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ABSTRACT: Controlled site-specific bioconjugation through
chemical methods to native DNA remains an unanswered
challenge. Herein, we report a simple solution to achieve this
conjugation through the tactical combination of two recently
developed technologies: one for the manipulation of DNA in
organic media and another for the chemoselective labeling of
alcohols. Reversible adsorption of solid support (RASS) is
employed to immobilize DNA and facilitate its transfer into dry
acetonitrile. Subsequent reaction with P(V)-based Ψ reagents takes
place in high yield with exquisite selectivity for the exposed 3′ or 5′ alcohols on DNA. This two-stage process, dubbed SENDR for
Synthetic Elaboration of Native DNA by RASS, can be applied to a multitude of DNA conformations and sequences with a variety of
functionalized Ψ reagents to generate useful constructs.

■ INTRODUCTION

DNA conjugates are ubiquitous in the fields of chemical
biology, biophysics, and diagnostics (Figure 1A).1 Indeed,
DNA conjugate technology has provided the basis for many
modern technological advances.1 For example, DNA-PAINT
conjugates enable super resolution microscopy,2−5 and Taq-
Man PCR probes have revolutionized precision diagnos-
tics.6−11 These hybridization probes all require custom DNA
oligomer conjugates that are precisely functionalized and
homogeneous.1 Clearly, such homogeneous functionalization
is a challenge of the highest magnitude for chemoselective
chemical bioconjugation.
Hybridization probes operate through the exquisite molec-

ular recognition ability that a single strand of DNA displays
toward its complementary sequence.1,12,13 The ability for DNA
to take on well-defined conformations, set by inter- and
intramolecular interactions, allows for another dimension of
selectivity.1,14,15 Detecting these molecular interactions usually
requires the incorporation of a fluorophore or radioactive
moiety.1 Thus, DNA−probe conjugates form the foundation
that allows for ubiquitous biochemical and diagnostic
techniques such as Southern16 and Northern blotting,17

molecular beacons,1,15 and TaqMan qPCR.6−11

Although these techniques are universal, chemical synthesis
of custom DNA conjugates can be cost-prohibitive and labor-
intensive.1 As a result, less sensitive techniques not requiring
precision-labeled DNA are often utilized.1 As DNA tagging
becomes increasingly popular, massively multiplexed experi-
ments would require thousands of chemically synthesized and
modified oligonucleotides. Thus, simple ways to precisely and
inexpensively build DNA conjugates, ideally from ubiquitous

substrate building blocks, would be of great interest to
researchers across many fields.

■ CHEMICAL APPROACH TO SITE-SPECIFIC DNA
MODIFICATION

Although many chemical and biochemical methods exist for
the random labeling of native DNA, these methods produce
nonhomogenous products that contain modified bases
determined randomly or statistically.18−22 In some cases,
DNA with randomly incorporated labels can be useful, but
unlocking the total power of DNA as a molecular recognition
probe requires site-selective incorporation of the desired tag.
Although biochemical methods exist for the site-specific
labeling of native DNA, they are not without their draw-
backs.23−27 Many require custom synthesis of transfer small
molecules, and the scope can be limited or the enzymes might
be noncommercial.23−27

One classic method for selective modification of native DNA
exists, although it presents with several limitations. The
method first reported in 1983 by Orgel relies on a water-
soluble carbodiimide (EDC), imidazole, and amines, which
when combined furnish a phosphoramidate linkage between
native DNA bearing a 5′ phosphate group and an amine of
interest.28−32 Although this method is widely cited, its scope is
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limited to simple amines, and the reaction and workup must be
conducted rapidly to avoid premature hydrolysis of the
carbodiimide. In our hands, this method proved unreliable,
providing a product that was contaminated with many EDC
adducts, even after multiple attempts varying concentration
and stoichiometry (Figure 1B, and also see Supporting
Information). Multiple other classical alcohol selective
reactions were investigated via the RASS platform in an
attempt to develop an alternative bioconjugation route.
Unfortunately, applying canonical conditions of a phosphor-
amidite coupling (and subsequent oxidation), tosylation,
Williamson ether synthesis, and Mitsunobu reactions resulted
in DNA damage and little to no DNA recovery (Figure 1C,
and see Supporting Information).
In an attempt to remedy this, we set out to combine two

