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Abstract

Cannabis is the most frequently used illicit psychoactive substance worldwide, and around on in 

ten users become dependent. The risk for cannabis use disorder (CUD) has a strong genetic 

component, with twin heritability estimates ranging from 51-70%. Here we performed a genome-

wide association study (GWAS) of CUD in 2,387 cases and 48,985 controls, followed by 

replication in 5,501 cases and 301,041 controls. We report the first genome-wide significant risk 

locus for CUD (P=9.31X10−12) that replicates in an independent population 

(Preplication=3.27X10−3, Pmetaanalysis=9.09x10−12). The index variant (rs56372821) is a strong 

eQTL for CHRNA2 and analyses of the genetically regulated gene expression identified a 

significant association of CHRNA2 expression with CUD in brain tissue. At the polygenic level, 

analyses revealed a significant decrease in the risk of CUD with increased load of variants 

associated with cognitive performance. The results provide novel biological insights and inform on 

the genetic architecture of CUD.

Introduction

Cannabis use is increasing in the population1 and around 9% of users become dependent2. 

Genetic factors explain a large proportion of the risk for cannabis use disorder (CUD) with 

twin heritability estimates in the range of 513-70%4. The prevalence of diagnosed CUD in 

the population has been estimated to 1-1.5% among Europeans5 and Americans1. CUD is 

associated with a range of adverse health problems6 including risk of psychosis7, bipolar 

disorder8, anxiety disorder9 and cognitive impairment with more persistent use associated 

with greater decline10. Estimates of the heritability for cannabis use initiation and life-time 

cannabis use, with respect to the amount of variance explained by common variants (i.e. the 

single nucleotide polymorphism (SNP) heritability), has been estimated to 0.0611-0.212. 

Four GWASs related to cannabis use initiation or lifetime use have been conducted; three 

studies without genome-wide significant findings11-13 and a large GWAS meta-analysis of 

life-time cannabis use including 184,765 individuals, wich identified eight genome-wide 

significant independent risk loci14. Four GWASs of problematic use or diagnosed CUD have 

been conducted; two without genome-wide significant findings15,16 and two recent reporting 

genome-wide significant associations, albeit with negative or ambiguous replication results: 

a study of DSM-IV cannabis dependence criterion counts in a combined sample of 14,754 

European Americans and African Americans17, which reported three genome-wide 

significant loci associated with cannabis use severity; and a GWAS of cannabis dependence 

of 2,080 European cases and 6,435 controls which identified one genome-wide significant 

locus18.
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Here we present results from a GWAS and subsequent replication based on analyses of the 

largest cohorts of diagnosed CUD reported so far. Individuals included in the discovery 

GWAS come from the Danish nation-wide population based cohort collected by the 

Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH). The 

iPSYCH cohort was ascertained to study six major psychiatric disorders (schizophrenia, 

bipolar disorder, major depressive disorder, attention-deficit hyperactivity disorder (ADHD), 

anorexia nervosa and autism spectrum disorder) and consists of 79,492 genotyped 

individuals. The present GWAS included 2,387 individuals with a diagnosis of CUD. In this 

study CUD was defined by individuals having an ICD10 diagnosis reflecting a problematic 

and persistent use of cannabis (ICD10 F12.1-12.9; see Supplementary Table 1, 2 and 3 for 

information on number of cases in each diagnostic subcategory and distribution over 

diagnostic subcategories in relation to comorbid psychiatric disorders) and 48,985 

individuals not diagnosed with CUD, all from the iPSYCH cohort. We identify a genome-

wide significant risk locus on chromosome 8, which replicates in an independt cohort from 

deCODE genetics. The index variant is a strong eQTL for CHRNA2, which encodes the 

neuronal acetylcholine receptor (nAChR) alpha-2 subunit, and in analyses of the genetically 

regulated gene expression we find reduced expression of CHRNA2 in brain tissue in 

individuals with CUD compared to the control group in cerebellum. At the polygenic level, 

we show that increased load of CUD variants associates with decreased cognitive 

performance and increased risk of schizophrenia and ADHD.

Results

GWAS of CUD and replication in an independt cohort from Iceland

Data analysis was conducted using the Ricopili pipeline19, including stringent quality 

control of genotyped variants and individuals (Methods). Information about non-genotyped 

markers was obtained by imputation using the 1000 genomes phase 3 as reference panel. 

GWAS was performed using imputed marker dosages and an additive logistic regression 

model using the following covariates: relevant principal components to correct for 

confounders such as population stratification, presence of the major psychiatric disorders 

studied in iPSYCH and genotyping wave. Only markers with an imputation INFO score 

>0.7, minor allele frequency (maf) >0.01 and bi-allelic variants were retained, in total 

8,971,679 genetic variants were included. We identified 26 genome-wide significant variants 

(P<5x10−8), located in a single locus on chromosome 8 (Figure 1 and 2). The index variant, 

rs56372821, showed an odds ratio of 0.73 (P=9.31x10−12) with respect to the minor allele A 

(Table 1, Figure 1 and 2). We found no signs of contributions from confounding factors like 

population stratification and cryptic relatedness to the inflation in the distribution of the test 

statistics (lambda=1.033; see quantile-quantile plot, Figure 1.B.) using LD score regression, 

since the intercept was practically one (intercept=0.996; SE=0.0079) (Methods). There was 

no evidence of association of previously identified genome-wide significant cannabisuse risk 

variants with CUD in our analyses17,18 (Supplementary Table 5). This might be due to 

different phenotype definitions among the studies as Sherva et al.17 analysed association 

with cannabis use criterion counts, and Agrawal et al.18 used cannabis exposed (but not 

dependent) individuals as controls in their study. Additionally, the composition of the 

cohorts analysed also differ as the previous GWASs were based on cohorts established to 
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study substance use disorders while the iPSYCH cohort was ascertained for major mental 

disorders.

The genome-wide significant locus on chromosome 8 was replicated in an independent 

Icelandic sample consisting of 5,501 cases with CUD and 301,041 population controls 

(deCODE cohort). The cases were diagnosed with CUD while undergoing inpatient 

treatment at the SSA National Center of Addiction Medicine, Vogur Hospital in Iceland 

(www.saa.is). SAA treats around ~80% of individuals with substance abuse in Iceland which 

makes the deCODE CUD cohort nearly population-wide20. We tested nine variants located 

in the risk locus in the Icelandic sample; the index variant and eight correlated variants (0.2< 

r2 <0.7) with P-values less than 1x10−6 (four genome-wide significant). All variants 

demonstrated consistent direction of association. The most strongly associated variant 

(rs56372821) in the discovery GWAS showed a P-value of 3.27x10−3 in the deCODE 

cohort , however with a slightly smaller effect size (Table 1). In the meta-analysis, 

rs56372821 showed a little stronger association with CUD (P=9.09x10−12), and additional 

two variants became genome-wide significant (Table 1).

