concordance between gene expressions’ spatial auto-correlations in
the original space, UMAP-nn-238, and PCA-5D dimensionality reductions. For each space, the genes were ranked on the basis of the spatial auto-correlations of their

expression (mean MI values). The concordance is measured as the proportion of overlap between the top N genes in the different spaces (colored lines). The yellow line
corresponds to the proportion of overlap expected under the null hypothesis (based on the expected mean of the hypergeometric law). The Euler diagram represents
the overlaps between the top 1,000 features (N = 1,000, dashed line) resulting from the 3 spaces.

source to improve the molecular characterization of LNEN tu-
mors. Notably, we show here the perfect concordance of the 3
molecular clusters of pulmonary carcinoids independently iden-
tified in [7] and [8], validating the discoveries made by these 2
studies and proving the usefulness of this integrative approach.

However, even when primary genomic data are available, bar-
riers to accessing the data still exist, often limiting reuse by the
community [53]. In particular, downloading and re-reprocessing
large raw sequencing datasets requires dedicated infrastruc-
ture and bioinformatics skills. Indeed, to minimize batch ef-
fects when integrating data from different studies, one needs
to process it in exactly the same way (e.g., with the same ver-
sions of the same software, the same reference genome, the
same annotation databases). As more and more data are gen-
erated, the previously mentioned reprocessing will become un-
tenable and replicating these efforts for each new study in each
research group represents a waste of resources. Standardiza-
tion of laboratory and computational protocols might become
a reality when large national medical genomics initiatives be-
come fully operational [54]. In the meantime there is a need for
better data sharing strategies than the traditional “supplemen-
tary spreadsheet/raw data” combination that can accelerate the
translational impact of molecular findings.

One step in this direction is the generation of so-called “tu-
mor maps,” which provide an interactive way to explore the
molecular data and allow easy statistical interrogation, includ-
ing generating new hypotheses, but also projecting data from
future studies including fewer samples [13]. This integration
method has some limitations though. A fixed reference map
could be of interest for easier biological interpretations, but the
overall sample size of the datasets used to build the pan-LNEN
map remains relatively small. Thus, the map probably does not
capture the complete molecular diversity of the LNENs, and in-
tegrating new samples will influence the map and potentially
change the clusters obtained after dimensionality reduction.

Also, if the harmonization of the new dataset to integrate is not
enough to correct for strong batch effects, the interpretation of
the projections would be erroneous. Another approach would
be to project the new samples into a fixed reference map. How-
ever, the stochastic nature of UMAP embedding and its sensitiv-
ity to parameter tuning can lead to unstable projection results;
thus this task is for now not straightforward and requires further
development [55]. In the meantime, favoring the integration of
datasets will, over the years, yield the constitution of molecular
maps that will probably be more and more accurate and more
adapted to the projection of new samples.

Conclusion

Here we provide a molecular map based on homogenized tran-
scriptomic data available for the 4 types of LNENs from 6 dif-
ferent studies. We show that this map represents well both the
local and global structure of the data and captures the main bio-
logical features previously reported. We provide a full spectrum
of data and tools to maximize reuse potential for a wide range of
users: raw sequencing reads, gene expression matrix, bioinfor-
matics pipelines, interactive computational notebooks, and an
interactive TumorMap. In particular, we indicate how one can
update the molecular map by integrating new samples starting
from raw sequencing reads. Considering the small sample sizes
of molecular studies on rare LNENs, promoting data integration
will empower more reliable statistical testing, and this map will
therefore serve as a reference in future studies.

Availability of Supporting Data and Materials
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