technologies previously disclosed from our respective (P.S.B.
and P.E.D.) laboratories. Specifically, P(V)-based Ψ-reagents
have been established to construct stereochemically pure
phosphorothioate linkages between hydroxyl nucleophiles in a
chemoselective fashion (Figure 1D).33,34 While upon first
glance, it seemed simple to employ this reagent system for the

labeling of DNA 5′ or 3′ hydroxyl groups, Ψ-loaded reagents
are typically employed in dry acetonitrile, as they are readily
hydrolyzed in water.33,34 In contrast, because of the highly
charged nature of the native DNA phosphate backbone, these
polymeric substrates are insoluble in most organic solvents and
usually require significant water content to solubilize it in a
mixed aqueous/organic system.35,36 These mutually exclusive
properties precluded the simple adaptation of Ψ for the
purposes of site-specific DNA labeling. Reversible adsorption
of solid support (RASS), an alternate paradigm for performing
chemistry on-DNA, thus seemed like an ideal merger with Ψ-
based chemistry. RASS is a process that allows for the
adsorption of biomacromolecules onto a solid support to
facilitate their transfer into solvents or reaction paradigms that
would previously be considered incompatible.37−40 In this
manifestation, DNA is adsorbed onto a polystyrene-based
cationic support, through a simple mixing procedure, and the
solvent exchanged (by simple washing and drying) into near-
anhydrous conditions. In turn, water-incompatible reactions
are enabled. Herein, we describe the union of Ψ and RASS for
the site-specific labeling of oligonucleotides, Synthetic
Elaboration of Native DNA by RASS: SENDR.
With this design in mind, a variety of Ψ-loaded reagents (Ψ-

modules, Figure 2) were prepared to explore site-specific
labeling of native DNA. Model DNA (1) and (2) each

Figure 1. Modification of native DNA. (A) Structure and utility of
some DNA hybridization probes (B) State of the art in site selective
chemical DNA bioconjugation: Phosphoramidate formation. (C)
Classical organic alcohol selective reactions. (D) This work: SENDR.

Figure 2. Ψ-modules synthesized for this study.
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Figure 3. P(V) based DNA modification. (A) SENDR enabled DNA modification. (B) Optimization of the coupling step. (C) Substrate scope.
Conversions based on HPLC integration of a total absorbance signal at 260 nm. Unless otherwise noted, standard reaction conditions were applied;
Ψ-module (150 mM), DBU (450 mM), in dry MeCN (250 μL), 60 min, r.t. while adsorbed to Strata XL-A. a75 mM PSI and 225 mM DBU, b45
°C,c37 °C. d200 mM PSI at 50 °C. e300 mM PSI at 37 °C. DNA loading (adsorption step) performed in PBS. Resin washed with DMA (×2) and
THF (×3). Resin dried under a vacuum 2 h. Elution was performed using elution buffer 1 M NaClO4, 40 mM Tris pH 8.5, 20% MeOH. fIn-situ
protocol (see Supporting Information for details).
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contains single modifiable terminal hydroxyl groups at the 5′
and 3′ positions, respectively, with the other terminal hydroxyl
group capped with a phosphate group (Figure 3A). Model
DNA could readily undergo RASS (Strata XL-A resin,
Phenomenex), but initial attempts to apply Ψ-conjugation
proved difficult, furnishing only low yields of the modified
product. On the basis of significant amounts of hydrolyzed Ψ-
derivatives in the crude product mixture, we postulated that
this protocol (3× washes with dry acetonitrile) was not
sufficient to fully dry the DNA-bound resin. Residual water
would subsequently quench the Ψ-modules upon addition of
DBU.34 Optimization of the washing protocol to use reagent-
grade DMA, then THF, and finally drying under vacuum
rectified this issue. With this revised protocol in hand,
promising initial reactivity was observed (Figure 3B, entry
1). By modulating DBU stoichiometry, concentration, and
reaction time, general conditions were identified (Figure 3B,
entry 3) to produce singly labeled products (3) and (4) with
good conversion (determined by total UV quantification at
260 nm) at both the 5′ and 3′ position, with no observable
byproducts. The labeling position was confirmed by MS
fragmentation (see Supporting Information). Also, DNA
without any phosphate “blocking” groups could be selectively
modified at the more reactive 5′ terminus with a single Ψ-
module by reducing Ψ-module concentration, albeit at reduced
yields (53%) (see Supporting Information). Additionally, the
same DNA starting material (without terminal phosphates)
could be dual labeled at both termini with two Ψ-modules
under standard conditions (73%) (see Supporting Informa-
tion). DNA lacking a terminal phosphate could be readily
phosphorylated by T4 polynucleotide kinase (T4PNK) (30
min) and directly loaded onto the support for subsequent
SENDR protocol (see Supporting Information). Biochemically
phosphorylated substrates were labeled at efficiencies com-
parable to chemically phosphorylated material (see Supporting
Information). The conditions also proved to be sequence
independent (see Supporting Information). SENDR provided
efficient conjugations to oligonucleotides regardless of the
identity of the terminal nucleoside. Also, both “sticky ends”
(i.e., overhanging oligonucleotides) and “blunt ends” (i.e.,
nonoverhanging oligonucleotides) could be modified effi-
ciently. This is important as there exists evidence that DNA
retains its secondary structure while adsorbed to the support.37

