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Abstract: In this paper, first we show that the variance used in the Markowitz’s mean-variance model
for the portfolio selection with its numerous modifications often does not properly present the risk of
portfolio. Therefore, we propose another treating of portfolio risk as the measure of possibility to
earn unacceptable low profits of portfolio and a simple mathematical formalization of this measure.
In a similar way, we treat the criterion of portfolio’s return maximization as the measure of possibility
to get a maximal profit. As the result, we formulate the portfolio selection problem as a bicriteria
optimization task. Then, we study the properties of the developed approach using critical examples
of portfolios with interval and fuzzy valued returns. The α-cuts representation of fuzzy returns
was used. To validate the proposed method, we compare the results we got using it with those
obtained with the use of fuzzy versions of seven widely reputed methods for portfolio selection.
As in our approach we deal with the bicriteria task, the three most popular methods for local criteria
aggregation are compared using the known example of fuzzy portfolio consist of five assets. It is
shown that the results we got using our approach to the interval and fuzzy portfolio selection reflect
better the essence of this task than those obtained by widely reputed traditional methods for portfolio
selection in the fuzzy setting.

Keywords: portfolio selection; risk aversion criterion; profit criterion; interval analysis; fuzzy sets;
multiple criteria optimization

1. Introduction

The mean-variance (M–V) model developed by Markowitz (1952) [1] made a great contribution to
the portfolio selection theory, considering a return as the mean and a risk as the variance. For example,
in [2], the standard portfolio selection of mean-variance model in its bi-objective form and probabilistic
setting is presented as a bi-objective quadratic programming problem under cardinality and quantity
constraints. As this problem is NP-hard, a new effective iterative method for it solving is developed.
The variance was treated as a portfolio risk.

The initial (M–V) model was improved by different researchers introducing different measures
of risk, for example, mean-semivariance models [3,4], mean absolute deviation model [5], mean
semi-absolute deviation models [6,7], mean absolute deviation skewness model [8], etc.

The above models are based on the probabilistic treatment of uncertainty: the returns of assets are
considered as random variables with corresponding probability distributions. However, in practical
applications, often it is hard or even impossible to obtain such probability distributions with acceptable
accuracy. This is the consequence of many objective and human factors affected the complex
modern financial markets. However, an appearance in 1965 of the theory of fuzzy sets developed
by L.A. Zadeh [9] made it possible to take into account these factors and operate with other kinds of
information in the formulation and solution of portfolio selection problems.
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Therefore, a growing interest in the formulation and solution of portfolio selection problems in
the fuzzy setting has being observed during the last two decades. For instance, in [10], a possibilistic
approach to the fuzzy portfolio selection with highest utility score is used. In [11], the fuzzy portfolio
selection model is used in investment. The problems of fuzzy portfolio selection with the use of
possibility theory are analyzed in [12]. In [13,14], the credibility theory is used for the solution of
fuzzy portfolio selection problems. The portfolio analysis is used in [15] for the formulation and
implementation of strategic decision-making model in the fuzzy setting.

A multiobjective fuzzy mean-semivariance-entropy model for portfolio selection was developed
in [16]. It simultaneously optimizes the return, risk, and portfolio diversification, taking into
account transaction costs, liquidity, buy-in thresholds, and cardinality constraints. The possibilistic
semivariance is used to measure risk. A fuzzy multiobjective approach for portfolio selection
is proposed in [17], which makes it possible to consider not only return and downside risk
criteria, but also to include environmental, social, and governance (ESG) scores in the investment
decision-making process. It is noted in this paper that the mean-absolute semi-deviation of returns
is a more appropriate risk measure than variance of returns, as it focuses exclusively on adverse
deviations. The propositions made in [18] to extend the mean-semivariance portfolio selection
model to a multiobjective credibilistic model that besides the risk and return, also consider the
price-to-earnings ratio to measure portfolio performance. Uncertain future returns and PER ratio
of each asset are approximated using L-R power fuzzy numbers. It is important that the used
semivariance is a better risk measure than the classical Markowitz’s variance as it only deals with
adverse deviations. On the other hand, semivariance, being the modified form of variance, cannot
be free of all discussed in the literature drawbacks of variance treated as a risk. To capture the
coherence of the investor’s expectation in [19], new trapezoidal fuzzy numbers with an adaptive index
were proposed. Using these fuzzy numbers, the membership degrees for favorable and unfavorable
scenarios are transformed consistently to avoid the logical confusion. The possibilistic expected mean,
variance, and skewness were modified in the framework of proposed approach. The introduced new
trapezoidal fuzzy numbers were used in the fuzzy mean-variance model and mean-variance-skewness
model for the optimal asset allocation. In [20], a multiobjective fuzzy portfolio selection approach,
where possibility distributions are given by fuzzy numbers from the information supplied by the
decision-making environment (investor, analyst, financial market environment, etc.) is proposed.
Moreover, the investor’s preferences were explicitly incorporated through the concept of satisfaction
functions. In general, the aim of the paper is to find the best compromise between several objectives
(return, risk, and liquidity of portfolio) in fuzzy environment, based on improvements and the
fuzzy extension of the Markowitz’s mean-variance model. In [21,22], the fuzzy portfolio selection
problems were studied in the case of multiple-decision objectives. A comprehensive model for the
fuzzy multiobjective portfolio selection is proposed in [23]. It is based on the synthesis of fuzzy
mean-semivariance model and DEA cross-efficiency model. In [24], two multiobjective fuzzy portfolio
selection models with variance and conditional value at risk (CVaR) as risk measures, respectively,
along with the objectives of liquidity and entropy were proposed. The inherent uncertainty of the
investment market was incorporated through trapezoidal fuzzy returns, which were handled using
the credibility theory. In addition to the usual realistic constraints of lower and upper bounds on
investment in an asset, the capital budget, and no short selling, both the models were also constrained
by a minimum return threshold constraint. These multiple objectives of both the portfolio models
were then aggregated using the weighted sum approach. Random sample portfolios of different
sizes were generated in accordance with the feasibility constraints of the model. The efficiencies of
these portfolios were then evaluated with multiple inputs (risk and entropy) and multiple outputs
(return and liquidity) using DEA. Furthermore, the inefficient portfolios were rebalanced using an
existing DEA improvement technique to offer investors more choices of efficient portfolios. It should
be emphasized that modified variance was used as inherent part of portfolio risk in the conditional
value at risk model as well. In [25], J.Y. Campbell indicates that the standard mean-variance model
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does not perform well in explaining household investment behavior in practice. It is worthwhile to
note that the results of the standard mean-variance model are based on the assumption that investors
face only portfolio risk when making portfolio selection decisions. Yet, in reality investors often face
other sources of risk linking variations in labor income, proprietary income, income from real estate,
and unexpected expenses related to health issues. These sources of risk are referred to as background
risk. Therefore, in [26] the studies were carried out to show how background risk affects individual
investment decisions under the framework of uncertainty theory. An uncertain mean-variance model
gives its optimal solution when the returns of stocks and background asset obey normal uncertainty
distributions. On this basis, the authors studied the characteristic of the mean-variance efficient frontier
of the stock portfolio in the presence of background risk. In this case, it seems somewhat strange that
the modified mean-variance model based on the treating of variance as a risk measure is used in the
situation when according to Campbell (background risk exists) such models cannot work well. Relative
recently, some papers devoted to the multiple-period (dynamic) fuzzy portfolio selection problems
were published. The fuzzy multiple-period portfolio selection model with different rates of borrowing
and lending was presented in [27]. In [28], the authors proposed several multiple-period fuzzy portfolio
selection models considering multiple decision criteria. In [29], a possibilistic mean-variance model for
multiple-period fuzzy portfolio selection is presented and analyzed. A multiple-period fuzzy portfolio
selection model formulated with the demand on return and the constrained risk is proposed in [30].
In [31], a multiple-period fuzzy portfolio optimization problem with minimum transaction costs is
analyzed and discussed. A fuzzy multiple-criteria multiple-period portfolio selection problem based on
the proposed credibilistic mean-entropy model is presented in [32]. In [33], a numerical integral-based
simulation algorithm (NISA) is proposed to approximate the expected value, variance, and skewness
of fuzzy numbers. A multiple-period multiple-criteria portfolio selection problem is formulated and
solved using a genetic algorithm. A credibility-based mean-semi-entropy multiple-period portfolio
model, considering background risk and several constraints, namely, cardinality, liquidity, and buy-in
thresholds is formulated and solved in [34]. In [35], the multi-period portfolio selection problem
was formulated as a bi-objective optimization model taking into account the transaction cost and
bankruptcy of investor. The model was presented in the uncertainty setting (in the sense of Uncertainty
theory). The most important criteria were the modified portfolio return and the risk treated as modified
variance. In [36], with the use of possibility theory, a new multiple-objective portfolio selection model
with discounted transaction costs is developed. To take into account the relative importance and the
mutual conditionality of local criteria, a weighted max–min fuzzy goal programming approach is
introduced and applied.

In many real-world situations, we know with acceptable reliability only the ranges of possible
values of asset’s future returns. Therefore, we should deal with interval type of uncertainty. Although
this type of uncertainty is the simplest one and commonly occurring in practice, we have found
in the literature relatively few papers devoted to the portfolio selection problems in the interval
setting. A portfolio selection model based on three interval-valued local criteria—return, risk,
and liquidity—is proposed in [37]. In [38], an interval programming portfolio selection model
based on the interval-valued expected return and the interval-valued covariance is formulated and
implemented. The problems of multiple-criteria interval portfolio selection were studied in [39,40].
In [41], the prices of stocks are treated as interval-valued variables. In [42], the classical mean-variance
portfolio selection model was transformed to the more general mean-variance-skewness one with
interval-valued transaction costs. The possible effects of the decision interval on the stock’s share
in optimal portfolios was investigated in [43]. In [44], a class of possibilistic portfolio selection
models with interval coefficients was analyzed with its application. An interval-valued version
of the mean-absolute deviation portfolio selection optimization problem was considered in [45].
In [46], a dynamic (multiple-period) interval portfolio selection model with interval-valued returns,
risks, and transaction costs was proposed. In [47], considering the security returns with interval
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expected returns as uncertain variables, a mean-semi absolute deviation model within the framework
of uncertainty theory was developed.

