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Abstract: Complexity measures in the context of the Integrated Information Theory of consciousness
try to quantify the strength of the causal connections between different neurons. This is done by
minimizing the KL-divergence between a full system and one without causal cross-connections.
Various measures have been proposed and compared in this setting. We will discuss a class of
information geometric measures that aim at assessing the intrinsic causal cross-influences in a
system. One promising candidate of these measures, denoted by ΦCIS, is based on conditional
independence statements and does satisfy all of the properties that have been postulated as desirable.
Unfortunately it does not have a graphical representation, which makes it less intuitive and difficult
to analyze. We propose an alternative approach using a latent variable, which models a common
exterior influence. This leads to a measure ΦCII , Causal Information Integration, that satisfies all of
the required conditions. Our measure can be calculated using an iterative information geometric
algorithm, the em-algorithm. Therefore we are able to compare its behavior to existing integrated
information measures.

Keywords: complexity; integrated information; causality; conditional independence; em-algorithm

1. Introduction

The theory of Integrated Information aims at quantifying the amount and quality of consciousness
of a neural network. It was originally proposed by Tononi and went through various phases of
evolution, starting with one of the first papers “Consciousness and Complexity” [1] in 1999 to
“Consciousness as Integrated Information—a Provisional Manifesto” [2] in 2008 and Integrated
Information Theory (IIT) 3.0 [3] in 2014 to ongoing research. Although important parts of the
methodology of this theory changed or got extended the two key concepts determining consciousness
that virtually stayed fixed are “Information” and “Integration”. Information refers to the number of
different states a system can be in and Integration describes the amount to which the information
is integrated among different parts of it. Tononi summarizes this idea in Reference [2] with the
following sentence:

In short, integrated information captures the information generated by causal interactions in the
whole, over and above the information generated by the parts.

Therefore Integrated Information can be seen as a measure of the systems complexity. In this context it
belongs to the class of theories that define complexity as to what extent the whole is more than the
sum of its parts.

There are various ways to define a split system and the difference between them. Therefore,
there exist different branches of complexity measures in the context of Integrated Information. The most
recent theory, IIT 3.0 [3], goes far beyond the original measures and includes a different level of
definitions corresponding to the quality of the measured consciousness, including the maximally
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irreducible conceptual structure (MICS) and the integrated conceptual information. In order to
focus on the information geometric aspects of IIT, we follow the strategy of Oizumi et al. [4] and
Amari et al. [5], restricting attention to measuring the integrated information in discrete n-dimensional
stationary Markov processes from an information geometric point of view.

In detail we will measure the distance between the full and the split system using the
KL-divergence as proposed in Reference [6], published in Reference [7]. This framework was
further discussed in Reference [8]. Oizumi et al. [4] and Amari et al. [5] summarize these ideas
and add a Markov condition and an upper bound to clarify what a complexity measure should satisfy.
The Markov condition intends to model the removal of certain cross-time connections, which we call
causal cross-connections. These connections are the ones that integrate information among the different
nodes across different points in time. The upper bound was originally proposed in Reference [9] and
is given by the mutual information, which aims at quantifying the total information flow from one
timestep to the next. These conditions are defined as necessary and do not specify a measure uniquely.
We will discuss the conditions in the next section.

Additionally Oizumi et al. [4] and Amari et al. [5] introduce one measure that satisfies all of these
requirements. This measure is described by conditional independence statements and will be denoted
here by ΦCIS. We will introduce ΦCIS along with two other existing measures, namely Stochastic
Interaction ΦSI [7] and Geometric Integrated Information ΦG [10]. The measure ΦSI is not bounded
from above by the mutual information and ΦG does not satisfy the postulated Markov condition.

Although ΦCIS fits perfectly in the proposed framework, this measure does not correspond to
a graphical representation and it is therefore difficult to analyze the causal nature of the measured
information flow. We focus on the notion of causality defined by Pearl in Reference [11], in which
the correspondence between conditional independence statements and graphs, for instance DAGs or
more generally chain graphs, is a key concept. Moreover, we demonstrate that it is not possible to
express the conditional independence statements corresponding to ΦCIS using a chain graph even
after adding latent variables. Following the reasoning of Pearls causality theory, however, this would
be a desirable property.