High Tm DNA hairpins with nonoverhanging terminal
alcohols were labeled in higher conversions when thermally
denatured while being adsorbed to the support (see
Supporting Information). With all of these elements combined,
the development of SENDR was complete, and our attention
turned to its application. On the basis of previous studies, it
was envisioned that a wide array of Ψ-modules derived from
alcohol nucleophiles could be prepared as stable (and often
crystalline) reagents.33,34 Combined with the present findings,
subsequent coupling to DNA sequences would allow for a vast
scope. Indeed, a large number of Ψ-modules (Figure 2, Ψ-
1−Ψ-20), including multiple click chemistry handles (7−10,
and 21−26), protected amines (5, 6, 13, and 14), an activated
disulfide (11, 12), an MRI probe (31, 32), a fluorescent
quencher (37, 38), a ligand for radiomedicine (39), photo-
affinity tag (35, 36), a fluorophore (40, 41), and nucleosides
(17, 18, 25, 26, 29 and 30), were prepared (Figure 3D). It is
important to note that azide-containing handles typically
cannot be incorporated directly in solid phase DNA synthesis
by standard phosphoramidite chemistry as the P(III)

containing phosphoramidite reactive group generally reduces
the azide in a classical Staudinger reaction. Thus, most
suppliers conjugate an azide to a preinstalled amine via NHS-
ester chemistry postsynthesis. All Ψ-modules produced singly
labeled products upon conjugation to DNA in good to
excellent conversion at both the 3′ and 5′ hydroxyl groups.
DNA recovery was also good (30−80%), given that the upper
yield limit after ethanol precipitation is known to be 80−
85%.41 Throughout these applications, the general conditions
were not modified, with the exception of cases where
solubilization of the reagent required slightly elevated temper-
ature (37 to 50 °C). Unfortunately, reagents containing
extremely lipophilic substituents, such as cholesterol and oleyl
alcohol, provided lower yields (<50%) under these conditions
(see Supporting Information). The SENDR-modified oligonu-
cleotides could be further processed via additional conjugation
and click manipulations (Figure 4). Thus, DNA-linked azides
and alkynes were competent in SPAAC42−44 and
CuAAC42,43,45 respectively, and directly provided constructs
that were useful without further purification. In addition,
DNA-linked azides could be easily transformed into the
corresponding amines through the addition of a water-soluble
phosphine (TCEP).46 This manipulation could be performed
after SENDR as a one-pot procedure in the elution buffer,
providing an exceedingly simple route to amine-modified
DNA. Similarly, the construction of high-value DNA labeled
with 3′ TAMRA or biotin (Figure 5). The 3′ SENDR-modified
DNA could be quantitatively transformed with multiple
complex azides to furnish DNA conjugates that are sufficiently
homogeneous (>80%) for most biochemical experiments
without additional purification. Potential adverse effects on
Cu(I) chemistry that could arise, due to coordination to the
phosphorothioate moiety,47 were not observed, and CuAAC
could be readily employed, allowing for, in principle, near-
infinite diversification.