Based on the analysis of cited above papers, we can say that the use of fuzzy and (in relevant
cases) interval representation of uncertain information available allows us to avoid some limitations
of classical probabilistic approach to the portfolio selection concerned mainly with non-symmetrical
distributions of asset returns that we usually meet in practical investment. The modern portfolio
selection theory is based on different modifications of classical mean-variance model. Generally,
the portfolio selection is a multiple-criteria task and can be formulated using different sets of
local criteria. Nevertheless, two main local criteria—maximization of portfolio return and risk
minimization—are always presented in different forms dependent on the type of uncertainty
dominating in the considered problem. While the mean of corresponding probabilistic or fuzzy
distribution of the portfolio return is usually treated as the return maximization criterion without
doubts, the use of variance as the measure of the portfolio risk is not so obvious. Therefore, as an
alternative to the variance in the portfolio risk assessment, an entropy (probabilistic or fuzzy) of
portfolio return distribution is increasingly applied. Nevertheless, it can be seen that the approaches
to estimation of portfolio risk based on the variance and the entropy are very close from the
methodological point of view.

However, the mean-variance (MV) model has some drawbacks and limitations [24]. One such
a drawback is that it considers high returns as equally undesirable as low returns, i.e., it disregards
the asymmetry of probability distributions [48]. Another limitation is the incompatibility of the MV
model with the axiomatic models of preferences under risk [49]. Moreover, it imparts little information
about the loss investors may have to bear, while the loss is investors’ prime concern. Despite all
these limitations, variance is still widely used as a benchmark for measuring a risk in a portfolio.
Consequently, several researchers and practitioners have explored various risk measures that can be
used to segregate desirable upside movements from undesirable downside movements. Among those
risk measures, value at risk (VaR) is one such widely accepted popular risk measure. The VaR of an
investment is the possibility of the utmost loss with a known confidence level. However, VaR fails to
provide any information regarding the losses exceeding it, and it also does not obey the coherence
axioms of homogeneity, sub-additivity, monotonicity, and translational invariance. To resolve these
inherent inadequacies in VaR, Rockafeller and Uryasev [50] proposed the conditional value at risk
(CVaR), which is given as “the weighted average of VaR and the losses exceeding it”. Consequently,
CVaR has been widely applied to manage risk in portfolio optimization problems [51–53]. However,
in financial modeling, a debate is almost always going on about VaR versus CVaR for efficient risk
management. Both VaR and CVaR are to some extent based on statistical methods which need
relatively strong demands concerned with input data.

There is a field of portfolio management where the achievements of conventional portfolio
selection theory practically are not used or used in some small extent.

Therefore, nowadays, the growing interest is observed in the use of stock trading systems for
portfolio management [54–56]. This approach seems to be very fruitful as it is very close to the
investment practice, but the concepts of risk management in such systems are relatively far from those
in conventional portfolio selection. Nevertheless, this is out of scope of the current paper. In our
opinion, the core of problem lies, implicitly, in the lack of commonly accepted meaningful verbal
formulation of what is the portfolio risk.

Therefore, in the current paper we propose a simple view on the portfolio selection problem,
which makes it possible to introduce an another method of treating portfolio risk as the measure
of possibility to earn unacceptable low returns of portfolio and formulate a simple mathematical
formalization of this measure. In a similar way, we treat the criterion of portfolio’s return maximization
as the measure of possibility to get a maximal return. As the result, we formulate the portfolio selection
problem as a multiple-criteria optimization task. Then, we study the properties of the developed
approach using critical examples of portfolios with interval and fuzzy valued returns. The α-cut
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representation of fuzzy returns is used. To validate the proposed method, we compare the results we
obtained using it with those obtained with the use of fuzzy versions of seven widely reputed methods
for portfolio selection. As in our approach we deal with the multiple-criteria task, the three most
popular methods for the local criteria aggregation are compared using the known example of portfolio
consist of five assets. It is shown that the results we got using our approach to fuzzy portfolio selection
reflects better the essence of this task than those obtained by widely reputed traditional methods of
portfolio selection in the fuzzy setting.

This paper is organized as follows. In Section 2, using the examples of interval-valued portfolio
return, we show that the treating of variance as the portfolio risk measure may provide unacceptable
counterintuition results. Then, based on the introduced simple view on the portfolio selection problem,
we present the new concepts of risk minimization and return maximization criteria. Using these criteria
and the three most popular methods of local criteria aggregation, the bicriteria interval-valued portfolio
selection task is developed and implemented. Based on the number of illustrative examples, we have
shown that a proposed new approach to the interval-valued portfolio selection provides results that
coincide with the investor’s intuition and common sense. Section 3 presents a fuzzy extension of
proposed in Section 2 approach to the interval-valued portfolio selection. This extension is based
on the α-cut representation of fuzzy returns. Using some numerical examples we have shown that
properties of proposed approach are logically validate and reflect well an essence of fuzzy portfolio
selection. To validate our approach, we compare the results we obtained using it with those obtained
with the use of fuzzy extensions of seven widely reputed methods for portfolio selection. As in our
approach we deal with bicriteria task, the three most popular methods for local criteria aggregation
are compared using the known example of portfolio consist of five assets. It is shown that the results
we got using our approach to fuzzy portfolio selection reflect better the essence of this task than those
obtained by widely reputed traditional methods of portfolio selection in the fuzzy setting. Section 4
concludes with some remarks.

2. An Interval-Valued Portfolio Selection Based on a Simple View on the Local Criteria of
Portfolio Quality

Here, we start from the consideration of interval-valued portfolio selection problem. This is not an
abstract simplification of reality as in practice often only the ranges (intervals) of future values of the
asset returns are known to the investor with an acceptable reliability. On the other hand, in Section 3,
a direct fuzzy extension of interval-valued portfolio selection task with the use of α-cut representation
of fuzzy returns will be proposed and analyzed. Moreover, it is worthy to not here that a crisp interval
is the asymptotic case of trapezoidal fuzzy value when its support is equal to its core.

Therefore, let ari and asi, and i = 1 to N, be asset returns and asset shares, respectively, of the
portfolio consist of N assets such that ari = [ari, ari] are intervals and asi are real values such that
∑N

i=1 asi = 1.
Then, the overall interval portfolio return is calculated as follows,

OPR =
N

∑
i=1

ariasi = [OPR, OPR]. (1)

Let us consider the critical example.

Example 1. Let us consider four interval-valued portfolio denoted as 1, 2, 3, and 4 with their predicted
interval-valued returns OPR1, OPR2, OPR3, and OPR4 presented in Figure 1. A question arises: what are the
levels of risk concerned with these portfolios? Obviously, in the spirit of Markowitz’s approach [1,3], we should
treat the width (OPR−OPR) of interval portfolio as the measure of its risk, as the width may be naturally
treated as a variance. Based on such a reasoning, we can conclude that the portfolio 1 is four times more risky
than portfolios 2 and 3 as (OPR1 −OPR1 = 7− 3 = 4%, OPR2 −OPR2 = 3− 2 = 1%, OPR3 −OPR3 =

4− 3 = 1%). It is clear that such a result seems to be justified when comparing portfolios 1 and 2, but from
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common sense there is no doubt that portfolio 3 is much more risky than portfolio 1. In reality, the risk to earn
an unacceptable low return from 3 is considerably greater than that of portfolio 1, although formally portfolio 1
is burdened by greater uncertainty than portfolio 3. Therefore, based on the above consideration, we can conclude
that the treating an uncertainty as the measure of risk does not always coincide with common sense. The same
conclusion we have obtained from comparison of portfolios 1 and 2. In the Markowitz’s spirit, the portfolio 1 is
more risky than the portfolio 4, whereas in any case the portfolio 1 provides the greater possible return than the
portfolio 4 (OPR1 −OPR1 > OPR4 −OPR4, but OPR1 > OPR4 and OPR1 > OPR4).
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                                                                                         2 
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Figure 1. The returns of interval portfolios.

Let us consider the famous Sharpe Ratio which is completely based on the mean-variance
methodology. In its simplest form it can be presented as follows. Sharpe Ratio = R

σ , where R is
the portfolio return and σ is its variance. If σ is treated as the measure of risk, it is intuitively obvious
that then the greater is the Sharpe Ratio the better is the portfolio. Let us consider two portfolios (which
for the sake of simplicity are assumed to be evenly distributed): the first with R1 = 4, σ1 = 2 and the
second with R2 = 1, σ1 = 0.25. Then, we have R1

σ1
= 2 and R2

σ2
= 4 and we should recognize that the

first portfolio is two times worse than the second one. Obviously this is an absurd result as the first
portfolio is evenly distributed in the interval [2, 6] whereas the second one is distributed in the interval
[0.75, 1.25]. It is clear that any reasonable person will choose the first portfolio. This contradiction may
be explained by the proposition that a variance undoubtedly is the measure of something but not a
measure of risk.

In addition, let us check the possibility of trade-off between the local criteria of portfolio return
and risk presented by the variance. Obviously, a high risk (σ) may be re-compensated by a great
return and a low return may be formally re-compensated by a low risk (low σ). On the other hand,
a low risk (σ) means a high probability (certainty). Therefore, the last situation in terms of content
may be described by the sentences “a certainly low return” or “a high probability of low return”.
Therefore, in a meaningful sense we have no trade-off in such a case, and this is a consequence of
treating the variance as a measure of risk. Therefore, taking also into account the critical opinions
of other authors presented in the introduction, here we propose an approach to portfolio selection
free of variance at all. In practice, investors don’t consider assets with a predicted failure.Therefore,
only portfolios with positive or mostly positive future returns OPR are analyzing. In such a situation,
only investor’s risk is the obtaining of unacceptable low return. Therefore, in the case of interval
asset returns, the demand of such risk minimization may be formulated as OPR→ max. On the other
hand, the natural aspiration of investors is the earning as great as possible returns. From this point
of view, the portfolio 4 (see Figure 1) seems to be more profitable than the portfolio 3 as it provides
greater possible returns. That is why the demand to maximize possible returns may be formulated as
OPR→ max.

The above reasoning makes it possible to introduce formal mathematical definitions of main
portfolio local criteria of risk minimization and return maximization.

It is easy to see from Equation (1) that the minimal value of OPR is OPRmin = min ari and the
maximal value of OPR is OPRmax = max ari for i = 1 to N.
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As OPR = ∑N
i=1 ariasi, OPR = ∑N

i=1 ariasi, we have always OPRmin ≤ OPR ≤ OPR ≤ OPRmax.
In the spirit of above analysis, the local criterion of portfolio’s risk may formulated as follows.

PRisk =
OPRmax −OPR

OPRmax −OPRmin
(2)

It is easy to see that the maximal value of PRisk equal to 1 we have when OPR = OPRmin. Nevertheless,
in the multiple criteria decision-making and optimization tasks it is more suitable to use instead of
PRisk, the risk aversion 1− PRisk that decreases with lowering the OPRmin. Therefore, for the risk
aversion of portfolio (PARisk) we have

PARisk = 1− OPRmax −OPR
OPRmax −OPRmin

. (3)

Using the similar reasoning, the local criterion of portfolio profit maximization (OOPR) has been
presented as follows.

OOPR = 1− OPRmax −OPR
OPRmax −OPRmin

(4)

We can say that the introduced criteria PARisk and OOPR reflect well our demands concerned with
the behavior of local criteria of risk minimization and return maximization.