We performed polygenic risk score (PRS) analysis in order to evaluate the consistency 

between the deCODE and the iPSYCH CUD phenotypes. When using the iPSYCH cohort 

as discovery, we observed a significant association of CUD PRS in the deCODE cohort with 

CUD (e.g P-value=2.17x10−9; P-value threshold <0.01 in the discovery GWAS) but not with 

schizophrenia or bipolar disorder (Supplementary Table 4), supporting that the associations 

in the iPSYCH cohort primarily are driven by CUD and not the comorbid psychiatric 

disorders.

To assess the proportion of phenotypic variance in the iPSYCH data explained by common 

variants we applied LD score regression and the GREML method implemented in GCTA, 

assuming a population prevalence of 1% for cannabis use disorder (Methods). Estimates of 

the liability-scale SNP heritability were h2
snp=0.09 (SE=0.03) and h2

snp=0.042 (SE=0.014; 

P=0.0012) using LD score regression and GCTA, respectively. This result suggest a smaller 

contribution from common variants than was previously found for cannabis use12. The 

estimate will probably increase with larger sample size as a result of a decrease in the size of 

the error terms of the SNP effect estimates21.

The role of the CUD risk locus in other psychiatric disorders

In the GWAS we corrected for diagnoses of the major psychiatric disorders studied in 

iPSYCH (see Supplementary Table 1 for distribution of psychiatric disorders among CUD 

cases and the control group). In addition, we evaluated the impact on the odds ratio for the 

index variant by leave-one-out analyses excluding psychiatric phenotypes one at a time in 

the association analysis (Methods). The odds ratio remained stable (Table 2), supporting that 

the association was independent of a diagnosis of the psychiatric disorders evaluated.

The risk locus on chromosome 8 is also genome-wide significantly associated with 

schizophrenia19. In our leave-one-phenotype out analysis the locus remained genome-wide 

significant when individuals with schizophrenia were removed, excluding any potential 

confounding from schizophrenia (Table 2). Additionally, we tested the possibility of the 
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locus being broadly associated with psychiatric disorders by performing a cross disorder 

GWAS including 35,006 individuals with one of the five major psychiatric disorders and 

16,366 controls. In this analysis the index variant (rs56372821) showed a P-value of 0.058 

(OR=0.966). When redoing the GWAS while excluding all individuals with CUD, the 

analysis revealed a cross-disorder P-value=0.33, OR=0.982 for rs56372821 (32,716 cases 

and 16,269 controls). The close to nominal significant signal observed in the cross-disorder 

GWAS including all cases disappeared when excluding individuals having a CUD diagnosis. 

This reinforces that the association signal in the CUD GWAS is caused by CUD, and not by 

a general association with psychiatric disorders.

The signal observed for the index variant in the GWAS meta-analysis of schizophrenia19 

(rs73229090) is consistent with the direction of association observed in our analysis. Since 

individuals with schizophrenia often use cannabis (around 13-16%22) it could be speculated 

that the significant signal observed in schizophrenia is driven by a sub-group of 

schizophrenia cases also having CUD. This hypothesis is supported by analysis of the 

association of rs56372821 with schizophrenia in the iPSYCH sample. We found a nominal 

significant association of the variant with schizophrenia when including individulas with co-

morbid CUD (2,281 schizophrenia cases and 23,134 controls; OR=0.9; P=0.036), while after 

exclusion of individuals with CUD (556 cases and 101 controls excluded) the association 

signal disappeared (1,727 cases, 23,033 controls; OR=0.97, P=0.63). To further to evaluate 

the impact of CUD comorbidity on the odds ratio of rs56372821 in schizophrenia a null 

distribution for the odds ratio was generated by performing 10,000 permutations randomly 

removing 556 and 101 individuals among the cases and controls, respectively 

(Supplementary Figure 1). The observed odds ratio for rs56372821, when excluding 

individuals with comorbid CUD was 0.97, and differed significantly from random removal 

of the same number of cases and controls (Ptwo-sided=0.0027, Pone-sided=0.0015). Thus the 

permutation test supports the hypothesis that the subgroup diagnosed with CUD among 

schizophrenia cases drives the nominal association observed for rs56372821 in the iPSYCH 

schizophrenia sample.

Association of risk locus witn age at first CUD diagnosis

We performed a case-only analysis testing all variants in LD with the index variant (19 

SNPs; r2 >0.7) for association with age at first CUD diagnosis. This analysis suggested the 

risk alleles to be associated with earlier age at first diagnosis (most significant SNP: 

rs35236974, P=0.020). On average CUD cases homozygous for the protective allele got their 

diagnosis (mean age: 22.41; st.dev=3.63) one year later than CUD cases having at least one 

risk allele (mean age: 21.01; st.dev=3.56).

Transcriptome-wide association study implicates CHRNA2 in CUD

Among the brain tissues analysed in GTEx (https://gtexportal.org/home/) the index variant 

rs56372821 was found to be a strong eQTL for CHRNA2 in cerebellum (P-value in 

GTEx=2.1x10−7), with the risk allele (rs56372821-G) being associated with decreased 

expression of the gene (Supplementary Figure 2). CHRNA2 is expressed in the brain and 

encodes the neuronal acetylcholine receptor (nAChR) alpha-2 subunit, which is incorporated 

in heteropentameric neuronal nAChRs mainly with the beta-2 or beta-4 subunits23. 

Demontis et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gtexportal.org/home/


Candidate gene studies of common variants have linked this gene to e.g. substance abuse24 

and nicotine dependence25 but no genome-wide significant findings have connected 

CHRNA2 to any substance abuse or psychiatric disorder, besides a fuctional link between 

schizophrenia risk variants and CHRNA2 expression identified by Won et al26 (described 

below).

To further evaluate the potential regulatory impact of the identified locus on chromosome 8 

as well as genome-wide gene expression differences between cases and controls, we imputed 

the genetically regulated gene expression in 11 brain tissues using PrediXcan (Methods). 