■ SENDR: COMPLEX SETTINGS
SENDR could also be adapted for the efficient modification of
phosphorothioate antisense oligonucleotides (ASOs) (Figure
5). The 3′ phosphorylated version of Vitravene, an FDA-
approved ASO for the treatment of cytomegalovirus retinitis
(CMV),48,49 was efficiently ligated with a number of Ψ-
modules with no change to the general protocol. The 3′
phosphorylated version of MALAT1, a published ASO50 with
multiple modified sugars and bases, and containing PS
linkages, could be readily modified with multiple Ψ-modules.
This result exemplifies the opportunity for the late-stage
modification of ASO pools with target-engaging small
molecules or peptides. Previously, such handles would have
required a de novo chemical synthesis for each new compound.
A large (58 nt) “protein A” aptamer51 (54) which exhibits
significant secondary structure could be modified at the 3′
hydroxyl in 70% conversion (Figure 6). Additionally, an
aptamer52 to human neutrophil elastase (hNE) (56) could be
modified at the 3′ position with a phosphorothioate electro-
phile and was labeled using both enantiomers of (Ψ-14), in
similar conversions. The unlabeled aptamers were selectively
digested using ExoIII53 leaving high purity aptamers (Sp-(57))
and (Rp-(57)). The addition of the phenol (Figure 6)
electrophile (Sp-(57)) and (Rp-(57)) conferred a 10-fold
increase in potency (Ic50 of 15 and 17 nM respectively) when
compared to parent aptamer (63) (Ic50 of 140 nM) in a
fluorescence-based hNE inhibition assay.54 Also small mole-
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cules containing the same electrophiles were inactive in this
screen (see Supporting Information). This example further
demonstrates the sequence and structure independence of the
SENDR platform. It could prove useful in the modification of
entire SELEX55,56 pools with libraries of reactive warheads or
target engaging moieties for the facile creation of DNA−small
molecule chimeric inhibitors.
SENDR could also be used to directly modify large strands

of biosynthetically produced DNA (Figure 7). A portion of the
COVID-19 N-gene (ss-DNA) was amplified by PCR using one
primer with a 5′ phosphorylation and one primer without this
modification. The resulting amplicon could be readily
converted into ssDNA by the selective digestion of the 5′
phosphorylated strand using Lambda exonuclease.57 The

resulting ssDNA could be phosphorylated at the 5′ hydroxyl
by T4 polynucleotide kinase. This reaction mixture could be
directly loaded onto the support and the 3′ hydroxyl modified
in good yields (Figure 7).

■ SENDR: DNA−PROTEIN CONJUGATES
Another utility of SENDR was also demonstrated in the
formation of DNA−protein conjugates, which are becoming
increasingly valuable in the production of long-acting and/or
targeted oligonucleotide drugs.58−61 An oligonucleotide was
modified by SENDR (using Ψ-8) with an activated disulfide
group resulting in (61) (Figure 8A). This construct could be
used directly, without purification in a disulfide forming
reaction with bovine serum albumin (BSA). The reaction
cleanly furnished the DNA−BSA conjugate (62), and ESI-
TOF analysis of the crude reaction mixture indicated that no
unmodified BSA remained in solution.62,63 Conjugation to
serum albumin is a valuable half-life increasing strategy for
quickly cleared peptide and small protein drugs and could in
principle be applied to next-generation ASOs.64−68

SENDR was also used to create a DNA construct that could
be used in site-specific antibody conjugations (Figure 8B). The
complementary cDNA sequence of FDA-approved ASO
Tegsedi69−71 (cTegsedi) was modified with an alkyne handle.
In turn, this alkyne was ligated to a reactive beta-lactam
containing moiety via CuAAC. The beta lactam containing
oligonucleotide (64) was competent in the site-specific
labeling of an engineered lysine on the heavy chain of a dual
variable domain (DVD) IgG that has been pioneered for use in
antibody drug conjugates (ADCs) by the Barbas and Rader
laboratories.72−75 This system was derived from the antihapten
mAb h38C2 and is especially reactive toward beta lactam
haptens. The reactive lysine residue also catalyzes a retro aldol

Figure 4. Downstream synthetic manipulations of SENDR-derived
DNA-small molecule hybrids (ligated at 3′ or 5′).