Let us consider the properties of introduced local criteria.

2.1. The Features of Proposed Criteria for the Valuation of Interval-Valued Portfolios

It is easy to prove that the values of PARisk and OOPR generally belong to the interval [0,1],
and the critical values 0 and 1 can be obtained only in some hypothetical (asymptotic) cases which
seem to be rather unrealistic ones. Nevertheless, to analyze the features of our approach, here we
present some examples which make it possible to show that even in such asymptotic cases we obtain
reasonable results.

Obviously, in practice we avoid negative returns. Nevertheless, if intervals OPR are not completely
negative, but have negative parts, such situations cannot be excluded from our analysis.

Consider the illustrative examples.
All the results presented in Tables 1 and 2 have reasonable explanations.
We can see that PARisk is rising with rising of the left bound of interval OPR and OOPR is

increasing with rising of the right bound of OPR.
This is in compliance with our propositions concerned with the formulation of local criteria of

portfolio selection.
Using a few simple examples, let us look at the features of interval portfolios to make sure that

they are logically consistent, reliable, and are in line with common sense.

Example 2.

Table 1. The values of PARisk and OOPR in the case of [OPRmin, OPRmax] = [1, 5].

OPR PARisk OOPR

[1, 4] 0 0.75
[1, 5] 0 1
[2, 4] 0.25 0.75
[2, 5] 0.25 1
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Example 3.

Table 2. The values of PARisk and OOPR in the case of [OPRmin, OPRmax] = [−4, 4].

OPR PARisk OOPR

[−4, 4] 0 1
[−2, 2] 0.25 0.75
[0, 0] 0.5 0.5
[−1, 2] 0.375 0.75
[−3, 1] 0.126 0.625
[0, 1] 0.5 0.625
[0, 2] 0.5 0.75
[1, 2] 0.625 0.75
[1, 3] 0.625 0.875
[2, 3] 0.75 0.875

Example 4. Let us consider that the three interval-valued portfolios C1, C2, and C3 consist of four assets with
the same sets of interval returns (ar1,ar2,ar3,ar4) and different sets of asset shares (as1,as2,as3,as4) (see Table 3).
It is clear that ar4 < ar1 < ar2 < ar3 (this can be strongly proved, e.g., using the method proposed in [57]).

Table 3. Example 4.

ari Portfolio C1 Portfolio C2 Portfolio C3[%]

ar1 = [2, 5] as1 = 0.25 as1 = 0.2 as1 = 0.3
ar2 = [3, 7] as2 = 0.25 as2 = 0.3 as2 = 0.2
ar3 = [5, 10] as3 = 0.25 as3 = 0.4 as3 = 0.1
ar4 = [0, 2] as4 = 0.25 as4 = 0.1 as4 = 0.4

OPRmin 0.0 0.0 0.0
OPR 2.5 3.3 1.7
OPR 6.0 7.3 4.7

OPRmax 10.0 10.0 10.0

PARisk 0.25 0.33 0.17
OOPR 0.60 0.73 0.47

As a base of analysis of obtained results (see Table 3) we will use the values of PARisk, OOPR
calculated for the portfolio C1 with the uniform distribution of asset shares (asi = 0.25, i = 1 to N).
In the portfolios C2 and C3, the asset shares 0.1, 0.2, 0.3, and 0.4 are used with different distributions.

In C2, the greater asset shares are assigned to the greater asset returns: the maximal share (0.4)
is assigned to the maximal asset return ar3 = [5, 10] and the minimal asset share (0.1) is assigned to
the minimal asset return ar4 = [0, 2]. It is easy to see that the portfolio C2 is considerably better than
portfolio C1 as, considering the criteria of portfolio quality PARisk, OOPR are significantly greater in
the case of C2 than those in the case of C1. An opposite situation we have in the case of portfolio C3,
where the greater asset shares are assigned to the assets with lower returns. In this case (portfolio C3),
the values of criteria PARisk, OOPR are substantially lower than those in the case of C1.

Based on the above example, we can conclude that the well general portfolio formation policy
in the case of interval asset returns should be the assigning greater shares to assets with greater
interval returns.

Of course, this result is in line with common sense and logically justified.
Nevertheless, in Example 4 we have considered only the cases of intersection and lack of common

area of interval asset returns. Therefore, in the next example, the situation when one interval return is
completely included into another one is considered.
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Example 5. To make our analysis more transparent, let us consider three portfolios D, E, and F (see Table 4)
with only two assets such that one of them is completely included into another one (ar5 ⊂ ar6). Then, using the
method proposed in [57] we get ar5 < ar6.

Table 4. Example 5.

ari Portfolio D Portfolio E Portfolio F
[%]

ar5 = [3, 5] as5 = 0.5 as5 = 0.2 as5 = 0.8
ar6 = [1, 8] as6 = 0.5 as6 = 0.8 as6 = 0.2

OPRmin 1.0 1.0 1.0
OPR 2.0 1.4 2.6
OPR 6.5 7.4 5.6

OPRmax 8.0 8.0 8.0

PARisk 0.14 0.06 0.23
OOPR 0.79 0.91 0.66

As a base of comparison we use the portfolio D, in which equal shares are assigned to different
assets, i.e., as5 = as6 = 0.5. In the portfolios E and F, we have the opposite distributions of asset shares
(as5 = 0.2, as6 = 0.8 for the portfolio E and as5 = 0.8, as6 = 0.2 for the portfolio F). In the portfolio E,
the greater share is assigned to the greater asset (as6 = 0.8). As a result, the decreasing of PARisk and
increasing of OOPR in comparison with the values of these parameters in the portfolio D is observed
in Table 4. The opposite situation is observed in the case of portfolio F, where as5 = 0.8 (the increasing
of PARisk and decreasing of OOPR in comparison with the results of the portfolio D).

The obtained results allow us to say that interval valued portfolio selection is a multiple criteria
task and its optimal solution should be based on the compromise between competing local criteria.

At first glance, the results we obtained in this example make it possible to consider the results
obtained for the portfolio with uniform distribution of asset shares as somewhat averaged (neutral)
ones, but as it is shown in the next example this not always the case.

Example 6. In this example, we consider that the three portfolios (G, H, and K) consist of four assets with the
equal sets of interval asset returns ar7, ar8, ar9, ar10 and the different distributions of asset shares (see Table 5).
Comparing the interval asset returns, we can find the cases of their inclusion ar7 ⊂ ar8, ar9 ⊂ ar10, intersection
ar8

⋂
ar10 6= ∅ and the lack of common area (e.g., ar7

⋂
ar9) = ∅). In other words, we can say that all possible

in practice cases of mutual placement of interval returns are presented in the considered example.

Similar to the previous examples, we choose the portfolio G with the uniform distribution of
asset shares as7 = as8 = as9 = as10 = 0.25 as the base of comparison. As ar7 ⊂ ar8, ar9 ⊂ ar10 and
ar8 > ar10, while ar8

⋂
ar10 = ∅, the greatest shares (0.3 and 0.4) in portfolios H and K are assigned to

the assets with the greatest returns (ar7 and ar8) and the smallest shares (0.1 and 0.2) are assigned to
the assets with minimal returns (ar9 and ar10).

As in the previous example, we can see that rising of one criterion (e.g., PARisk) is accompanied
by the decreasing of another one (OOPR). Nevertheless, in both analyzed cases (portfolios H and
K) the greater values of both local criteria PARisk and OOPR than those we have got in the case of
uniform asset shares distribution (see portfolio G) were obtained. This means that it is possible to find
an optimal set of shares using an appropriate method for the solution of multiple criteria tasks.
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Table 5. Example 6.

ari Portfolio G Portfolio H Portfolio K
[%]

ar7 = [5, 7] as7 = 0.25 as7 = 0.3 as7 = 0.4
ar8 = [3, 10] as8 = 0.25 as8 = 0.4 as8 = 0.3
ar9 = [1, 2] as9 = 0.25 as9 = 0.1 as9 = 0.2
ar10 = [0, 4] as10 = 0.25 as10 = 0.2 as10 = 0.1

OPRmin 0.0 0.0 0.0
OPR 2.25 2.8 3.1
OPR 5.75 7.1 6.6

OPRmax 10.0 10.0 10.0

PARisk 0.225 0.28 0.31
OOPR 0.575 0.71 0.66

2.2. The Bicriteria Interval Valued Portfolio Optimization

Let us define the vector of variables of considered optimization task as the vector of asset shares
~as = (asi), i = 1 to N. Generally, the weights (the relative importance) wPARisk and wOOPR of our
local criteria PARisk, OOPR can be included in the set of veriables. Nevertheless, we prefer here
to consider these weights as the fixed parameters specified by an investor based on his/her own
preferences concerned with aspirations of overall portfolio return maximization OOPR⇒ max and
risk minimization which in our case may be presented as the risk aversion maximization PARisk
⇒ max. Of course, it should be always wPARisk + wOOPR = 1. It was shown above that our local criteria
PARisk and OOPR lay in the interval [0,1] and should be maximized.

In this paper, we will treat the portfolio selection as a multiple criteria optimization task in the
form sometimes refereed to as scalarelized one [58]. This is an alternative approach to the portfolio
optimization problem [59]. This approach aggregates local criteria (such as risk and profit criteria)
(c(~x)1, c(~x)2,...,c(~x)n), where ~x is a vector of decision variables, into one general criterion by assigning
a weighting coefficient wi to each criterion. Then, a solution technique is to maximize a positively
weighted convex sum of the local criteria, that is, Maximize D(~x) = ∑n

i=1 wic(~x)i.
The concept of optimality in the multiple criteria optimization is equivalent to Pareto optimality.

Therefore, a vector ~xo is said to be Pareto optimal if and only if there is no ~x such that c(~x)i ≤
c(~xo)i, i = 1, 2, . . . , n. It was proved [60] that ~xo is the Pareto point if D(~x) achieves its maximal value.
Therefore, varying the weights of local criteria, all Pareto optimal solutions may be obtained.

As the weights of local criteria may reflect their relative importance assigned by an investor,
we can say that described approach seems to be more preferable than the classical one. Such a multiple
criteria approach was successfully used for portfolio optimization in [61]. It is very important that the
validity of the proposed approach was verified through an empirical testing application on the top
75 companies of Tehran Stock Exchange Market in 2017.

At first glance, the use of weighted sum of local criteria solves the problem. Nevertheless, there are
important problems concerned with the use of weighted sum and some other popular methods for
local criteria aggregation which were revealed in the fuzzy setting [62].