The SNP weights used were derived from models trained on reference transcriptome data 

sets including 10 brain tissues from GTEx and transcriptome data from dorsolateral 

prefrontal cortex generated by the CommonMind Consortium.. We tested for association of 

expression of 2,460-10,930 protein coding genes depending on the tissue (Supplementary 

Table 6) with CUD using logistic regression corrected by the same covariates as in the 

GWAS. One gene, CHRNA2, was significantly differently expressed between cases and 

controls (P=2.713x10−6; beta=−0.21; SE=0.045) in the cerebellum. The expression model 

for CHRNA2 in cerebellum was based on 47 SNPs including four genome-wide significant 

SNPs rs59724122, rs73229093, rs7838316 and rs11783093 (Figure 3). CHRNA2 expression 

was predicted with a valid model in two other brain tissues showing nominal significant 

under-expression in cases compared to controls (dorsolateral prefrontal cortex, P=5.19x10−4; 

cerebellar hemisphere P=5.30x10−3). That the risk locus for CUD can be linked to CHRNA2 
expression is also supported by Won et al.26 who generated high-resolution 3D maps of 

chromatin contacts (by Hi-C sequencing approach) to capture functional relationships 

between regulatory and transcribed elements during human corticogenesis. They applied 

their map to a set of credible SNPs from the large PGC schizophrenia GWAS19 and found 

physical interaction of the genome-wide significant risk locus on chromosome 8 with the 

regulatory region of CHRNA2.

Examination of smoking behavior as a confounder

CHRNA2 is related to other nicotine receptor genes that have been identified as risk loci for 

nicotine dependence and smoking behavior27. It is therefore relevant to question if our 

finding is confounded by smoking. In the iPSYCH cohort there is no avaible information 

about smoking behavior. As much as 70-90% of cannabis users are reported also to smoke 

cigarettes28, which impose the risk of confounding. However, smoking is also highly 

comorbid with psychiatric disorders29, which is prevalent among the control group (66,79% 

were diagnosed with at least one of the major psychiatric disorders studied in iPSYCH; 

Supplementary Table 1). Since we expect smoking to be prevalent both among cases and the 

control group, it is unlikely that smoking alone would generate the high effect size we 

observe for the risk locus on chromosome 8. However, in the recent GWAS meta-analysis of 

smoking30 including more than 1.2 mill people the CUD risk locus is genome-wide 

significantly associated with smoking, with the CUD risk allele increasing risk for smoking 

initiation, younger age at smoking initiation and continuation of smoking, but it is associated 

with decreasing number of cigarettes per day (Supplementary Table 7). The strongest 

association is observed for smoking initiation with an effect size of OR=0.954 (rs11783093), 

which is significantly lower than the effect size observed for CUD in iPSYCH (OR=0.73 

Demontis et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(rs56372821); P=7.964873x10−09; Z=5.767) and smaller than in deCODE (OR=0.88; 

P=0.061; Z=1.87). This suggests that the locus has a pleiotropic effect on the risk of both 

smoking and CUD in the general population, with greatest impact on CUD risk. In order to 

rule out that smoking behavior is not the main factor driving the association signal on 

chromosome 8 in the present study, we performed several additional analyses.

I) First the results from the CUD GWAS were adjusted by conditioning on the effects of a 

set of independent associated variants with smoking initiation30 using mtCOJO (Methods). 

The results, which are robust to confounding by shared genetic and environmental factors 

with smoking, supports that the CUD association is not strongly confounded by smoking 

(OR_corrected=0.759; P=4.44x10−09, Supplementary Table 8).

II) Furthermore, we evaluated by elementary simulation analysis how likely it would be to 

observe an odds ratio of 0.728 if the signal was primarily driven by tobacco smoking, by 

assuming a true odds ratio of smoking = 0.95430. We assigned plausible values for the 

prevelance of tobacco smoking among minor and major allele carriers of rs5637282 as well 

as CUD among tobacco users and non-users, and empirically approximated the probability 

of observing an odds ratio of 0.728. The largest P-value encountered was 8.69x10−3 (212 

scenarios were tested), supporting that it is very unlikely that the OR we observe for CUD 

could be caused by tobacco smoking alone (Methods and Supplementary Table 9).

III) We performed a GWAS of CUD cases against schizophrenia cases in the iPSYCH cohort 

(2,387 CUD cases and 1,789 individuals with schizophrenia (ICD10 F20) without a CUD 

diagnosis). Smoking rates among schizophrenia cases is in the range of 60-90%31, so 

comparable with the rates among CUD cases. By comparing the two groups with 

comparable smoking rates we would expect the association signal to disappear if smoking is 

the driving factor. The index variant rs56372821 was associated with CUD with 

P=1.68x10−5, OR=0.76. The observed strong association with only a slight increase in OR 

from 0.73 in the original CUD GWAS to 0.76 supports that the signal is primarily driven by 

CUD and not confounded by tobacco smoking.

IV) Finally, no strong confounding of tobacco smoking at the polygenic level in the CUD 

GWAS was observed. This was evaluated using the iPSYCH CUD GWAS as training for 

generating CUD-PRS in deCODE. The score explained more of the variance and was 

associated with a higher effect size for CUD risk (R2=0.24%; OR=1.17) than was found for 

tobacco smoking (R2=0.10%, OR=1.07) (Supplementary Table 10).

In summary all four approaches support that the results reflect association with CUD 

without a strong confounding from smoking, both with respect to the identified CUD risk 

locus and at the polygenic level.

Genetic overlap with other phenotypes

To evaluate the genetic overlap between CUD and a range of other phenotypes at the 

polygenic level, we conducted analyses of PRS for 22 phenotypes related to cognition, 

personality, psychiatric disorders, reproduction and smoking behaviour (Methods; list of 

references to the GWASs of the 22 phenotypes and results can be found in Supplementary 
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Table 11). PRS for eight phenotypes (three measures of cognitive perfomance, age at first 

birth, life time smoking, ADHD, depressive symptoms and schizophrenia) demonstrated 

strong association with CUD (4.33x10−4< P <7.44x10−15; Figure 4 and Supplementary 

Table 11). Strikingly, PRS for measures of educational attainment by the Social Science 

Genetic Association Consortium (SSGAC) (educational years: z-score=−7.78; 

P=7.44x10−15; college completion: z-score=−5.10; P=3.33x10−7), were strongly negatively 

associated with the risk of CUD, a finding which was reinforced by the significant negative 

association of PRS for human intelligence with CUD (z-score=−3.51; P=4.33x10−4). Our 

results suggest an overlap in genetic risk factors with a decrease in the odds ratio for CUD 

with increased number of educational years/cognitive performance (Supplementary Figure 

3A-C.). The observed decreased risk of CUD with increased age at first birth (z-score=

−7.41; P=1.26x10−13) is supporting the relationship with educational attainment as number 

of educational years is known to correlate genetically with later birth of the first child32. In 

order to avoid confounding in the PRS analyses of psychiatric disorders we excluded 

individuals among CUD cases and the control group with a diagnosis of the psychiatric 

disorder being analysed. PRS for ADHD (z-score=5.10; P=3.45x10−7), depressive 

symptoms (z-score=4.34; P=6.58x10−6) and schizophrenia (z-score=5.47; P=4.45x10−8) 

were all associated with an increased risk for CUD (Figure 4).