The main purpose of this paper is to propose a more intuitive approach that ensures the
consistency between graphical representation and conditional independence statements. This is
achieved by using a latent variable that models a common exterior influence. Doing so leads to a new
measure, which we call Causal Information Integration ΦCII . This measure is specifically created to
only measure the intrinsic causal cross-influences in a setting with an unknown exterior influence
and it satisfies all the required conditions postulated by Oizumi et al. To assume the existence of an
unknown exterior influence is not unreasonable, in fact one point of criticism concerning ΦSI is that
this measure does not account for exterior influences and therefore measures them erroneously as
internal, see Section 6.9 in Reference [10]. In a setting with known external influences, these can be
integrated in the model as visible variables. This leads to a model discussed in Section 2.1.1 that we
call ΦT , which is an upper bound for ΦCII .

We discuss the relationships between the introduced measures in Section 2.1.2 and present a
way of calculating ΦCII by using an iterative information geometric algorithm, the em-algorithm
described in Section 2.1.3. This algorithm is guaranteed to converge to a minimum, but this
might be a local minimum. Therefore we have to run the algorithm multiple times to find a global
minimum. Utilizing this algorithm we are able to compare the behavior of ΦCII to existing integrated
information measures.

Integrated Information Measures

Measures corresponding to Integrated Information investigate the information flow in a system
from a time t to t` 1. This flow is represented by the connections from the nodes Xi in t to the nodes
Yi in t` 1, i P t1, . . . , nu as displayed in Figure 1.
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Figure 1. The fully connected system for n “ 2 and n “ 3.

The systems are modeled as discrete, stationary, n-dimensional Markov processes pZtqtPN

X “ pX1, . . . , Xnq “ pX1,t, . . . , Xn,tq, Y “ pY1, . . . , Ynq “ pX1,t`1, . . . , Xn,t`1q, Z “ pX, Yq

on a finite set Z ‰ H, which is the Cartesian product of the sample spaces of Xi i P t1 . . . nu,
denoted by Xi

Z “ X ˆY “
n

ą

i“1

Xi ˆ

n
ą

i“1

Yi.

It is possible to apply the following methods to non-stationary distributions, but this assumption in
addition to the process being Markovian allows us to restrict the discussion to one time step.

Let MPpZq be set of distributions that belong to these Markov processes.
Denote the complement of Xi in X by XIztiu “ pX1, . . . , Xi´1, Xi`1, . . . , Xnq with I “ t1, . . . , nu.

Corresponding to this notation xIztiu P XIztiu describes the elementary events of XIztiu. We will use
the analogue notation in the case of Y and we will write z P Z instead of px, yq P X ˆ Y . The set
of probability distributions on Z will be denoted by PpZq. Throughout this article we will restrict
attention to strictly positive distributions.

The core idea of measuring Integrated Information is to determine how much the initial system
differs from one in which no information integration takes place. The former will be called a “full”
system, because we allow all possible connections between the nodes, and the latter will be called
a “split” system. Graphical representations of the full systems for n “ 2, 3 and their connections are
depicted in Figure 1. In this article we are using graphs that describe the conditional independence
structure of the corresponding sets of distributions. An introduction to those is given in Appendix A.

Graphs are not only a tool to conveniently represent conditional independence statements,
but the connection between conditional independence and graphs is a core concept of Pearls causality
theory. The interplay between graphs and conditional independence statements provides a consistent
foundation of causality. In Reference [11] Section 1.3 Pearl emphasizes the importance of a graphical
representation with the following statement:

It seems that if conditional independence judgments are by-products of stored causal relationships,
then tapping and representing those relationships directly would be a more natural and more reliable
way of expressing what we know or believe about the world. This is indeed the philosophy behind
causal Bayesian networks.

Therefore, measures of the strength of causal cross-connections should be based on split models,
that have a graphical representation.