Somewhat ahead of events let us assume that we deal with two local criteria A and B dependent
on x and represented by the symmetrical triangular fuzzy numbers with correspondent membership
functions µA(x) and µB(x). It is clear that if they are not intersecting then we probably have two
different single-criterion problems. Then, suppose we have A = (2,6,10) and B = (8,12,16). The Pareto
region is the interval [8.10], where the decreasing of µA(x) is accompanied by the increasing of µB(x).
Suppose that the criteria A = (2,6,10) and B = (8,12,16) are of equal importance. Then, the only one
reasonable demand for xo to be the optimal solution is that in such a point the values of local criteria
are equal once subject to they are as great as possible. Obviously xo = arg(maxmin(µA(x), µB(x))),
i.e., in our case xo = 9. On the other hand, using the weighted sum in the Pareto region we get
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Dws(x) = 1
2 µA(x) + 1

2 µB(x) = const, i.e., the general criterion Dws(x) does not provide any Pareto
optimal solution, whereas the min-criterion Dmin(x) = min(µA(x), µA(x)) and multiplicative criterion
Dmul(x) = (µA(x)µB(x)) provide the optimum xo = 9. It is shown in [62] that in the case of more
complicated shapes of the triangular A and B, both the Dws(x) and Dmul(x) general criteria provide
the optimal solution strictly on the border of Pareto region. Of course, such a solution formally
belongs to the Pareto optimal solutions, but in such an optimal point the values of µA(x) and µB(x)
are different that is in contradiction with the assumption of their equal importance. In [62], it is shown
that introducing different weights wA and wB does not improve the situation; moreover, the general
criterion Dz(x) = min(wAµA(x), wBµB(x)) proposed by Zimmerman [63] in this case provides the
results that are not in line with common sense. However, there are no problems with the Yager’s
min-type aggregation [64] (see below). It is worth noting that in some applications, e.g., in ecological
modeling, the weighted sum aggregation is expressly forbidden to use [65] as there are important
cases in practice when too low values of one local criterion cannot be recompensated by great values
of other criteria.

Based on the above analysis, we can conclude that weighted sum aggregation is rather an
unreliable method, but taking into account that it provides Pareto optimal solutions (as well as the
other considered methods) and is very important for theoretical studies, e.g., being the cornerstone of
the Utility theory, in the following we will use it in the analysis together with the other approaches.
Taking into account that all aggregation methods have own advantages and limitations and that the
choice of method for aggregation of local criteria is an application dependent problem [66], we will
continue the formulation of our bicriteria optimization problem as follows.

To formulate the optimization task, the local criteria with their weights should be aggregated in a
general criterion to be maximized to get an optimal vector of variables (asset shares).

In the literature [62,67], we can find many different approaches to the formulation of general
criterion in multiple criterion optimization tasks. Among them, the most popular and frequently
used in practice are the Yager’s (D1), multiplication (D2), and addition (weighted sum) (D3) types of
aggregation, which in our case may be presented as follows,

D1(~as) = minOOPR(~as)wOOPR , PARisk(~as)wPARisk , (5)

D2(~as) = OOPR(~as)wOOPR PARisk(~as)wPARisk , (6)

D3(~as) = wOOPROOPR(~as) + wPARiskPARisk(~as). (7)

The presented methods of aggregation (5–7) may be used solely and in different combinations.
Their advantages and limitations were studied in [62], where it is shown that the most reliable approach
is the Yager’s type of aggregation (D1) [64], the multiplicative aggregation (D2) seems to be less reliable
and the most popular additive (weighted sum) aggregation (D3) may provide wrong counterintuitive
results in the Pareto area. Nevertheless, all method of aggregation have own advantages and drawbacks
and it is often impossible to choose the best one for the solution of real-world optimization problem.
That is why, if we have a complicated multiple-objective problem, all relevant methods for aggregation
of local criteria should be used. If the results of the solution of optimization task we got using different
aggregation modes are comparable we can say that they can be treated as optimal ones. In the opposite
case, the compromise solution may be obtained using the method of aggregation of aggregating modes
based on the synthesis of type 2 and level 2 fuzzy sets proposed in [67], but this is out of scope of the
current paper. Therefore, in our case the optimization problem may be formulated as follows,

~asopt = arg(maxDk(~as)) (k = 1, 2, 3) s.t.,
N

∑
i=1

asi = 1. (8)
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For the solution of formulated problem, the modification of the direct random search method [68]
taking into account the restrictions ∑N

i=1 asi = 1 and 0 ≤ asmin ≤ asi ≤ asmax ≤ 1, where the values of
asmin and asmax are defined by an investor was used.

Of course, there are many other modern optimization methods, e.g., genetic algorithms developed
in last decades. Nevertheless, based of a number of persuasive examples, it was shown in [69] that
when we are dealing with the complex nonlinear optimization problem, the direct search methods
perform significantly better.

Example 7. In this example, we will use the portfolios based on the four assets with returns which are the
same as in Example 6. Varying the values of local criteria weights (wPARisk and wOOPR) on three levels we
have obtained for three aggregation methods (D1 − D3) the nine optimization tasks, the solutions of which are
presented in Table 6 in the form of optimal portfolios L1 − L9.

In the optimization, the following restrictions were applied, asmin = 0.01, asmax = 0.97, i.e., 0.01 ≤ asi ≤
0.97. The non-optimal values of general criteria (Di, i = 1 to 3) for the portfolios with asset returns and shares
from the portfolios G, H, and K (see Example 6) are presented in Table 7 for the local criteria weights which
are the same as in Table 6. In Table 6, Di( ~asopt) are the values of general criteria Di in the points of optimal
solution ( ~asopt).

Table 6. Optimal solutions (Example 7).

i Di wPARisk wOOPR Li Di( ~asopt)
~asopt

as7opt as8opt as9opt as10opt

1 D1

0.5 0.5 L1 0.70 0.97 0.01 0.01 0.01
0.9 0.1 L2 0.53 0.97 0.01 0.01 0.01
0.3 0.7 L3 0.80 0.87 0.11 0.01 0.01

2 D2

0.5 0.5 L4 0.58 0.91 0.07 0.01 0.01
0.9 0.1 L5 0.51 0.97 0.01 0.01 0.01
0.3 0.7 L6 0.69 0.01 0.97 0.01 0.01

3 D3

0.5 0.5 L7 0.64 0.01 0.97 0.01 0.01
0.9 0.1 L8 0.51 0.97 0.01 0.01 0.01
0.3 0.7 L9 0.78 0.01 0.97 0.01 0.01

We can see that the optimal solutions ~asopt depend on the values of local criteria weights (wPARisk
and wOOPR) and the used method of local criteria aggregation (see Table 6, portfolio L1 − L9).
The optimal portfolios are strongly dominated by the assets with the maximal interval returns
(ar7 and ar8), whereas the shares of assets with minimal interval returns (ar9 and ar10) are equal to the
accepted permissible minimal value, asmin = 0.01. This result seems to be quite natural as the intervals
ar7 and ar8 are significantly greater than the intervals ar9 and ar10. Besides, as the portfolios L1− L9 are
optimal ones they are characterized by the substantially greater values of general criteria (Di(~as)) than
those obtained from portfolios G, H, and K (see Table 7). Let us denote the value of general criterion
for ith type of aggregation and Pth portfolio as Di(P). Then, using the methods of interval comparison
presented in [57], from Tables 6 and 7 we have obtained D1(L3) = 0.80 > D1(K) = 0.70 ( max {D1(L1),
D1(L2), D1(L3)} > max {D1(G), D1(H), D1(K)}), D2(L6) = 0.69 > D2(H) = 0.54 ( max {D2(L4),
D2(L5), D2(L6)} > max {D2(G), D2(H), D2(K)}) and D3(L9) = 0.78 > D3(H) = 0.58 ( max {D3(L7),
D3(L8), D3(L9)} > max {D3(G), D3(H), D3(K)}).

These results indicate the effectiveness of the proposed method for optimizing the
interval portfolio.
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Table 7. Non-optimal values of general criterion for the portfolios from Example 6.

i ari ~as Portfolio

[%] G H K

7 ar7 = [5, 7] as7 0.25 0.3 0.4
8 ar8 = [3, 10] as8 0.25 0.4 0.3
9 ar9 = [1, 2] as9 0.25 0.1 0.2
10 ar10 = [0, 4] as10 0.25 0.2 0.1

i Aggregation method wPARisk wOOPR Di(~as)

1 D1

0.5 0.5 0.47 0.53 0.56
0.9 0.1 0.26 0.32 0.35
0.3 0.7 0.64 0.68 0.70

2 D2

0.5 0.5 0.36 0.45 0.45
0.9 0.1 0.25 0.31 0.33
0.3 0.7 0.43 0.54 0.53

3 D3

0.5 0.5 0.40 0.50 0.49
0.9 0.1 0.26 0.32 0.35
0.3 0.7 0.47 0.58 0.56

It is seen that the optimal portfolios L1 − L9 are characterized by the low diversification. This is
caused by the use of extremely wide range of permissible values of shares asmin = 0 and asmax = 1 in
the optimization procedure.

Example 8. To extend the diversification of optimized portfolios, in this example we used the following range
of admissible values of shares (0.05 ≤ asi ≤ 0.40). As in the previous example, the four assets with returns
the same as in Example 6 were used. Similar to the previous example, the nine optimal portfolios M1–M9 were
obtained. The results are presented in Table 8.

Table 8. The results of interval valued portfolio optimization (Example 8).

Aggregation Di(~as) wPARisk wOOPR
~as Mi

Method as7 as8 as9 as10

0.58 0.5 0.5 0.40 0.39 0.16 0.05 M1
D1 0.37 0.9 0.1 0.40 0.39 0.16 0.05 M2

0.72 0.3 0.7 0.40 0.39 0.16 0.05 M3

0.49 0.5 0.5 0.40 0.39 0.16 0.05 M4
D2 0.36 0.9 0.1 0.40 0.39 0.16 0.05 M5

0.58 0.3 0.7 0.39 0.40 0.05 0.16 M6

0.53 0.5 0.5 0.39 0.40 0.05 0.16 M7
D3 0.37 0.9 0.1 0.40 0.39 0.16 0.05 M8

0.62 0.3 0.7 0.39 0.40 0.05 0.16 M9

Based on the reasoning as in the previous example, the domination of the assets with maximal
interval returns ar7 and ar8 in all optimal portfolios M1–M9 (see Table 8) can be easily explained.
The order of positions held by assets in terms of their share in the portfolio depends on the type
of aggregation of local criteria used and their weights. In the portfolios M1–M5 and M8, we have
as7 > as8 > as9 > as10, whereas in the portfolios M6, M7, and M9 we observe as8 > as7 > as10 > as9.
These results can be explained by analyzing the values of asset returns taking into account the weights
of local criteria and the values of general criteria. This can best be illustrated by analyzing the optimal
shares obtained using the weighted sum aggregation (D3) for the assets with maximal returns ar7 and
ar8. We can see that in the portfolios M7 and M9 we have as8 > as7. This result is caused by using the
weights wOOPR (0.5 and 0.7, respectively); however, first of all by the large value of the right border of
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the interval ar8 such that ar8 > ar7. An opposite situation we have in the portfolio M8, in which the
used large weight wPARisk = 0.9 together with the fact that ar7 > ar8 predetermine the domination of
asset with as7.