Discussion

This is the first study to report a genome-wide significant risk locus, for diagnosed CUD 

replicated in an independent cohort. The locus is located intergenic on chromosome 8 (index 

variant rs56372821) and has an odds ratio of 0.73, an effect size in line with findings for 

other complex disorders19,33. PRS supported a high consistency of the CUD phenotypes 

analysed in the discovery and replication cohorts from iPSYCH and deCODE, respectively, 

and supported that the GWAS results reflect association with CUD and not comorbid 

psychiatric disorders in the iPSYCH cohort. This also holds for the risk locus, where carefull 

dissection with respect to the distribution of effect sizes for the index variant (rs56372821) 

over co-morbid subgroups revealed no confounding from psychiatric disorders. This 

included exclusion of individuals with schizophrenia, which still revelaed genome-wide 

significant association of rs56372821 with CUD. This supports the proposed hypothesis that 

the genome-wide significant signal observed for the CUD risk locus in schizophrenia19 

could be driven by a sub-group of schizophrenia cases having CUD.

Analysis of the imputed genetically regulated gene expression suggested CHRNA2 
underexpression in cerebellum (and probably other brain regions), to be involved in CUD. 

Cerebellum may play a role in addiction with respect to reward and inhibitory control34, and 

reward-anticipating responses35. Cerebellum has high density of cannabinoid receptor 1 

(CB1), which mediates the effect of delta9-tetrahydrohydrocannabinol (THC), the 

psychoactive compound in cannabis and has also been found to be affected by cannabis use 

in neuroanatomic studiese.g.36.

CHRNA2 encodes the neuronal acetylcholine receptor (nAChR) alpha-2 subunit, and there 

is no reported functional link between cannabis use and alpha-2 subunit containing nAChRs. 

We hypothesize three potential ways of the involvement of CHRNA2 in CUD: 1) Substances 
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in cannabis might interact directly with the alpha-2 subunit containing nAChRs as studies 

have found cannabidiol, a non-psychoactive component of cannabis, to inhibit the alpha-7 

containing nAChRs37. 2) Cannabis could indirectly affect the alpha-2 subunit containing 

nAChRs. After binding of an agonist (e.g. acetylcholine), the nAChR responds by opening 

of an ion-conducting channel across the plasma membrane. This causes depolarization of the 

membrane and can result in presynaptic neurotransmitter release including dopamine38. 

Since the psychoactive active compound of cannabis THC has been found to affect the 

release of acetylcholine in various brain regions39 it could be speculated that this, through 

alpha-2 subunit containing nAChRs, could affect dopamine release, a known 

neurotransmitter involved in addiction. 3) There could be a strong biological link between 

expression of CHRNA2 and the cannabinoid receptor 1 gene (CNR1). This hypothesis is 

based on evaluation of gene-expression correlations from genome-wide microarray gene 

expression profiles in the Allan Brain Atlas (http://www.brain-map.org/). We found that of 

all genes evaluated (58,692 probes analyzed), CNR1 demonstrated the strongest negative 

correlation with CHRNA2 expression (rmax=−0.498; Supplementary Figure 4). The signal 

was driven by opposite expression patterns in a large number of brain tissues, e.g in 

cerebellum where CNR1 had a relatively high expression in the cerebellar cortex and 

CHRNA2 had a relatively low expression and the opposite was observed for cerebellar 

nuclei (Supplementary Figure 4). This suggests the existence of a currently uncharacterized 

biological interaction between the endocannabinoid system and alpha-2 subunit containing 

nAChRs, by which the identified risk locus which is associated with decreased CHRNA2 
expression could be related to increased CNR1 expression.

The observed association of CHRNA2 unerexpression with CUD, also implies that the 

alpha-2 subunit can be a potential drug target in the treatment of CUD, by the use of an 

agonist selective for alpha-2 subunit containing nAChRs. The impact of some compounds 

with an agonistic effect on the alpha-2 subunit containing nAChRs, like NS928340, 

ABT-41841 and TC-173442, have already been studied primarily due to their potential 

impact on memory and cognitive processese.g. 40,42.

Since CHRNA2 and other nicotine receptor genes that have been identified as risk loci for 

nicotine dependence and smoking behavior27,30, the potential confounding from smoking 

was evaluated carefully, and all our approaches supported that the results reflect CUD 

without strong confounding from smoking. Furthermore our results suggested that the 

identified CUD risk locus, which is also genome-wide significantly associated with 

smoking30 however with significant lower effect size than observed for CUD, has a 

pleiotropic effect on both smoking and CUD in the general population, with greatest impact 

on CUD risk. Additionally a recent GWAS of lung cancer identified a genome-wide 

significant locus just upstream CHRNA243. This locus is LD distinct from the locus 

identified in the present study, but the risk allele was also found to be associated with 

decreased CHRNA2 expression in cerebellum. In analyses of smoking behavior, the lung 

cancer risk allele, was reported nominally associated with smoking and age of initiation43. 

This result is in line with our observation of the CUD risk variant, and thus decreased 

CHRNA2 expression, being associated with younger age at first diagnosis of CUD.
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Finally it should be mentioned that we cannot exclude other relevant genes in the region like 

EPHX2. This gene encodes soluble epoxide hydrolase involved in xenobiotic metabolism by 

degrading potentially toxic epoxides. While EPXH2 is not one of the main metabolizers of 

THC, some involvement is possible, as soluble epoxide hydrolase may act on at least some 

endocannabinoid metabolites and metabolites of Δ8-THC44.

At the polygenic level, increased load of variants associated with measures of decreased 

cognitive performance was associated with CUD. This suggests an underlying genetic 

component causing the observations of decreased educational performance being related to 

cannabis use in numerous epidemiological studiese.g.45. The direction of causation is unclear 

and it is unknown if the relationship is caused by cannabis use and subsequent 

disengagement from education or wether and to what extent the two share overlapping 

genetic factors46.