Following the concept introduced in References [6,7], the difference between the measures
corresponding to the full and split systems will be calculated by using the KL-divergence.

Definition 1 (Complexity). Let M be a set of probability distributions on Z corresponding to a split system.
Then we minimize the KL-divergence between M and the distribution of the fully connected system P̃ to calculate
the complexity

ΦM “ inf
QPM

DZ pP̃ ‖ Qq “
ÿ

zPZ
P̃pzq log

P̃pzq
Qpzq

.
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Minimizing the KL-divergence with respect to the second argument is called m-projection or
rI-projection. Hence we will call P‹ with

P‹ “ arg inf
QPM

DZ pP̃ ‖ Qq

the projection of P̃ to M.
The question remains how to define the split model M. We want to measure the information that

gets integrated between different nodes in different points in time. In Figure 1 these are the dashed
connections, also called cross-influences in Reference [4]. We will refer to the dashed connections as
causal cross-connections.

In order to ensure that these connections are removed in the split system, the authors of
Reference [4] and Reference [5] argue that Yj should be independent of Xi given XIztiu, i ‰ j, leading
to the following property.

Property 1. A valid split system should satisfy the Markov condition

QpXi, Yj | XIztiuq “ QpXi | XIztiuqQpYj | XIztiuq, i ‰ j, (1)

with Q P PpZq. This can also be written in the following form

Yj KK Xi|XIztiu. (2)

Now we take a closer look at the remaining connections. The dotted lines connect nodes belonging
to the same point in time. These connections between the Yis might result from common internal
influences, meaning a correlation between the Xis passed on to the next point in time via the dashed
or solid connections. Additionally Amari points out in Section 6.9 in Reference [10] that there might
exist a common exterior influence on the Yis. Although the measured integrated information should
be internal and independent of external influences, the system itself is in general not completely
independent of its environment.

Since we want to measure the amount of integrated information between t and t ` 1,
the distribution in t, and therefore the connection between the Xis, should stay unchanged in the split
system. The dotted connections between the Yis play an important role in Property 2. For this property,
we will consider the split system in which the solid and dashed connections are removed.

The solid arrows represent the influence of a node in t on itself in t` 1 and removing these arrows,
in addition to the causal cross-connections, leads to a system with completely disconnected points in
time as shown on the right in Figure 2. The distributions corresponding to this split system are

MI “ tQ P PpZq|Qpzq “ QpxqQpyq,@z “ px, yq P Zu

and the measure ΦI is given by the mutual information IpX; Yq, which is defined in the following way

ΦI “ IpX; Yq “
ÿ

zPZ
Ppx, yq log

ˆ

Ppx, yq
PpxqPpyq

˙

.

Since there is no information flow between the time steps Oizumi et al. argue in Reference [4] that an
integrated information measure should be bounded from above by the mutual information.

Property 2. The mutual information should be an upper bound for an Integrated Information measure

ΦM “ inf
QPM

DZ pP̃ | Qq ď IpX; Yq.



Entropy 2020, 22, 1107 5 of 32

Oizumi et al. [4,9] and Amari et al. [5] state that this property is natural, because an Integrated
Information measure should be bounded by the total amount of information flow between the different
points in time. The postulation of this property led to a discussion in Reference [12]. The point of
disagreement concerns the edge between the Yis. On the one hand this connection takes into account
that the Yis might have a common exterior influence that affects all the Yis, as pointed out by Amari in
Reference [10]. This is symbolized by the additional node W in Figure 2 and this should not contribute
to the value of Integrated Information between the different points in time.

X1

X2

Y1

Y2

X1

W

X2

Y1

Y2

Figure 2. Interior and exterior influences on Y in the full and the split system corresponding to ΦI .