As it should be, the lowering of asmax from 1 to 0.4 caused the decreasing the valued of optimized
general criteria Di( ~asopt) in comparison with those in the previous example. We can see that D1(M3) =

0.72 < D1(L3) = 0.8, D2(M6) = 0.58 < D2(L6) = 0.69, D3(M9) = 0.62 < D3(L9) = 0.78 (see Tables 7
and 8).

3. The Bicriteria Optimization of Fuzzy Portfolio

In this section, we propose an approach to the fuzzy portfolio optimization based on the α-cut
presentation of fuzzy values and the fuzzy extension of method for the interval-valued portfolio
selection described in the previous section.

In the considered case of fuzzy portfolio optimization, we first deal with fuzzy asset returns arFi,
i = 1 to N. They can be presented by sets of α-cuts, which are defined as follows.

Let X be a fuzzy value, then it can be presented as X =
⋃
α

αXα, where αXα is the fuzzy subset

x ∈ U, µX(x) ≥ α, Xα is the support set of fuzzy subset αXα, and U is the universe of discourse. It is
important that Xα is a crisp interval.

Therefore, for the α-cut presentation of the fuzzy asset returns we have arFi =
⋃
α

αarFiα, where arFiα

are intervals [arFiα, arFiα].
For the sake of simplicity, here we will consider the widely used in practice trapezoidal fuzzy

values which can be represented by two intervals on the support and the core of trapezes, i.e., by the
quadruples [arFi0, arFi1, arFi1, arFi0].

The expressions (3) and (4) for calculation of local criteria may be presented in the fuzzy case by
α-cuts as follows,

PARiskα = 1− OPRα max −OPRα

OPRα max −OPRα min
, (9)

OOPRα = 1− OPRα max −OPRα

OPRα max −OPRα min
, (10)

where OPRα min = min arFiα, OPRα max = max arFiα,
OPRα = ∑N

i=1 arFiαasi, OPRα = ∑N
i=1 arFiαasi.

Finally, the values of local criteria are calculated as the weighted sums on α-cuts assuming that
the contribution of α-cut to the overall estimation is rising (in the simplest linear way) with increasing
the value of α:

PARisk =
∑α PARiskαα

∑α α
, OOPR =

∑α OOPRαα

∑α α
(11)

Then, the optimal asset shares ~asopt for the three considered methods for local criteria aggregation are
obtained from (5)–(8) with PARisk(~as) and OOPR(~as) from (11).

Example 9. In this example, we consider the optimized fuzzy portfolios P1–P6 (see Table 9) presented by the
fuzzy asset returns arF7, arF8, arF9, and arF10, with the supports the same as the interval-valued returns ar7,
ar8, ar9, and ar10 from the previous example. The results of optimization are presented in Table 9.

We can see that the obtained optimal asset shares do not depend on the methods for the local criteria
aggregation and their weights. Only the values of asmin and asmin effect the results of optimization (the observed
different values of general criteria calculated for the same optimal asset shares ~as are the consequence of using the
different local criteria weights in the expressions (5)–(7)). These results can be easily explained by the choice of
the supports of fuzzy returns, which provide the strong domination of the assets with arF7, arF8 over those with
arF9 and arF10. No wonder the obtained results are practically the same as in the previous example with interval
asset returns ar7, ar8, ar9 and ar10. This indirectly confirms the validity of the proposed method.
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Table 9. The results of portfolio optimization (Example 9).

D i arFi[%]
Portfolios

P1 P2 P3 P4 P5 P6
asi asi asi asi asi asi

D1

7 [5, 6, 6.2, 7] 0.94 0.40 0.94 0.40 0.89 0.40
8 [3, 3.2, 3.4, 10] 0.03 0.39 0.03 0.39 0.08 0.39
9 [1, 1.4, 1.6, 2] 0.01 0.05 0.01 0.05 0.01 0.05

10 [0, 3.6, 3.8, 4] 0.02 0.16 0.02 0.16 0.02 0.16

D1(~as) 0.79 0.63 0.66 0.44 0.86 0.76

D2

7 [5, 6, 6.2, 7] 0.94 0.40 0.94 0.40 0.94 0.40
8 [3, 3.2, 3.4, 10] 0.03 0.39 0.03 0.39 0.03 0.39
9 [1, 1.4, 1.6, 2] 0.01 0.05 0.01 0.05 0.01 0.05

10 [0, 3.6, 3.8, 4] 0.02 0.16 0.02 0.16 0.02 0.16

D2(~as) 0.71 0.55 0.64 0.43 0.75 0.63

D3

7 [5, 6, 6.2, 7] 0.94 0.40 0.94 0.40 0.94 0.40
8 [3, 3.2, 3.4, 10] 0.03 0.39 0.03 0.39 0.03 0.39
9 [1, 1.4, 1.6, 2] 0.01 0.05 0.01 0.05 0.01 0.05

10 [0, 3.6, 3.8, 4] 0.02 0.16 0.02 0.16 0.02 0.16

D3(~as) 0.71 0.58 0.65 0.44 0.75 0.66

asmin 0.01 0.05 0.01 0.05 0.01 0.05
asmax 0.94 0.40 0.94 0.40 0.94 0.40

wPARisk 0.5 0.9 0.3
wOOPR 0.5 0.1 0.7

where D—aggregation method, ~as = {as7, as8, as9, as10}.

Above we have assumed that the weights (importance) of local criteria wPARisk and wOOPR may
be assigned by an expert based on his/her own preferences and experience, but this is not always the
case. Therefore, in situations when there are no such predetermined values of weights, they may be
included in the set of decision variables. As the result, a new optimization task, which may be called a
“full’ optimization, is formulated. The results of its solution in the considered example are presented in
Table 10. We can see that the aggregations D1–D3 provide identical results of optimization, but D2 and
D3 delivered these results with optimal values of wPARisk and wOOPR, which are substantially different
from those obtained using D1. This is in qualitative compliance with the theoretical analysis [62]
and our informal reasoning at the beginning of Section 2.2. The asset shares obtained based on “full”
optimization do not differ from those presented in Table 9.

Example 10. In the above examples of interval and fuzzy portfolio optimization, we considered the portfolios
consist of four assets the two of them had significantly (even overwhelmingly) greater returns then those of
the two remaining assets. Of course, in such extreme and simple situations we have obtained that the optimal
portfolios consist practically of two the most profitable assets and the obtained results occurred to be nearly
independent on the methods for local criteria aggregation and their weights.

Meanwhile, in practice, investors always intent to select for their portfolios the assets with at least
commensurate returns.

Therefore, in this example, we will consider optimized portfolios based on the set of comparable trapezoidal
fuzzy asset returns presented in Figure 2 and Table 11.
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Table 10. The results of “full” optimization for Example 9.

D i arFi[%]
Portfolios

P7 P8
asi asi

D1

7 [5, 6, 6.2, 7] 0.94 0.40
8 [3, 3.2, 3.4, 10] 0.03 0.39
9 [1, 1.4, 1.6, 2] 0.01 0.05

10 [0, 3.6, 3.8, 4] 0.02 0.16

D1(~as) 0.942 0.812
PARisk 0.786 0.504
OOPR 0.924 0.743
wPARisk 0.25 0.28
wOOPR 0.75 0.72
OPR [4.8, 5.822, 6.018, 6.98] [3.22, 4.294, 4.462, 7.44]

D2, D3

7 [5, 6, 6.2, 7] 0.94 0.40
8 [3, 3.2, 3.4, 10] 0.03 0.39
9 [1, 1.4, 1.6, 2] 0.01 0.05

10 [0, 3.6, 3.8, 4] 0.02 0.16

D2(~as), D3(~as) 0.924 0.742
PARisk 0.786 0.504
OOPR 0.924 0.743
wPARisk 0.0 0.0
wOOPR 1.0 1.0
OPR [4.8, 5.822, 6.018, 6.98] [3.22, 4.294, 4.462, 7.44]

asmin 0.01 0.05
asmax 0.94 0.40

where D—aggregation method, ~as = {as11, as12, as13, as14}.
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Figure 2. Trapezoidal fuzzy asset returns (Example 10).

The six sets of optimal portfolios U1–U6, each of which in turn consist of three optimal portfolios
~as = {as11, as12, as13, as14, as15, as16} obtained for the three types of local criteria aggregation (5)–(7) for
different values of local criteria weights, asmin and asmax are presented in Table 11.

Opposite to the Example 9, we can see an indisputable dependence of optimal solutions on the
method for local criteria aggregation, local criteria weights, asmin, and asmax. Moreover, in some cases
(see, e.g., the set U1) the qualitative contradictions between optimal solutions obtained for different
types of local criteria aggregation and the same other parameters take place. Of course, in such cases
the use of above-mentioned method for aggregation of aggregating modes [67] may be a good solution
of problem. We can see that the assets with ar12 and ar16 dominate over other ones as they have
considerable greater returns (in a fuzzy sense [57]) than the other assets in the portfolio. We can see
that these dominating assets are also the competing ones as the asset with as16 is only slightly greater
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than that with ar12. Summarizing, we can say that all the results presented in Table 11 are in line with
common sense and can be explained based mainly by the methods for comparison of fuzzy values.

Table 11. The results of portfolio optimization (Example 10).