Figure 5. (Top) SENDR compatibility with PS DNA. (Bottom)
SENDR compatibility with larger structured oligomers. Standard
reaction conditions were applied; Ψ-module (150 mM), DBU (450
mM), in dry MeCN (250 μL), 60 min, 37 °C while adsorbed to Strata
XL-A.
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reaction with methodol, which results in increased fluorescence
of the aldehyde product.72−75 The modified site on the DVD
was confirmed to be the catalytic lysine via methodol
florescence assayafter conjugation, signal from the florescent
aldehyde was not detected (Figure 8B).72−75 These DVDs
have shown promise as flexible platforms for the production of
antibody drug conjugates, as they can be produced by typical
recombinant methods, and drug molecules can be added at a
known stoichiometry, to a known position, through a stable
amide linkage.72−75 Labeling the DVD with cTegsedi created,
in effect, an ASO delivery system that could protect, target, and
deliver Tegsedi to the cell of interest. This process may be
useful in the creation of many antibody−ASO conjugates that
could provide targeted ASO therapies. The above two
examples enabled by SENDR are striking due to the ease
and efficiency with which these complex conjugates could be
prepared, along with the near-infinite flexibility in design.

■ SENDR: DUAL LABELED PROBES
Although many DNA-based technologies only require a single
probe, the true power of hybridization probes is realized in
dual labeled form.1 The canonical dual labeled DNA probe has
a fluorophore label on one terminus and a fluorescence
quencher at the other (Figure 9A).1 Fluorescence of the probe
is quenched when the two components are in close proximity.
Molecular beacons (MBs),15 for example, form a stem loop
system that brings the termini labels into close proximity when
the target is not present (Figure 1A). Upon target engagement,
the MB adopts an extended conformation, which moves the
two labels out of FRET range and results in a fluorescence
signal.15 Another ubiquitous example of dual labeled probes is
the TaqMan qPCR probe.6−11 These probes are also typically
constructed with a fluorophore and a quencher at the
termini.6−11 These probes hybridize to a diagnostic sequence
of interest and upon PCR elongation by Taq polymerase, the
probe is cleaved (by the intrinsic exonuclease activity of Taq),
and increased fluorescence is read out (Figure 1A).6−11

Figure 6. SENDR aptamer modification. (A) Standard reaction conditions were applied; Ψ-module (150 mM), DBU (450 mM), in dry MeCN
(250 μL), 60 min, r.t. while adsorbed to Strata XL-A. (B) Direct incorporation of electrophiles into aptamers and their inhibition of protein targets.
The reaction conditions that were applied: Ψ-module (150 mM), DBU (450 mM), in dry MeCN (250 μL), 60 min, 37 °C, while adsorbed to
Strata XL-A.
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Although TaqMan PCR is widely considered to be the state-of-
the-art in real-time PCR methods, practitioners are reliant on
vendors for custom synthesis of probes with proprietary linking
technologies. This synthesis must be done for each individual
target and can prove to be prohibitively expensive. Indeed, the
less sensitive method of SYBR Green-based qPCR, which relies
on increased fluorescence of an intercalating dye during

polymerization, is gaining in popularity because of the
immense cost of buying custom TaqMan PCR probes for
every experiment. SENDR, when used in concert with
ubiquitous biochemical techniques, presents a unique oppor-
tunity for biochemical researchers to produce dual labeled
probes for their own custom applications (Figure 9A).
Synthesis of these probes proceeds through a multistage

Figure 7. SENDR on biosynthetically derived DNA. Scheme representing the biosynthetic steps to produce the COVID-19 N gene amplicon (59).
HPLC chromatogram of the SENDR reaction. Deconvoluted mass spectrum of the starting material peak and the product peak.