On the other hand, we know that if the Xis are correlated, then the correlation is passed to the Yis
via the solid and dashed arrows. The edges created by calculating the marginal distribution on Y also
contain these correlations. The question now is, how much of these correlations integrate information
in the system and should therefore be measured. Kanwal et al. discuss this problem in Reference [12].
They distinguish between intrinsic and extrinsic influences that cause the connections between the
Yis in the way displayed in Figure 2. By calculating the split system for ΦI the edge between the
Yis might compensate for the solid arrows and common exterior influences, but also for the dashed,
causal cross-connections, as shown in Figure 2 on the right. Kanwal et al. analyze an example of a full
system without a common exterior influence with the result that there are cases in which a measure
that only removes the causal cross-connections has a larger value than ΦI . This is only possible if the
undirected edge between the Yis compensates a part of the causal cross-connections. Hence ΦI does
not measure all the intrinsic causal cross-influences. Therefore Kanwal et al. question the use of the
mutual information as an upper bound.

Then again, we would like to contribute a different perspective. Admitting to Property 2 does
not necessarily mean that the connections between the Yis are fixed. It may merely mean that MI
is a subset of the set of split distributions. We will see that the measures ΦCIS and ΦCII do satisfy
Property 2 in this way. Although the argument that ΦI measures all the intrinsic influences is no longer
valid, satisfying Property 2 is still desirable in general. Consider an initial system with the distribution
P̃pzq “ P̃pxqP̃pyq, @z P Z . This system has a common exterior influence on the Yis and no connection
between the different points in time. Since there is no information flow between the points in time,
a measure for Integrated Information ΦM should be zero for all distributions of this form. This is the
case exactly when MI ĎM, hence when ΦI is an upper bound for ΦM. In order to emphasize this
point we propose a modified version of Property 2.

Property 3. The set MI should be a subset of the split model M corresponding to the Integrated Information
measure ΦM. Then the inequality

ΦM “ inf
QPM

DZ pP̃ | Qq ď IpX; Yq

holds.

Note that the new formulation is stronger, hence Property 2 is a consequence of Property 3.
Every measure discussed here that satisfies Property 2 also fulfills Property 3. Therefore we will keep
referring to Property 2 in the following sections.
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Figure 3 displays an overview over the different measures and whether they satisfy Properties 1
and 2.

Property 1 Property 2
Upper bound: ΦIConditional Independence:

X1

ΦGΦSI

ΦCIS

ΦCII

ΦCIS

ΦCII

X2

Y1

Y2Y1 KK X2|X1, Y2 KK X1|X2

X1

X2

Y1

Y2

X1

X2

Y1

Y2

MCIS “ tQ P PpZq|
QpYi|Xq “ QpYi|Xiq,@i P t1, 2uu

X2

X1 Y1

Y2

W

Figure 3. The different measures and their properties in the case of n “ 2.

The first complexity measure that we are discussing does not fulfill Property 2. It is called
Stochastic Interaction and was introduced by Ay in Reference [6] in 2001, later published in
Reference [7]. Barrett and Seth discuss it in Reference [13] in the context of Integrated Information.
In Reference [5] the corresponding model is called “fully split model”.

The core idea is to allow only the connections among the random variables in t and additionally
the connections between Xi and Yi, meaning the same random variable in different points in time.
The last ones correspond to the solid arrows in Figure 1. A graphical representation for n “ 2 can be
found in the first column of Figure 3.

Definition 2 (Stochastic Interaction). The set of distributions belonging to the split model in the sense of
Stochastic Interaction can be defined as

MSI “

#

Q P PpZq | QpY | Xq “
n
â

i“1
QpYi | Xiq

+

and the complexity measure can be calculated as follows

ΦSI “ inf
QPMSI

DZ pP̃ ‖ Qq “
n
ÿ

i“1

HpYi | Xiq ´ HpY | Xq,

as shown in Reference [7]. In the definition above, H denotes the conditional entropy

HpYi | Xiq “ ´
ÿ

xiPXi

ÿ

yiPYi

P̃pxi, yiq log P̃pyi|xq.

This does not satisfy Property 2 and therefore the corresponding graph is displayed only in the
first column of Figure 3. Amari points out in Reference [10] that this measure is not applicable in the
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case of an exterior influences on the Yis. Such an influence can cause the Yis to be correlated even in
the case of independent Xis and no causal cross-connections.