D i arFi[%]
Portfolios

U1 U2 U3 U4 U5 U6
asi asi asi asi asi asi

D1

11 [2, 3, 4, 7] 0.02 0.06 0.02 0.06 0.01 0.06
12 [2, 5, 6, 7] 0.05 0.34 0.05 0.34 0.22 0.34
13 [3, 4, 4.6, 5] 0.04 0.08 0.04 0.08 0.03 0.08
14 [1, 4.6, 6.2, 6.6] 0.03 0.07 0.03 0.07 0.04 0.07
15 [0, 3, 6, 9] 0.01 0.05 0.01 0.05 0.02 0.05
16 [4, 4.8, 5.2, 6] 0.85 0.40 0.85 0.40 0.68 0.40

D1(~as) 0.62 0.57 0.42 0.36 0.74 0.71

D2

11 [2, 3, 4, 7] 0.01 0.05 0.02 0.06 0.02 0.06
12 [2, 5, 6, 7] 0.55 0.34 0.05 0.34 0.85 0.40
13 [3, 4, 4.6, 5] 0.03 0.07 0.04 0.08 0.01 0.05
14 [1, 4.6, 6.2, 6.6] 0.04 0.08 0.03 0.07 0.03 0.07
15 [0, 3, 6, 9] 0.02 0.06 0.01 0.05 0.04 0.08
16 [4, 4.8, 5.2, 6] 0.35 0.40 0.85 0.40 0.05 0.34

D2(~as) 0.49 0.47 0.40 0.35 0.58 0.55

D3

11 [2, 3, 4, 7] 0.01 0.05 0.02 0.06 0.02 0.06
12 [2, 5, 6, 7] 0.85 0.40 0.05 0.34 0.85 0.40
13 [3, 4, 4.6, 5] 0.02 0.06 0.03 0.07 0.01 0.05
14 [1, 4.6, 6.2, 6.6] 0.04 0.08 0.04 0.08 0.03 0.07
15 [0, 3, 6, 9] 0.03 0.07 0.01 0.05 0.05 0.15
16 [4, 4.8, 5.2, 6] 0.05 0.34 0.85 0.40 0.04 0.27

D3(~as) 0.54 0.51 0.41 0.36 0.68 0.63

asmin 0.01 0.05 0.01 0.05 0.01 0.05
asmax 0.85 0.40 0.85 0.40 0.85 0.40

wPARisk 0.5 0.9 0.3
wOOPR 0.5 0.1 0.7

where D—aggregation method, ~as = {as11, as12, as13, as14, as15, as16}.

As in the previous example, here we provide also the results of “full” optimization obtained by
inclusions of local criteria weights in the set of decision variables, see Table 12.

When comparing the results presented in Tables 11 and 12, we can see that the use “full”
optimization makes it possible to avoid the problem of high dependence of results on the applied
method for aggregation as in Table 11. Besides, opposite to the Example 9, the difference between the
optimal criteria weights wPARisk and wOOPR obtained using D2, D3 and D1 is rather ineligible.

Example 11. In this example, we compare the results obtained using our method with those from [70] where the
fuzzy portfolios consist of five assets C1–C5 were considered. The returns of these assets were assumed in [70] to

be normal fuzzy values with membership functions µ(r) = exp(− (r−m)2

w2 ), where m is the mean (center) and w
is the spread of distribution, the values of which are presented in Table 13.

The seven widely reputed methods (their names are presented in Table 14) were applied in [70] to
the solution of fuzzy portfolio optimization problems with the parameters shown in Table 13.

Here, we provide a short description of these methods.
The original model of the portfolio selection problem was proposed by Markowitz [3]. The model

is the so-called V-model [71] in stochastic programming. To obtain a Pareto optimal solution, he
treated the problem so as to minimize the variance keeping the expected value at a given constant τ,
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i.e., respect to τ = 0.18 indicates a 17 percent investment in the fifth asset which may be regarded as
inferior (see Table 14).

Table 12. The result of “full’ optimization for Example 10.

D i arFi[%]
Portfolios

U7 U8
asi asi

D1

11 [2, 3, 4, 7] 0.02 0.06
12 [2, 5, 6, 7] 0.04 0.08
13 [3, 4, 4.6, 5] 0.01 0.05
14 [1, 4.6, 6.2, 6.6] 0.05 0.34
15 [0, 3, 6, 9] 0.85 0.40
16 [4, 4.8, 5.2, 6] 0.03 0.07

D1(~as) 0.949 0.880
PARisk 0.055 0.204
OOPR 0.948 0.870
wPARisk 0.01 0.08
wOOPR 0.99 0.92
OPR [0.32, 3.224, 5.932, 8.63] [1.05, 3.88, 5.822, 7.494]

D2, D3

11 [2, 3, 4, 7] 0.02 0.06
12 [2, 5, 6, 7] 0.04 0.08
13 [3, 4, 4.6, 5] 0.01 0.05
14 [1, 4.6, 6.2, 6.6] 0.05 0.34
15 [0, 3, 6, 9] 0.85 0.40
16 [4, 4.8, 5.2, 6] 0.03 0.07

D2(~as), D3(~as) 0.948 0.870
PARisk 0.055 0.204
OOPR 0.948 0.870
wPARisk 0.0 0.0
wOOPR 1.0 1.0
OPR [0.32, 3.224, 5.932, 8.63] [1.05, 3.88, 5.822, 7.494]

asmin 0.01 0.05
asmax 0.94 0.40

where D—aggregation method, ~as = {as11, as12, as13, as14, as15, as16}.

Table 13. The parameters of normal fuzzy assets C1 − C5.

Parameters C1 C2 C3 C4 C5

Mean (m) 0.25 0.22 0.2 0.15 0.05
Spread2(w2) 0.0225 0.0150 0.0150 0.0100 0.0050

Kataoka’s model [72,73] is based on random return rates. In this model, we maximize z such that
the probability of the event that the total return rate is not smaller than z is at least 1 − α, where α

corresponds to α-fractile of the standard normal distribution. The result presented in Table 14 was
obtained applying this model with α = 0.05.

The next model is the minimum-risk model with random return rates [71]. In contrast to Kataoka’s
model, the minimum-risk model maximizes the probability of the event that the total return rate is not
smaller than a predetermined value z0 in this model. In Table 14, the result obtained with z0 = 0.18
is presented.

The Spread minimization fuzzy model was formulated in [70]. It is based on the minimization of
weighted sum of assets shares, where the weights are spreads of the normal fuzzy numbers presenting
the fuzzy assets returns subject to the portfolio return is not smaller than the model parameter τ.
In Table 14, the result obtained with τ = 0.18 is shown.



Entropy 2020, 22, 932 19 of 25

The fractile approach corresponds to Kataoka’s model [71,72] of a stochastic programming
problem. This approach was formulated in [70] as a possibilistic model. The model is based on
the maximization of parameter z subject to a Necessity degree (Nes) to what extent a portfolio return is
not smaller than z is greater than h0, where h0 is a predetermined value in the interval [0,1]. The result
obtained using this model with h0 = 0.9 is presented in Table 14.

The modality optimization model corresponds to the minimum-risk approach to a stochastic
programming problem [71]. In [70], it was presented in the possibility setting as the maximization of
Necessity degree (Nes) to what extent a portfolio return is greater than z0 where z0 is in the interval
[0,1]. The result obtained with z0 = 0.18 is shown in Table 14.

The Minimax regret model is the most complicated possibilistic model among those considered in
this paper and therefore needs too many mathematic expressions and explanations to be presented in
the current paper, which is not devoted to the possibilistic portfolio selection. It is worth noting here
that this model is based on the maximization of the so-called Regret criterion, which is the difference
between the optimal total return rate and the obtained total return rate. This criterion is a possibilistic
variable represented by a corresponding possibility distribution. More details may be found in [70,74].

The details concerned with the strong definitions of used methods in the fuzzy and possibilistic
settings may be found in [70]. It is important to note also that all solutions (as1–as5) presented in Table
14 are Pareto optimal [70]. We can see that competing methods provide a complete set of possible
portfolios diversification. The result provided by Markowitz’s model seems to be a dubious one, as it
is impossible to justify in the reasonable way the dominance of C4 over all other assets. At the same
time, the most profitable assets C1–C3 present simultaneously in four of seven portfolios and the pair
of even more profitable assets C1–C2 presents in the five portfolios.

Therefore, when analyzing the results from Table 14 as a whole, we can conclude that the most
reliable portfolio should consist of only two portfolios C1 and C2.

We can say that we have made the same conclusion based on the results obtained using our
bicriteria method. At the end, it is worth noting that methods analyzed in [70] are by their nature the
single-criterion ones, being based on the maximization or minimization of one local criterion (return or
risk), whereas the other one serves only as a restriction. Of course, this considerably limits the practical
applicability of these methods.

Table 14. The results of fuzzy portfolio optimization from [70].

Model as1 as2 as3 as4 as5

Markowitz’s model 0.185 0.194 0.212 0.237 0.171
Kataoka’s model 0.3 0.375 0.25 0.075 0

Minimum-risk model 0.425 0.375 0.2 0 0
Spread min model 0.412 0.588 0 0 0

Fractile model 0 1 0 0 0
Modality model 1 0 0 0 0

Minimax regret model 0.387 0.3 0.313 0 0

When using our bicriteria method for optimization of portfolio which consist of five assets
C1 − C5, their normal fuzzy returns with parameters presented in Table 13 were approximated by sets
of corresponding α-cuts. In the optimization procedure, the extremal values of shares asmin = 0 and
asmax = 1 were used as they provide the natural limitations on permissible solutions.

The obtained results are presented in Tables 15–17. In Table 17, we can see that the weighted
sum aggregation of local criteria (D3) provides rather trivial results (which however properly reflect
changes of local criteria weights). This is in compliance with our theoretical results (see [62]). Therefore,
we do not recommend to use this type of aggregation in the portfolio selection.

Obtained results show that in our case optimal portfolios are consist of only two assets C1 and
C2 independently on the used method for local criteria aggregation and their weights. Of course,
decreasing the value of asmax = 1 we can obtain even completely diversified portfolios consist of all
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C1 − C5, but they will be considerably less profitable than obtained two-assets portfolios (see also
Examples 9 and 10 for more detail). Of course, the features of two-assets portfolios are more easy to
analyze, but we will show that in our case namely such portfolios reflect better the preferences of real
cautious investor based on his/her attitude to the compromise between future profits and risks.

From Tables 15 and 16, and in some sense from Table 17, we can see that the optimal values
of share as2 are rising in line with lowering the share as1 when the value of risk minimization local
criterion weight is rising in relation to the lowering of profit maximization local criterion weight. As,
based on analysis of Table 13, we can conclude that C2 is less profitable and considerably less risky
than C1, it seems quite natural that the share of less risky asset should rise in line with increasing the
weight of the risk minimization criterion.

We can see that opposite to the great difference of used local criterion weights, obtained fuzzy
portfolios are mostly similar ones. Nevertheless, the share of more profitable asset (as1) and the
mean value of optimal fuzzy portfolio return are lowering along with decreasing the weight of profit
maximization criterion.

It was shown above (see Examples 9 and 10) that the proposed methods, from those based on the
simple view to those based on the fuzzy portfolio selection problem, may provide widely diversified
portfolios. Nevertheless, in considering the examples, the wide diversification seems to be undesirable
as it does not reflect the specificity of the real investor’s reasoning. This is easy to explain. Based on
the simple reasoning, the asset C3 cannot be included in the portfolio. The assets C3 and C2 have
the same spreads and therefore may be treated as equally risky ones. On the other hand, the mean
value of fuzzy return of C2 is greater than that of C3. Then, as we deal with the normal symmetrical
distributions we can say that in any case the asset C2 should be preferred. Then, it seems to be obvious
that in a presence of the asset C2 the only natural policy of investor is the rejection of the asset C3

from the consideration. It is important that the most of optimal portfolios obtained using the known
models (see Table 14) include the asset C3. The only exception is the Spread min model that provides
the portfolio consist of assets C1 and C2, but opposite to our method, this model does not take into
account the investor’s real preferences concerned with local criteria relative importance (weights).
Further, the mean value of asset C1 return is 40 % greater than that of asset C4 and 5 times greater than
that of asset C5. In this way, a cautious investor investor should reject from the use the assets C4 and
C5 in the portfolio.

