Table 9.
System | Accuracy | max n-gram | NER | NLP | Negation | Word2Vec | Doc2Vec | GloVe | TF·IDF | LDA | LSI | Classifier |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LIF | 0.726 | 1 | ✓ | ✓ | ✓ | ✓ | (SVM SG Cbow)→SVM | |||||
ELiRF | 0.725 | 1 | ✓ | ✓ | SVM (+ SVM) | |||||||
GTI-GRAD | 0.695 | 2 | ✓ | LR | ||||||||
GSI (aspect) | 0.691 | 1 | ✓ | ✓ | ✓ | SVM | ||||||
DE:Soft (us) | 0.677 | 1 | DE: (NB, LR, SVM) | |||||||||
LYS | 0.664 | 1 | ✓ | Logistic regression L2-LG | ||||||||
DLSI | 0.655 | 2 | ✓ | SVM | ||||||||
SINAI-DW2Vec | 0.619 | 1 | ✓ | ✓ | SVM | |||||||
INGEOTEC | 0.613 | 5 | ✓ | ✓ | ✓ | SVM |