Consider a setting without exterior influences, then ΦSI quantifies the strength of the causal
cross-connections alone and is therefore a reasonable choice for an Integrated Information measure.
Accounting for an exterior influence that does not exist leads to a split system, which compensates a
part of the removal of the causal cross-connections so that the resulting measure does not quantify all
of the interior causal cross-influences.

To force the model to satisfy Property 2, one can add the interaction between Yi and Yj,
which results in the measure Geometric Integrated Information [10].

Definition 3 (Geometric Integrated Information). The graphical model corresponding to the graph in the
second row and first column of Figure 3 is the set

MG “

#

P P PpZq|D f1, . . . , fn`2 P RZ
` s.t. Ppzq “ fn`1pxq fn`2pyq

n
ź

i“1

fipxi, yiq

+

and the measure is defined as
ΦG “ inf

QPMG
DZ pP̃ ‖ Qq.

MG is called the diagonally split model in Reference [5]. This is not causally split in the sense
that the corresponding distributions in general do not satisfy Property 1. It can be seen by analyzing
the conditional independence structure of the graph as described in Appendix A. By introducing the
edges between the Yis as fixed, ΦG might force these connections to be stronger than they originally
are. A result of this might be that an effect of the causal cross-connections gets atoned for by the new
edge. We discussed this above in the context of Property 2.

This measure has no closed form solution, but we are able to calculate the corresponding split
system with the help of the iterative scaling algorithm (see, for example, Section 5.1 in Reference [14]).

The first measure that satifies both properties is called “Integrated Information” [4], its model is
referred to by “Causally split model” in Reference [5] and it is derived from the first property. Since we
are able to define it using conditional independence statements, we will denote it by ΦCIS. It requires
Yi to be independent of XIztiu given Xi.

Definition 4 (Integrated Information). The set of distributions, that belongs to the split system corresponding
to integrated information, is defined as

MCIS “ tQ P PpZq | QpYi | Xq “ QpYi | Xiq, for all i P t1, . . . , nuu (3)

and this leads to the measure
ΦCIS “ inf

QPMCIS
DZ pP̃ ‖ Qq.

We write the requirements to the distributions in (3) as conditional independent statements

Yi KK XIztiu | Xi.

A detailed analysis of probabilistic independence statements can be found in Reference [15].
Unfortunately, these conditional independence statements can not be encoded in terms of a chain
graph in general. The definition of this measure arises naturally from Property 1 by applying the
relation (1)

QpXi, Yj | XIztiuq “ QpXi | XIztiuqQpYj | XIztiuq, i ‰ j



Entropy 2020, 22, 1107 8 of 32

to all pairs i, j P t1, . . . , nu. This leads to

QpYj|Xq “ QpYj|Xjq, (4)

as shown in Appendix B.
Note that this implies that every model satisfying Property 1 is a submodel of MCIS. In order to

show that ΦCIS satisfies Property 1, we are going to rewrite the condition in Property 1 as

QpYj|Xq “ QpYj|XIztiuq.

The definition of MCIS allows us to write

QpYj|Xq “ QpYj|Xjq “ QpYj|XIztiuq,

for Q PMCIS. Therefore ΦCIS satisfies Property 1 and since MI meets the conditional independence
statements of Property 1 the relation MI ĎMCIS holds and ΦCIS fulfills Property 2.

In Reference [4] Oizumi et al. derive an analytical solution for Gaussian variables, but there does
not exist a closed form solution for discrete variables in general. Therefore they use Newton’s method
in the case of discrete variables.

Due to the lack of a graphical representation, it is difficult to interpret the causal nature of the
elements of MCIS. In Example 1 we will see a type of model that is part of MCIS, but which has a
graphical representation. This model does not lie in the set of Markovian processes discussed in this
article MPpZq. Hence this implies that not all the split distributions in MCIS arise from removing
connections from a full distribution, as depicted in Figure 1.