The overlap in common genetic risk factors for cannabis use disorder with depressive 

symptoms is in line with recent observations47 and the association of CUD with increased 

load of ADHD risk variants suggests that the epidemiological observations of high 

comorbidity of ADHD with CUD48 are influenced by shared genetic risk components. 

Likewise, the overlap in common genetic risk variants between CUD and schizophrenia (in 

line with epidemiological observations22,49 and PRS studies50). However we cannot rule out 

whether the overlap involves variants with pleiotropic effects, or if the overlap in general is 

caused by heterogeneity among schizophrenia cases due to a subgroup comorbid with CUD, 

in line with the CUD risk locus identified here.

In summary, we identified a genome-wide significant CUD locus, which replicated in an 

independent sample. An impact of the locus on earlier age of first diagnosis was further 

suggested. CHRNA2 was implicated in CUD through analyses of the imputed genetically 

regulated gene expression, showing decreased CHRNA2 expression in cerebellum (and other 

brain regions) of individuals with CUD. An intriguing result, which suggests further studies 

to evaluate if CHRNA2 could be a pontential therapeutic target for CUD treatment. The 

identified locus is located in a region previously associated with schizophrenia19, smoking30 

and lung cancer43. Our GWAS result with respect to the identified risk locus did not seem to 

be confounded by either smoking or psychiatric disorders. Larger GWASs and functional 

studies are needed in order to further explain the biological mechanisms underlying the 

phenotypic associations observed for this region.

Methods

Samples

The individuals in this study is a part of the large Danish nation-wide population based 

sample collected by iPSYCH51. The iPSYCH sample was originally designed for studying 

major psychiatric disorders and includes genotypes from 79,492 individuals, including 

54,249 cases diagnosed with at least one of six mental disorders (schizophrenia, bipolar 

disorder, major depressive disorder, ADHD, anorexia and autism spectrum disorder) and 

25,243 individuals not having any of the six psychiatric disorders. The iPSYCH sample was 

selected from a birth cohort comprising individuals born in Denmark between May 1, 1981, 
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and December 31, 2005, who were residents in Denmark on their first birthday and who 

have a known mother (N =1,472,762). The iPSYCH cases were identified based on 

information in the Danish Psychiatric Central Research Register52, and 30,000 randomly 

selected controls were identified from the same nationwide birth cohort in the Danish Civil 

Registration System53. Subseqeuntly blood spot samples (Guthrie cards) were identified in 

the in the Danish Newborn Screening Biobank (DNSB) from the included individuals54. 

Processing of DNA, genotyping and genotype calling as well as imputing of genotypes (see 

below) of the samples were done in 23 waves of approximately 3,500 individuals each.

Individuals with CUD were identified in the iPSYCH sample through information in the 

Danish Psychiatric Central Research Register52 as well as in the Danish National Patient 

Register55 using information up to 2013. All individuals with an ICD10 diagnosis of 

F12.1-12.9, were included (Supplementary Table 1 and 2). Individuals with acute 

intoxication (diagnosis code F12.0) were not included among cases (41 individuals had an 

F12.0 diagnosis; 0.084% of the controls). The F12.0 diagnosis is related to the acute 

pharmacological effects of cannabis use and resolve with time, and does not necessary 

reflect long term problematic cannabis use, which is the focus of this study. All individuals 

in the iPSYCH sample not having a diagnosis of CUD were used as controls and covariates 

for the major psychiatric disorders studied by iPSYCH were used in the analyses in order to 

correct for the presence of mental disorders. Only 54 individuals had a diagnosis of CUD 

and anorexia, and all individuals having a diagnosis of anorexia among cases and the control 

group were excluded. After QC the study included 2,387 cases and 48,985 in the control 

group. Supplementary Table 1 gives an overview of the distribution of individuals with a 

psychiatric disorder among the CUD cases and the control group. None of the comorbid 

psychiatric disorders deviated with respect to the distribution of individuals over CUD 

diagnosis sub-categories (Supplementary Table 3).

Processing of samples, genotyping, QC and imputing was done in 23 waves. In this study 

individuals from the first four waves were excluded as only a few cannabis use disorder 

cases were present in these waves (range 0-15 cases). The waves represent approximate birth 

years and the four waves that were excluded represent to a large extend individuals, which in 

2013 (the time of extraction of register diagnoses) were children. Mean age of cases is 24,77 

years (standard deviation =5.32) and mean age of controls is 22,67 years (standard deviation 

=3.86). The control group is younger and the age span wider than for the cases. The 

presence of younger individuals among the controls could reduce power since some controls 

eventually will become cases, and it also reduces the risk of discovering a false positive 

association.

The study was approved by the Danish Data Protection Agency and the Scientific Ethics 

Committee in Denmark.

Statistical analyses

Genotyping, quality control and GWAS—DNA was extracted from dried blood spot 

samples and whole genome amplified in triplicates as described previously56,57. Genotyping 

was performed at the Broad Institute of Harvard and MIT (Cambridge, MA, USA) using 

Illumina’s Beadarrays (PsychChip; Illumina, CA, San Diego, USA) according to the 
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manufacturer’s protocols. Genotypes were a result of merging call sets from three different 

calling algorithms (GenCall, Birdseed and Zcall). GenCall58 and Birdseed59 were used to 

call genotypes with minor allele frequency (maf) > 0.01 and zCall60 was used to call 

genotypes with maf <0.01. The merging was done after pre-QC on individual call sets.

Stringent quality control was applied and only samples with individual call rate (> 0.98) and 

genotypes with high call rate (>0.98), no strong deviation from Hardy-Weinberg equilibrium 

(P >1x10−6 in controls or P >1x10−10 in cases) and low heterozygosity rates (∣ Fhet ∣ <0.2) 

were included. Genotypes were phased and imputed using the 1000 Genomes Project phase 

3 (1KGP3)61,62 imputation reference panel and SHAPEIT63 and IMPUTE264. Relatedness 

and population stratification were evaluated using a set of high quality markers (genotyped 

autosomal markers with minor allele frequency (maf) >0.05, HWE P >1x10−4 and SNP call 

rate >0.98), which were pruned for linkage disequilibrium (LD) (r2 <0.075) resulting in a set 

of 37,425 pruned markers (markers located in long-range LD regions defined by Price et al.
65 were excluded). Genetic relatedness was estimated using PLINK v1.966,67 to identify first 

and second-degree relatives (π >0.2) and one individual was excluded from each related pair 

(cases preferred kept over controls). Genetic outliers were identified for exclusion based on 

principal component analysis (PCA) using EIGENSOFT68,69. A genetic homogenous 

sample was defined based on a subsample of individuals being Danes for three generations 

(identified based on register information about birth country of the individuals, their parents 

and grandparents). The subsample of Danes was used to define the center based on the mean 

values of principal component (PC) 1 and PC2. Subsequently PC1 and PC2 were used to 

define a genetic homogenous population by excluding individuals outside an ellipsoid with 

axes greater than six standard deviations from the mean. After outlier exclusion PCA was 

redone and PCs from this analysis were included in the association analysis (see below).