Therefore, we can say that the features of our method are logically justified and in line with
common sense. The proposed method based on a simple view on the interval and fuzzy portfolio
selection problem have tangible advantages in comparison with known methods.

Then, we can say that results presented in Tables 15–17 that were obtained based on the proposed
new concept of the local criteria of interval and fuzzy portfolio optimization in the synthesis with the
bicriteria approach, better reflect the nature of portfolio optimization than those obtained using known
methods for the fuzzy portfolio selection.

Table 15. The results of optimization based on the Yager’s aggregation (D1).

No wOOPR wPARisk as1 as2 as3 as4 as5
Mean Value of Optimized

Fuzzy Portfolio Return

1 1 0 1 0 0 0 0 0.250
2 0.95 0.05 0.97 0.03 0 0 0 0.249
3 0.75 0.25 0.86 0.14 0 0 0 0.246
4 0.5 0.5 0.68 0.32 0 0 0 0.241
5 0.35 0.65 0.54 0.46 0 0 0 0.237
6 0.2 0.8 0.36 0.64 0 0 0 0.231
7 0.1 0.9 0.2 0.8 0 0 0 0.226
8 0 1 0 1 0 0 0 0.220
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Table 16. The results of optimization based on the multiplicative aggregation (D2).

No wOOPR wPARisk as1 as2 as3 as4 as5
Mean Value of Optimized

Fuzzy Portfolio Return

1 1 0 1 0 0 0 0 0.25
2 0.4 0.6 1 0 0 0 0 0.25
3 0.325 0.675 0.75 0.25 0 0 0 0.24
4 0.3 0.7 0.42 0.58 0 0 0 0.23
5 0.275 0.725 0.1 0.9 0 0 0 0.22
6 0.25 0.75 0 1 0 0 0 0.22
7 0 1 0 1 0 0 0 0.22

Table 17. The results of optimization based on the weighted sum aggregation (D3).

No wOOPR wPARisk as1 as2 as3 as4 as5
Mean Value of Optimized

Fuzzy Portfolio Return

1 1 0 1 0 0 0 0 0.25
2 0.85 0.15 1 0 0 0 0 0.25
3 0.5 0.5 1 0 0 0 0 0.25
4 0.3 0.7 0 1 0 0 0 0.22
5 0.25 0.75 0 1 0 0 0 0.22
6 0 1 0 1 0 0 0 0.22

As in two previous examples, in Table 18, we present the result of “full” optimization, i.e., obtained
by including the local criteria weights in the set of decision variables.

Table 18. The results of optimization for Example 11.

i C1 C2 C3 C4 C5 Di(~as) wOOPR wPARisk OOPR PARisk asmin asmaxas1 as2 as3 as4 as5

Di

1 0.4 0.39 0.1 0.06 0.05 0.882 0.87 0.13
0.865 0.400 0.05 0.42 0.4 0.39 0.1 0.06 0.05 0.865 1 0

3 0.4 0.39 0.1 0.06 0.05 0.865 1 0

1 0.9 0.04 0.03 0.02 0.01 0.974 0.97 0.03
0.973 0.461 0.01 0.92 0.9 0.04 0.03 0.02 0.01 0.973 1 0

3 0.9 0.04 0.03 0.02 0.01 0.973 1 0

It is seen that in the considered example, the optimal asset shares practically do not depend on
the choice of aggregating method, but significantly depend in the diversification level. The obtained
results reflect the specificity of considered task (see Table 17) manifested in the strong dominance
of profit criterion over risk one. It is important that such a domination is hard to be revealed in the
presiding analysis before the solution of optimization task.

In this paper, we have compered the developed method only with the simple known methods
which can be treated (in some sense) as asymptotic ones, because only the such type of study allows
us to reveal and present transparently the specificity of a new method. The use of more complicated
methods as a base of comparison, e.g., as proposed in [23,34], does not provide such a possibility, as it
is very hard to explain reasonable the inevitable difference between the results of competing methods.
Only that we can say in the such situation is that this difference may considered as an evidence in
favor of our method as more methodologically justified. It is worthy to note that in our approach the
general criterion is formulated in the form of local criteria aggregation the number of which may be
greater that two. Therefore, the proposed method may be easily extended by the inclusion additional
criteria such as stock’s liquidity, transaction costs and so on.
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4. Conclusions

In this paper, it is shown that the variance in the Markowitz’s mean-variance model for the
portfolio selection with its numerous modifications does not always adequately represent the portfolio’s
risk. Therefore, in the current paper, a new but simple view on the portfolio selection problem,
which makes it possible to use a new approach to the formulation of local criteria of portfolio
optimization is introduced. Based on this approach, an alternative treating of portfolio risk as the
measure of possibility to earn unacceptable low returns of portfolio is used. A simple mathematical
formalization of this measure is proposed. In a similar way, the criterion of portfolio’s return
maximization as the measure of possibility to get a maximal return is introduced. Then, the portfolio
optimization problem is formulated as a bicriteria optimization task and using critical examples,
the features of the developed approach are studied. The α-cut representation of fuzzy returns is used.

To validate the proposed method, the results we got using it were compared with those obtained
with the use of fuzzy versions of seven widely reputed methods for portfolio selection. As in the
proposed approach we deal with the bicriteria task, the three most popular methods for local criteria
aggregation are compared using the known example of fuzzy portfolio consist of five assets. Based on
the results of provided analysis, it is established that the features of proposed method are logically
justified and in line with common sense. The proposed method based on the simple view on the interval
and fuzzy portfolio selection problem have tangible advantages in comparison with known methods.

It is shown that the results obtained using the proposed approach to the fuzzy portfolio selection
reflect better the essence of this task than those obtained by widely reputed and popular traditional
methods for the fuzzy portfolio selection.

As the generalized criterion is formulated as the convolution of local criteria, the method may be
easily extended by inclusion of additional criteria such as stock’s liquidity, transaction costs, and so on.
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selection model for Latin America. J. Bus. Econ. Manag. 2019, 20, 225–243. [CrossRef]

19. Li, H.Q.; Yi, Z.H. Portfolio selection with coherent Investor’s expectations under uncertainty. Expert Syst.
Appl. 2019, 133, 49–58. [CrossRef]

20. Mansour, N.; Cherif, M.S.; Abdelfattah, W. Multi-objective imprecise programming for financial portfolio
selection with fuzzy returns. Expert Syst. Appl. 2019, 138, 112810. [CrossRef]

21. Saborido, R.; Ruiz, A.B.; Bermúdez, J.D.; Vercher, E.; Luque M. Evolutionary multi-objective optimization
algorithms for fuzzy portfolio selection. Appl. Soft Comput. 2016, 39, 48–63. [CrossRef]

22. Mashayekhi, Z.; Omrani, H. An integrated multi-objective Markowitz-DEA cross-efficiency model with
fuzzy returns for portfolio selection problem. Appl. Soft Comput. 2016, 38, 1–9. [CrossRef]

23. Chen W.; Li, S.-S.; Zhang, J.; Mehlawat, M.K. A comprehensive model for fuzzy multi-objective portfolio
selection based on DEA cross-efficiency model. Soft Comput. 2020, 24, 2515–2526. [CrossRef]

24. Mehlawat, M.K.; Gupta, P.; Kumar, A.; Yadav, S.; Aggarwal, A. Multi-objective fuzzy portfolio performance
evaluation using data envelopment analysis under credibilistic framework. IEEE Trans. Fuzzy Syst.
2020, 1–11. [CrossRef]

25. Campbell, J.Y. Household Finance. J. Financ. 2006, 61, 1553–1604. [CrossRef]
26. Huang, X.; Yang, T. How does background risk affect portfolio choice: An analysis based on uncertain

mean-variance model with background risk. J. Bank. Financ. 2020, 111, 105726. [CrossRef]
27. Sadjadi, S.J.; Seyedhosseini, S.M.; Hassanlou, K. Fuzzy multi period portfolio selection with different rates

for borrowing and lending. Appl. Soft Comput. 2011, 11, 3821–3826. [CrossRef]
28. Liu, Y.J.; Zhang, W.G.; Xu, W.J. Fuzzy multi-period portfolio selection optimization models using multiple

criteria. Automatica 2012, 48, 3042–3053. [CrossRef]
29. Zhang, X.L.; Zhang, W.G.; Xiao, W.L. Multi-period portfolio optimization under possibility measures. Econ.

Model. 2013, 35, 401–408. [CrossRef]
30. Zhang, W.G.; Liu, Y.J.; Xu, W.J. A new fuzzy programming approach for multi-period portfolio optimization

with return demand and risk control. Fuzzy Sets Syst. 2014, 246, 107–126. [CrossRef]
31. Liu, Y.J.; Zhang, W.G. A multi-period fuzzy portfolio optimization model with minimum transaction lots.

Eur. J. Oper. Res. 2015, 242, 933–941. [CrossRef]
32. Mehlawat, M.K. Credibilistic mean-entropy models for multiperiod portfolio selection with multi-choice

aspiration levels. Inf. Sci. 2016, 345, 9–26. [CrossRef]
33. Li, X.; Jiang, H.; Guo, S.; Ching, W.-ki.; Yu, L. On product of positive L-R fuzzy numbers and its application

to multi-period portfolio selection problems. Fuzzy Optim. Decis. Mak. 2020, 19, 53–79. [CrossRef]
34. Zhang, J.; Li, Q. Credibilistic Mean-Semi-Entropy Model for Multi-Period Portfolio Selection with

Background Risk. Entropy 2019, 21, 944. [CrossRef]
35. Li, B.; Zhu, Y.; Sun, Y.; Aw, G.; Teo, K.L. Multi-period portfolio selection problem under uncertain

environment with bankruptcy constraint. Appl. Math. Model. 2018, 56, 539–550. [CrossRef]
36. Liu, Y.-J.; Zhang, W.-G.; Zhao, X.-J. Fuzzy multi-period portfolio selection model with discounted transaction

costs. Soft Comput. 2018, 22, 177–193. [CrossRef]
37. Parra, M.A.; Terol, A.B.; Uria, M.V.R. A fuzzy goal programming approach to portfolio selection. Eur. J. Oper.