2. Causal Information Integration

Inspired by the discussion about extrinsic and intrinsic influences in the context of Property 2, we
now utilize the notion of a common exterior influence to define the measure ΦCII , which we call Causal
Information Integration. This measure should be used in case of an unknown exterior influence.

2.1. Definition

Explicitly including a common exterior influence allows us to avoid the problems of a fixed edge
between the Yis discussed earlier. This leads to the graphs in Figure 4.

X1

W

X2

Y1

Y2

X1

X3

X2

Y1

Y3

Y2

W

Figure 4. Split systems with exterior influences for n “ 2 and n “ 3.

The factorization of the distributions belonging to these graphical models is the following one

Ppz, wq “ Ppxq
n
ź

i“1

Ppyi|xi, wqPpwq.

By marginalizing over the elements of W we get a distribution on Z defining our new model.



Entropy 2020, 22, 1107 9 of 32

Definition 5 (Causal Information Integration). The set of distributions belonging to the marginalized model
for |Wm| “ m is

Mm
CII “

$

&

%

P P PpZq|DQ P PpZ ˆWmq : Ppzq “
m
ÿ

j“1

QpxqQpwjq

n
ź

i“1

Qpyi|xi, wjq

,

.

-

.

We will define the split model for Causal Integrated Information as the closure (denoted by a bar) of the union
of Mm

CIIs:

MCII “
ď

mPN
Mm

CII . (5)

This leads to the measure
ΦCII “ inf

QPMCII
DZ pP̃ ‖ Qq.

Since the split system MCII was defined by utilizing graphs, we are able to use the graphical
representation to get a more precise notion of the cases in which ΦCIIpP̃q “ 0 holds. In those cases the
initial distribution can be completely explained as a limit of marginalized distributions without causal
cross-influences and with exterior influences.

Proposition 1. The measure ΦCIIpP̃q is 0 if and only if there exists a sequence of distributions Qm P PpZq
with the following properties.

1. P̃ “ lim
mÑ8

Qm.

2. For every m P N there exists a distribution Q̂m P PpZ ˆWmq that has Z marginals equal to Qm

Qmpzq “ Q̂mpzq, @z P Z .

Additionally Q̂m factors according to the graph corresponding to the split system

Q̂mpz, wq “ Q̂pxqm
n
ź

i“1

Q̂mpyi|xi, wqQ̂mpwq, @pz, wq P Z ˆWm.

In order to show that ΦCII satisfies the conditional independence statements in Property 1, we will
calculate the conditional distributions Ppyi|xiq and Ppyi|xq of

Ppzq “
ÿ

w
Ppxq

n
ź

j“1

Ppyj|xj, wqPpwq.

This results in

Ppyi|xiq “

ř

yIztiu

ř

xIztiu

ř

w
Ppxq

n
ś

i“j
Ppyj|xj, wqPpwq

Ppxiq
“

ř

xIztiu

ř

w
PpxqPpyi|xi, wqPpwq

Ppxiq
“
ÿ

w
Ppyi|xi, wqPpwq

Ppyi|xq “

ř

yIztiu

ř

w
Ppxq

n
ś

i“j
Ppyj|xj, wqPpwq

Ppxq
“
ÿ

w
Ppyi|xi, wqPpwq

for all z P Z . Hence Ppyi|xiq “ Ppyi|xq, for every P PMm
CII , m P N. Since every element in P̂ PMCII is

a limit point of distributions that satisfy the conditional independence statements, P̂ also fulfills those.
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A proof can be found in Reference [16] Proposition 3.12. Therefore ΦCII satisfies Property 1 and the set
of all such distributions is a subset of MCIS

MCII ĎMCIS.