Association analysis was done using logistic regression and the imputed marker dosages. 

The following covariates were used: principal component 1-4 and principal components 

from the PCA associated with case-control status, the 19 data-processing waves and 

diagnosis of major psychiatric disorders studied by iPSYCH (Supplementary Table 1). 

Results for 9,729,295 markers were generated, subsequently markers with imputation info 

score <0.7 (n=608.367), markers with maf <0.01 (n=10.220) and multi-allelic markers 

(n=143,083) were removed. In total after filtering 8,969,939 markers remained for further 

analysis. All analyses of the iPSYCH sample were performed at the secured national 

GenomeDK high performance-computing cluster in Denmark (https://genome.au.dk).

We evaluated the impact of age on the main identified risk locus on chromosome 8. We 

corrected for age using age coded as a binary variable with the mean age of cases (24,77 

years (standard deviation =5.32)) as a guideline for the cut-off, grouping all individuals with 

age < 25 into one group (1,164 cases; 29,818 controls) and age >24 into another group 

(1,223 cases; 19,167controls). Due to the low age-span among cases it did not make sense 

biologically to divide the cases into smaller age-bins. Correcting for age did not have an 

impact on the strong association of the risk locus on chromosome 8 (rs5637282; 

P=1.082x10−11).
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Replication—The genome-wide significant locus on chromosome 8 was replicated in an 

independent European cohort consisting of 5,501 cases with diagnosed CUD and 301,041 

population controls collected by deCODE genetics. The characteristics of the SAA treatment 

sample have been described previously20 and currently diagnoses at Vogur Hospital are 

made using DSM-V, but most of the diagnoses in this study are based on DSM-IV or DSM-

IIIR. The genotypes were obtained based on SNP array data and whole genome sequences 

using long range phasing and two types of imputations70. For the replication study, markers 

were looked up in the results of a GWAS performed by logistic regression treating disease 

status as the response and genotype counts as covariates. Other available individual 

characteristics that correlate with disease status were also included in the model as nuisance 

variables, using previously described methods71. The resulting P-values were corrected for 

inflation by the method of genomic controls (correction factor=1.42). Nine genetic variants 

all representing the same association signal on chromosome 8 with P-values less than 

1x10−6 were looked up in the deCODE results. The variants in the locus were selected based 

on LD (0.2 < r2 < 0.7). We included additional markers besides the index SNP in order to be 

able to evaluate the consistency of direction of association in the replication cohort over a set 

of variants located in the associated risk locus. The data were meta-analyzed using summary 

statistics and inverse variance weighted fixed effects model, implemented in the software 

METAL72. All tested variants demonstrated consistent direction of association in the 

replication cohort.

CUD PRS analysis in deCODE—A PRS was computed from the iPSYCH CUD GWAS 

summary data using the LD-pred method73. Only markers with a single rs-name from the 

GWAS were used. Associations between the PRS and CUD (2,257 cases and 145,069 

controls), schizophrenia (729 cases and 153,007 controls), bipolar disorder (1,751 cases and 

151,923 controls) and smoking (46,941 individuals reporting being a regular smoker in their 

life and 20,602 controls that has never been regular smokers) was computed using linear 

regression. Covariates were sex, age and the first 10 principal components. Association P-

values were corrected for inflation using LD-score regression.

Heritability—SNP heritability (h2
SNP) was estimated by LD score regression74 using 

summary statistics from the GWAS of CUD and pre-computed LD scores (available on 

https://github.com/bulik/ldsc). The SNP heritability was calculated on the liability scale 

using a prevalence of CUD of 1% in the population. The h2
SNP estimated by LD score 

regression was inaccurate as the ratio between the estimated h2
SNP and the standard error 

was less than four (h2
SNP/SE=2,86). Therefore, the h2

SNP was also estimated using GCTA75. 

A genomic relationship matrix (GRM) between all pairwise combinations of individuals was 

estimated for each autosome separately and subsequently merged using the GCTA software. 

The strict best-guess-genotypes (i.e. 4,299,887 SNPs with info score >0.8, missing rate 

<0.01 and MAF >0.01) from imputation with phase 3 of 1000 genomes were used for GRM 

estimation. Univariate GREML analyses in GCTA was used to estimate h2
SNP on the 

liability scale, using the combined GRM and the same covariates as in the GWAS.

Leave-one phenotype out GWAS—In the GWAS of CUD we corrected, by covariates, 

for five major psychiatric disorders analysed in iPSYCH (Supplementary Table 1). However, 
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in order to further evaluate the potential impact on the association signal of the index variant 

from the psychiatric phenotypes, sensitivity analyses were performed where one phenotype 

at a time was excluded from the association analysis. The phenotypes evaluated were 

schizophrenia, bipolar disorder, major depressive disorder, attention-deficit hyper activity 

disorder, autism and individuals not having any of the five diagnoses. GWASs were 

performed as previously described excluding one of the six phenotypes one at a time 

(sample size for number of cases and controls is shown in Supplementary Table 1).

Cross disorder GWAS for evaluation of the general association of rs56372821 
with psychiatric disorders—In order to investigate the possibility of the risk locus at 

chromosome 8, being a general risk locus for psychiatric disorders we conducted a cross-

disorder GWAS based on the same individuals as included in the CUD GWAS. All 

individuals with a diagnosis of schizophrenia (ICD10 code F20), bipolar disorder (ICD10 

codes F30-F31), attention-deficit hyperactivity disorder (ICD10 code F90.0), autism 

spectrum disorder (ICD10 codes F84.0, F84.1, F84.5, F84.8, F84.9) and major depressive 

disorder (ICD10 codes F32-F33) were used as cases, in total 35,006 individuals and 16,366 

individuals without any of the listed psychiatric disorders were used as controls. The GWAS 

was conducted using wave as covariates and PCs from PCA (generated as described for the 

CUD GWAS).

We re-did the cross-disorder GWAS excluding all individuals with a CUD diagnosis 

(removing 2,290 individuals from the case group and 97 individuals from the control group), 

reducing the sample size to 32,716 cases and 16,269 controls. The GWAS was conducted 

using the PCs from PCA and wave as covariates.