Figure 8. SENDR enabled DNA−protein conjugation. (A) DNA−BSA conjugation (ESI-TOF mass spectra of starting material and product). (B)
cTegsedi−DVD conjugation (SDS PAGE and catalytic methodol fluorescence assay including control experiments). SENDR: DNA−protein
conjugates.
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process. In the event, a typical synthetic oligonucleotide
containing a 5′ phosphate and a 3′ hydroxyl group is ligated
with an alkyne group by SENDR (Figure 9). Next, this
modified oligomer is quantitatively dephosphorylated by
recombinant shrimp alkaline phosphatase (rSAP)76 unmasking
the 5′ hydroxyl group, while the unmodified DNA is selectively
degraded by ExoIII53 in one pot. This oligomer is then
subjected to a second SENDR modification at the 5′ terminus,
providing the dual labeled probe. Similarly, remaining
unlabeled DNA is selectively degraded by a mixture of lambda
exonuclease and T4PNK in one pot. The T4PNK phosphor-
ylates the remaining unlabeled 5′ hydroxyl DNA which is then
recognized and degraded by lambda exonuclease. These
resulting probes are highly pure without the need for HPLC
purification. The position of each label on the dual labeled
probe was confirmed by MS fragmentation (see Supporting
Information). This dual-labeled parent probe (68) is now

primed for subsequent SPAAC/CuAAC reactions with any
fluorophore/quencher pair desired to furnish the qPCR-
competent probe. These reactions with FAM-DBCO and
BHQ1-azide proceed quantitatively, resulting in the qPCR
competent construct (69). The utility of in-house probe
production was demonstrated by the facile and expedient
production of dual labeled probes for COVID-19 diagnostics
(Figure 9B). The native sequences for the panel of RT-PCR
probes for COVID-19 diagnostics 66 and 67 (as defined by
HHS 24 Jan 2020) were transformed in parallel (∼48 h) into
dual labeled probes through the above sequences in good
overall conversions. Although this class of probes are
commercially available, we have demonstrated an alternate
paradigm for their synthesis, and we believe this could enable
the construction of probes beyond those that are currently
offered by vendors.

Figure 9. Creation of dual labeled DNA probes. (A) The synthesis of a TaqMan probe for RNaseP. (B) Synthesis of the COVID 19 qPCR panel of
probes.
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■ A SIMPLE SENDR KIT AND FUTURE OUTLOOK
From a pragmatic standpoint, a simple kit-format would be of
use to the community. Toward that end, a “SENDR kit” was
created from readily available consumables. The SENDR
process is simple and robust enough to be miniaturized and
performed in a cartridge/flow set up, and all reagents
employed are shelf-stable indefinitely. Gratifyingly, when
performed in a cartridge, the process proved simpler and
faster than the previously employed microcentrifuge tubes.
Also, the handling procedures were greatly simplified and
could be performed by any researcher with basic micro-
pipetting skills. Importantly, reaction efficiency was identical to
reactions performed in microcentrifuge tubes (see Supporting
Information). Using this kit, a researcher could customize
synthetic or biochemically derived DNA, in-house, with a suite
of commercialized reagents. We believe that SENDR kits will
expand the toolbox and allow researchers to pursue
experimental designs that were previously out of reach.
Although SENDR will not displace the need for chemical

oligonucleotide synthesis, we envision that this complementary
approach will democratize site-specific DNA modifications.
Although the chemical diversity of the developed SENDR
compatible modules is yet to exceed the commercially available
phosphoramidites (which have had >40 years of development),
it does not require de novo synthesis (and specialized
equipment) and benefits from the intrinsic advantages of a
late-stage incorporation. With the acknowledgment that
enzymatic means of site-selective functionalization are power-
ful, SENDR is uniquely versatile and programmable using
easily accessible reagents. As more modules are developed, one
could imagine an unlimited diversity being incorporated.
Regarding limitations, highly lipophilic groups are challenging
to employ, groups sensitive to DBU might be problematic, and
at this point are limited to terminal modifications. More
broadly, the modular nature of the process could permit a
more medicinal chemistry mindset into the derivatization of
complex DNA-based conjugates. Although some may interject
that SENDR-based modification of DNA lies outside the skill
set of the general molecular biology practitioner, the robust
chemistry should prove simple enough for any practitioner
with basic liquid handling skills. This initial disclosure
demonstrates conjugations that are compatible with simple
organic molecules, proteins, aptamers, and ASOs. Numerous
extensions such as applications to carbohydrate conjugation,
and multiplexed high throughput arrays, could be anticipated.
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