Res. 2001, 133, 287–297. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2008.07.011
http://dx.doi.org/10.1007/s00500-010-0654-3
http://dx.doi.org/10.1016/j.insmatheco.2012.12.002
http://dx.doi.org/10.1016/j.ins.2010.01.012
http://dx.doi.org/10.1007/s40815-018-0533-0
http://dx.doi.org/10.3390/su11092496
http://dx.doi.org/10.3846/jbem.2019.8317
http://dx.doi.org/10.1016/j.eswa.2019.05.008
http://dx.doi.org/10.1016/j.eswa.2019.07.027
http://dx.doi.org/10.1016/j.asoc.2015.11.005
http://dx.doi.org/10.1016/j.asoc.2015.09.018
http://dx.doi.org/10.1007/s00500-018-3595-x
http://dx.doi.org/10.1109/TFUZZ.2020.2969406
http://dx.doi.org/10.1111/j.1540-6261.2006.00883.x
http://dx.doi.org/10.1016/j.jbankfin.2019.105726
http://dx.doi.org/10.1016/j.asoc.2011.02.015
http://dx.doi.org/10.1016/j.automatica.2012.08.036
http://dx.doi.org/10.1016/j.econmod.2013.07.023
http://dx.doi.org/10.1016/j.fss.2013.09.002
http://dx.doi.org/10.1016/j.ejor.2014.10.061
http://dx.doi.org/10.1016/j.ins.2016.01.042
http://dx.doi.org/10.1007/s10700-019-09308-6
http://dx.doi.org/10.3390/e21100944
http://dx.doi.org/10.1016/j.apm.2017.12.016
http://dx.doi.org/10.1007/s00500-016-2325-5
http://dx.doi.org/10.1016/S0377-2217(00)00298-8


Entropy 2020, 22, 932 24 of 25

38. Lai, K.K.; Wang, S.Y.; Xu, J.P.; Zhu, S.S.; Fang, Y. A class of linear interval programming problems and its
application to portfolio selection. IEEE Trans. Fuzzy Syst. 2002, 10, 698–704. [CrossRef]

39. Ida, M. Portfolio selection problem with interval coefficients. Appl. Math. Lett. 2003, 16, 709–713. [CrossRef]
40. Ida, M. Solutions for the portfolio selection problem with interval and fuzzy coefficients. Reliab. Comput.

2004, 10, 389–400. [CrossRef]
41. Giove, S.; Finari, S.; Nardelli, C. An interval portfolio selection problem based on the regret function. Eur. J.

Oper. Res. 2006, 170, 253–264. [CrossRef]
42. Bhatttacharyya, R.; Kar, S.; Majumder, D.D. Fuzzy mean-variance - skewness portfolio selection models by

interval analysis. Comput. Math. Appl. 2011, 61, 126–137. [CrossRef]
43. Mitchell, D.W. Effects of decision interval on optimal intertemporal portfolios with serially correlated returns.

Q. Rev. Econ. Financ. 2001, 41, 427–438. [CrossRef]
44. Li, J.; Xu, J.P. A class of possibilistic portfolio selection models with interval coefficients and its application.

Fuzzy Optim. Decis. Mak. 2007, 6, 123–137. [CrossRef]
45. Liu, S.T. The mean-absolute deviation portfolio selection optimization problem with interval valued returns.

J. Comput. Appl. Math. 2011, 235, 4149–4157. [CrossRef]
46. Liu, Y.-J.; Zhang, W.-G.; Zhang, P. A multy-period portfolio selection optimization model by using interval

analysis. Econ. Model. 2013, 33, 113–119. [CrossRef]
47. Li, X.; Qin, Z. Interval portfolio selection models within the framework of uncertainty theory. Econ. Model.

2014, 41, 338–344. [CrossRef]
48. Kamdem, J.S.; Deffo, C.T.; Fono, L.A. Moments and semimoments for fuzzy portfolio selection. Insur. Math

Econ. 2012, 51, 517–530. [CrossRef]
49. Mansini, R.; Speranza, M.G. An exact approach for portfolio selection with transaction costs and rounds. IIE

Trans. 2005, 37, 919–929. [CrossRef]
50. Rockafellar, R.T.; Uryasev, S. Optimization of conditional valueat-risk. J. Risk 2000, 2, 21–42. [CrossRef]
51. Guo, X.; Chan, R.H.; Wong, W.K.; Zhu, L. Mean–variance, mean–VaR, and mean–CVaR models for portfolio

selection with background risk. Risk Manag. 2019, 21, 73–98. [CrossRef]
52. Wang, M.; Xu, C.; Xu, F.; Xue, H. A mixed 0-1 LP for index tracking problem with CVaR risk constraints.

Ann. Oper. Res. 2012, 196, 591–609. [CrossRef]
53. Xu, Q.; Zhou, Y.; Jiang, C.; Yu, K.; Niu, X. A large CVaR-based portfolio selection model with weight

constraints. Econ. Model. 2016, 59, 436–447. [CrossRef]
54. Naranjo, R.; Peñas, M.S. A fuzzy decision system for money investment in stock markets based on fuzzy

candlesticks pattern recognition. Expert Syst. Appl. 2019, 133, 34–48. [CrossRef]
55. Chourmouziadis, K.; Chourmouziadou, D.K.; Chatzoglou, P.D. Embedding Four Medium-Term Technical

Indicators to an Intelligent Stock Trading Fuzzy System for Predicting: A Portfolio Management Approach.
Comput. Econ. 2020. [CrossRef]

56. Chourmouziadis, K.; Chatzoglou, P.D. An intelligent short term stock trading fuzzy system for assisting
investors in portfolio management. Expert Syst. Appl. 2016, 43, 298–311. [CrossRef]

57. Sevastianov, P. Numerical methods for interval and fuzzy number comparison based on the probabilistic
approach and Dempster-Shafer theory. Inf. Sci. 2007, 177, 4645–4661. [CrossRef]

58. Duan, Y.C. A Multi-Objective Approach to Portfolio Optimization. Rose-Hulman Undergrad. Math. J. 2007,
8, 12.

59. Cerbone, D.; Noe, T. Multi-objective Optimum Design; John Wiley & Sons. Inc.: New York, NY, USA, 1996.
60. Boyd, S.; Vandemberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2003.
61. Mohammadi, S.E.; Mohammadi, E. Robust portfolio optimization based on minimax regret approach in

Tehran stock exchange market. J. Ind. Syst. Eng. 2018, 11, 51–62.
62. Dymova, L.; Sevastjanov, P.; Sevastjanov, D. MCDM in a Fuzzy Setting: Investment Projects Assessment

Application. Int. J. Prod. Econ. 2006, 100, 10–29. [CrossRef]
63. Zimmerman, H.J. Fuzzy Sets, Decision-Making and Expert Systems; Kluver Academic Publishers: Dordrecht,

The Netherlands, 1987.
64. Yager, R.R. Multiple objective decision-making using fuzzy sets. Int. J. -Man-Mach. Stud. 1977, 9, 375–382.

[CrossRef]
65. Silvert, W. Ecological impact classification with fuzzy sets. Ecol. Moddel. 1997, 96, 1–10. [CrossRef]

http://dx.doi.org/10.1109/TFUZZ.2002.805902
http://dx.doi.org/10.1016/S0893-9659(03)00071-5
http://dx.doi.org/10.1023/B:REOM.0000032120.83979.d4
http://dx.doi.org/10.1016/j.ejor.2004.05.030
http://dx.doi.org/10.1016/j.camwa.2010.10.039
http://dx.doi.org/10.1016/S1062-9769(00)00067-3
http://dx.doi.org/10.1007/s10700-007-9005-y
http://dx.doi.org/10.1016/j.cam.2011.03.008
http://dx.doi.org/10.1016/j.econmod.2013.03.006
http://dx.doi.org/10.1016/j.econmod.2014.05.036
http://dx.doi.org/10.1016/j.insmatheco.2012.07.003
http://dx.doi.org/10.1080/07408170591007821
http://dx.doi.org/10.21314/JOR.2000.038
http://dx.doi.org/10.1057/s41283-018-0043-2
http://dx.doi.org/10.1007/s10479-011-1042-9
http://dx.doi.org/10.1016/j.econmod.2016.08.014
http://dx.doi.org/10.1016/j.eswa.2019.05.012
http://dx.doi.org/10.1007/s10614-020-10016-2
http://dx.doi.org/10.1016/j.eswa.2015.07.063
http://dx.doi.org/10.1016/j.ins.2007.05.001
http://dx.doi.org/10.1016/j.ijpe.2004.09.014
http://dx.doi.org/10.1016/S0020-7373(77)80008-4
http://dx.doi.org/10.1016/S0304-3800(96)00051-8


Entropy 2020, 22, 932 25 of 25

66. Zimmermann, H.J.; Zysno, P. Latest connectives in human decision making. Fuzzy Sets Syst. 1980, 4, 37–51.
[CrossRef]

67. Sevastjanov, P.; Figat, P. Aggregation of aggregating modes in MCDM: Synthesis of Type 2 and Level 2 fuzzy
sets. Omega 2007, 35, 505–523. [CrossRef]

68. Fortemps, P.; Roubens, M. Ranking and defuzzification methods based on area compensation. Fuzzy Sets
Syst. 1996, 82, 319–330. [CrossRef]

69. Ali, M.M.; Törn A. Population set-based global algorithms: Some modifications and numerical studies.
Comput. Oper. Res. 2004, 31, 1703–1725. [CrossRef]

70. Inuiguchi, M.; Ramik, J. Possibilistic linear programming: A brief review of fuzzy mathematical
programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets
Syst. 2000, 111, 3–28. [CrossRef]

71. Stancu-Minasian, I.M. Stochastic Programming with Multiple Objective Functions; Kluwer Academic Publishers:
Dordrecht, The Netherlands, 1984.

72. Kataoka, S. A stochastic programming model. Econometrica 1963, 31, 181–196. [CrossRef]
73. Kataoka, S. Stochastic programming: Maximum probability model. Hitotsubashi J. Arts Sci. 1967, 8, 51–59.
74. Inuiguchi, M.; Sakawa, M. Minimax regret solutions to linear programming problems with an interval

objective function. Eur. J. Oper. Res. 1995, 86, 526–536. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0165-0114(80)90062-7
http://dx.doi.org/10.1016/j.omega.2005.09.005
http://dx.doi.org/10.1016/0165-0114(95)00273-1
http://dx.doi.org/10.1016/S0305-0548(03)00116-3
http://dx.doi.org/10.1016/S0165-0114(98)00449-7
http://dx.doi.org/10.2307/1910956
http://dx.doi.org/10.1016/0377-2217(94)00092-Q
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	An Interval-Valued Portfolio Selection Based on a Simple View on the Local Criteria of Portfolio Quality
	The Features of Proposed Criteria for the Valuation of Interval-Valued Portfolios 
	The Bicriteria Interval Valued Portfolio Optimization

	The Bicriteria Optimization of Fuzzy Portfolio
	Conclusions
	References