Permutation based evaluation of the odds ratio of rs56372821 for 
schizophrenia with and without CUD—We applied a permutation based approach in 

order to evaluate how the inclusion and exclusion of individuals with CUD affected the 

association of our index variant rs56372821 with schizophrenia. The analyses were based on 

the iPSYCH sample consisting of 2,281 schizophrenia cases and 23,134 population based 

controls (genotyping, QC and imputation were done using the same procedures as explained 

above). Odds ratios were obtained by the glm() function in R using dosage data from the 

imputed SNP rs56372821, and including principle components PC1-PC4 and PCs 

signicantly associated with SZ and/or CUD and genotyping wave as covariates.

In the association analysis of schizophrenia the odds ratio of 56372821(CI95%) was OR=0.9 

(0.81-0.99). When excluding all individuals with CUD, among cases and controls (1,727 

cases and 23,033 controls) the odds ratio of rs56372821(CI95%) was OR=0.97 (0.87-1.09). 

To evaluate whether this change in the odds ratio is due to removal of individuals with CUD 

(554 cases and 101 control with CUD removed) or due to reduction in sample size, a null 

distribution of OR's was generated by randomly removing 554 individuals among 

schizophrenia cases and 101 individuals among controls (removing a total of 655 

individuals). This permutation of sample exlcusion was done 9,999 times to generate the null 

distribution of the odds ratio for rs56372821. To obtain a two-sided P-value, the observed 

ln(ORrs56372821)=−0.03 was mirrored around the mean ln(ORrs56372821) of the null 

distribution, as shown in Supplementary Figure 1. Removal of individuals with CUD (554 
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SZ cases and 101 controls) changed the OR of rs56372821 significantly, compared to 

random removal of the same number of schizophrina cases and controls (Ptwo-sided=0.0027), 

producing a significant increase of ORrs56372821 compared to random removal 

(Pone-sided=0.0015).

mtCOJO conditioning for the effect of smoking—The analysis was performed using 

summary statistics from the CUD GWAS and summary statistics from GWAS of smoking 

intiation30 (excluding 23andMe data, 547,219 individuals, 11,733,344 variants).The 

conditional analysis was run using mtCOJO46 (implemented in GCTA75) using standard 

procedures. Variants selected for conditioning were genome-wide significant in the smoking 

GWAS (P < 5x10−8) and not in linkage disequilibrium (r2< 0.05) with a variant with a lower 

P-value (61 variants). One variant was removed due to evidence of pleiotropy (HEIDI-

outlier threshold of P= 0.01).

Simulations analysis to evaluate confounding by tobacco smoking—A 

simulation analysis was conducted to evaluate how likely it is to observe an odds ratio of 

0.728 if the association signal primarily is driven by smoking by assuming a true odds ratio 

of smoking = 0.95430.

We divided individuals into six strata by assigning them a unique phenotype using the 

hierarchy: 1) schizophrenia (SZ), 2) bipolar disorder (BP), 3) autism spectrum disorder 

(ASD), 4) attention deficit hyperactivity disorder (ADHD), 5) major depressive disorder 

(MDD) and 6) controls (ICON). We assumed a dominant model, where homozygous and 

heterozygous carriers of the minor allele of rs56372821 were treated equally. See 

Supplementary Table 9 for distribution of individuals having the major allele or at least one 

minor allele among the strata.

The null hypothesis was that rs56372821 only affects CUD via its effect on tobacco 

smoking, which has an odds ratio 0.954 (TOR)30. We assumed a prevalence of CUD among 

tobacco users of 0.045 (CT)76 and a CUD prevalence among tobacco non-users of 0.01 

(Ct)5, independently of the six groups. Given the prevalence of tobacco smoking (PRE) 

among one of the six groups, we could calculate the probability of tobacco smoking for 

minor allele carriers (Tm) and for major allele carriers (TM) among the groups, using the 

formulae of total probability PRE = MAF Tm + (1 - MAF)TM and odds ratio TOR = (Tm(1 

- TM))/(TM(1 - Tm)). Then we simply simulated first the tobacco use status of each 

individual using the probabilities Tm and TM, and further the CUD status using the 

probabilities CT and Ct, and computed the simulated common Cochran-Mantel-Haenszel 

odds ratio for CUD. We did not require the total number of simulated CUD cases per 

stratum to match the observed numbers, because we wanted to keep this approach as 

elementary as possible. We repeated the simulation 100,000 times and compared the results 

with the observed odds ratio 0.728 for CUD, obtaining an estimator of the P-value for the 

null hypothesis with variance less than 1/(4x100000) = 0.0000025. This was repeated for 

various estimates of PRE among the six groups: a total of 212 combinations from the six sets 

PRESZ ∈ {0.6, 0.7, 0.8, 0.9}, PREBP ∈ {0.3, 0.4, 0.5, 0.6}, PREASD ∈ {0.05, 0.1, 0.15, 0.2}, 

PREADHD ∈ {0.1, 0.2, 0.3, 0.4}, PREMDD ∈ {0.2, 0.3, 0.4, 0.5} and PREICON ∈ {0.1, 0.15, 
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0.2, 0.25}. The largest P-value encountered was 8.69x10−3, making the the null hypothesis 

very unlikely.

The simulation was also repeated including information about stratification of the six 

phenotypes (described above) over genotyping waves. The genotyping wave was assumed to 

have no effect on the various probability parameters of the simulation and this time 

simulations were repeated only 10,000 times. The largest P-value encountered was 4.0x10−4 

and the variance of this estimator is less than 1/(4x10000) = 0.000025, thus rejecting the null 

hypothesis.

GWAS of CUD cases against schizophrenia cases—This GWAS was based on 

individuals in the iPSYCH cohort and compared 2,387 CUD cases (ICD10 F12.1-F12.9) 

against 1,789 individuals diagnosed with schizophrenia (ICD10 F20) without a CUD 

diagnosis. QC procedures with respect to individual and genotyping QC were the same as 

described of the CUD GWAS, and association was calculated using logistic regression, 

corrected for genotyping wave and PCs from PCA.

Association with age at first diagnosis—In order to test for a potential impact of the 

risk locus on age at first diagnosis, a case only study was performed testing for association 

of the index variant (rs56372821) and variants in LD with this (r2 > 0.7; 19 variants) with 

age at first diagnosis. Date of diagnosis was identified from register information in the 

Danish Psychiatric Central Research Register52. Analysis for association with age at first 

diagnosis (natural logarithm (age at first diagnosis)) was done using linear regression and the 

same covariates as used in the GWAS (PCs, wave and the psychiatric disorders). A dominant 

model with respect to the risk allele, was applied.

Analysis of the imputed genetically regulated gene expression—The genetically 

regulated gene expression was imputed in 11 brain tissues using PrediXcan77 (models 

downloaded from: https://github.com/hakyimlab/PrediXcan; version 6 data). PrediXcan was 

used to impute the transcriptome for cases and the control group using SNP weights derived 

from models trained on reference transcriptome data sets including 10 brain tissues from 

GTEx78 (https://www.gtexportal.org/home/) and transcriptome data from dorsolateral 

prefrontal cortex generated by the CommonMind Consortium79,80. The models were trained 

on 1000 genome SNPs and contained only gene expression prediction models with a false 

discovery rate less than 5%. Gene expression levels in the iPSYCH data were imputed wave-

wise and subseqeuntly the imputed data were merged. We tested for association of 2,459 – 

10,930 protein coding genes (depending on the tissue; see Supplementary Table 6) with 

CUD using logistic regression. The analysis was based on the same individuals which were 

included in the GWAS (thus, genetic outliers and related individuals were removed) and 

corrected using genotyping wave and psychiatric disorders as covariates as well as the same 

principal components from PCA which were used in the GWAS . Since gene expression 

among the different brain tissues is highly correlated, we corrected the P-value for each gene 

by the total number genes tested in all tissues with a valid model available for the gene, with 

respect to CHRNA2 we corrected for 13,166 genes tested in three tissues, thus P-values < 

3.8x10−6 (0.05/13,166) were considered statistical significant for this gene. This is in line 
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with recent approaches used to correct for multiple testing in transcriptome wide association 

studies using imputed gene expression81.

Polygenic risk score analyses—PRS analyses were done using GWAS summary 

statistics from 22 GWASs (Supplementary Table 11). The summary files were downloaded 

from public databases and processed using the munge script which is a part of the LDscore 

regression software74. All variants with INFO < 0.9, MAF < 0.01, missing values, out of 

bounds P-values, ambiguous strand alleles and duplicated rs-ids were removed using the 

munge script. In addition, mult-allelic variants and insertion and deletion (indels) were 

removed. The processed summary files were then LD-clumped using Plink, with the 

following parameter settings: --clump-p1 1 --clump-p2 1 --clump-r2 0.1 --clump-kb 500. 

The clumped file were used as the training dataset. Genetic risk scores were estimated at 

different P-value thresholds for SNP inclusion: 5x10−8, 1x10−6, 1x10−4, 1x10−3, 0.01, 0.05, 

0.1, 0.2, 0.5 and 1.0 for all individuals in the target sample (CUD cases and the control 

group) from the genotype dosages using Plink’s ‘--score’ method, with default arguments. 

However the PRS scores for ADHD, were generated using the approach described Demontis 

et al.33. For each P-value threshold the variance in the phenotype explained by PRS was 

estimated using Nagelkerke’s R (R package ‘BaylorEdPsych’), and association of PRS with 

CUD was estimated using logistic regression including the same covariates used in the 

GWAS analysis (PCs from PCA and the psychiatric disorders listed in Supplementary Table 

1). In PRS analyses of psychiatric disorders (ADHD, schizophrenia and depression related 

phenotypes) individuals with a diagnosis of the disorder being analysed were excluded. The 

number of individuals excluded with ADHD, schizophrenia and major depressive disorder 

are listed in Supplementary Table 1.

Reporting Summary.

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide association results from the CUD GWAS results
A) Manhattan plot of the results from the GWAS of CUD (2,387 individuals with CUD and 

48,985 controls). Results are from logistic regression and P-values are two-sided. The red 

horizontal line indicates the threshold for genome-wide significance (P=5x10−8). The index 

variant is highlighted as a green diamond and SNPs in high LD with the index SNP are 

marked in green. B) Quantile-quantile plot of the expected and observed P-values from 

GWAS of CUD (2,387 individuals with CUD and 48,985 controls). The blue line indicates 

the distribution under the null hypothesis and the shaded area indicates the 95% confidence 

band.
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Figure 2. Association results for the geneomic region with the CUD risk locus
Regional association plot of the local association results for the risk locus at chromosome 8 

based analysis of 2,387 individuals with CUD and 48,985 controls. Results are from logistic 

regression and P-values are two-sided. The index variant (rs56372821) and additional three 

correlated genome-wide significant variants (LD with index variant: 0.2 < r2 < 0.7) are 

marked with letters (a-d), the triangle represents the two-sided P-value from meta-analysis 

(inverse variance weighted fixed effects model) with the replication cohort from deCODE 

(5,501 individuals with CUD and 301,041 controls). The location and orientation of the 

genes in the region and the local estimates of recombination rate is shown. The association 

P-value (p), odds ratio (or), minor allele frequency (maf) and imputation info-score (info) is 

presented in upper right corner. The horizontal green line represents the threshold for 

genome-wide significant (P=5x10−8).
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Figure 3. Association of CHRNA2 expression with CUD
Association of the imputed genetically regulated expression of CHRNA2 with CUD in three 

brain tissues with a valid model (cerebellar hemisphere, dorsolateret prefrontal contex and 

cerebellum). The two-side P-value from logistic regression for the association of gene 

expression with CUD (−log10(PrediXcan:P-value) and two-side P-value from logistic 

regression from the CUD GWAS (−log10(GWAS:P-value)) is given on the y-axis, with a red 

dotted line indicating statistical significance. Both analyses include 2,387 individuals with 

CUD and 48,985 controls. Chromosome position is given on the x-axis and the light grey 

lines indicate which SNPs that are included in the models used to predict gene expression. 

The thin red lines indicate genetic predictors that are genome-wide significantly associated 

with CUD.
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Figure 4. Association of PRS with CUD
PRSs was generated for phenotypes related to cognition, personality, psychiatric disorders, 

reproduction and smoking behavior based on summary statistics from 22 published GWASs. 

The variance explained by the scores (Nagelkerke-R2) is given on the x-axis and the P-value 

from logistic regression for association of the PRS with CUD on the y-axis (based on 

analyses of 2,387 individuals with CUD and 48,985 controls). The vertical blue line indicate 

statistical significance (P=0.0023; correcting for 22 test). In PRS analyses of psychiatric 

disorders, individuals having a diagnosis of the respective psychiatric disorder being 

analysed (ADHD, schizophrenia, depressive symptoms and major depressive disorder) were 

excluded in the CUD target sample.
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