We are able to represent the marginalized model by using the methods from Reference [17]. Up to
this point we have been using chain graphs. These are graphs consisting of directed and undirected
edges such that there are no semi-directed cycles as described in Appendix A. In order to be able to gain
a graph that represents the conditional independence structure of the marginalized model, we need
the concept of chain mixed graphs (CMGs). In addition to the directed and undirected edges belonging
to chain graphs, chain mixed graphs also have arcs Ø. Two nodes connected by an arc are called
spouses. The connection between spouses appears when we marginalize over a common influence,
hence spouses do not have a directed information flow from one node to the other but are affected by
the same mechanisms. The Algorithm A3 from Reference [17] allows us to transform a chain graph
with latent variables into a chain mixed graph that represents the conditional independence structures
of the marginalized chain graph. Using this on the graphs in Figure 4 leads to the CMGs in Figure 5.
Unfortunately, there exists no new factorization corresponding to the CMGs known to the authors.

X1

X2

Y1

Y2

X1

X3

X2

Y1

Y3

Y2

Figure 5. Marginalized Model for n “ 2 and n “ 4.

In order to prove that ΦCII satisfies Property 2, we will show that MI is a subset of MCII . At first
we will consider the following subset of MCII

Mm
CI “

$

&

%

P P PpZq|DQ P PpZ ˆWmq : Ppzq “
m
ÿ

j“1

QpxqQpwjq

n
ź

i“1

Qpyi|wjq

,

.

-

MCI “
ď

mPN
Mm

CI ,

where we remove the connections between the different stages, as shown in Figure 6.

X1

W

X2

Y1

Y2

X1

X3

X2

Y1

Y3

Y2

W

Figure 6. Submodels of the split models with exterior influences for n “ 2 and n “ 3.

Now X and Y are independent of each other

Qpzq “ Qpxq ¨Qpyq

with

Qpyq “
ÿ

w
Qpwq

n
ź

i“1

Qpyi|wq

for Q P Mm
CI and since independence structures of discrete distributions are preserved in the limit

we have MCI ĎMI . In order to gain equality it remains to show that QpYq can approximate every
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distribution on Y if the state space of W is sufficiently large. These distributions are mixtures of discrete
product distributions, where

n
ź

i“1

Qpyi|wq

are the mixture components and Qpwq are the mixture weights. Hence we are able to use the
following result.

Theorem 1 (Theorem 1.3.1 from Reference [18]). Let q be a prime power. The smallest m for which any
probability distribution on t1, . . . , qu can be approximated arbitrarily well as mixture of m product distributions
is qn´1.

Universal approximation results like the theorem above may suggest that the models MCII and
MCIS are equal. However we will present numerically calculated examples of elements belonging to
MCIS, but not to MCII , even with an extremely large state space. We will discuss this matter further
in Section 2.1.2.

In conclusion, ΦCII satisfies Property 1 and 2.
Note that using ΦCII in cases without an exterior influence might not capture all the internal

cross-influences, since the additional latent variable can compensate some of the difference between
the initial distribution and the split model. This can only be avoided when the exterior influence is
known and can therefore be included in the model. We will discuss that case in the next section.

2.1.1. Ground Truth

The concept of an exterior influence suggests that there exists a ground truth in a larger model in
which W is a visible variable. This is shown in Figure 7 on the right.

X1

W

X2

Y1

Y2

X1

W

X2

Y1

Y2

Figure 7. The graphs corresponding to E and E f (right).

Assuming that we know the distribution of the whole model, we are able to apply the concepts
discussed above to define an Integrated Information measure ΦT on the larger space. This allows us to
really only remove the causal cross-connections as shown in Figure 7 on the left. Thus we can interpret
ΦT as the ultimate measure of Integrated Information, if the ground truth is available. Note that using
the measure ΦSI in the setting with no external influences is a special case of ΦT .

The set of distributions belonging to the larger, fully connected model will be called E f and the
set corresponding to the graph on the left of Figure 7 depicts the split system which will be denoted by
E . Since W is now known, we are able to fix the state space W to its actual size m.

E “
#

P P PpZ ˆWmq | Ppz, wq “ Ppxq
n
ź

i“1

Ppyi|xi, wqPpwq, @pz, wq P Z ˆWm, |W | “ m

+

E f “

#

P P PpZ ˆWmq | Ppz, wq “ Ppxq
n
ź

i“1

Ppyi|x, wqPpwq, @pz, wq P Z ˆWm, |W | “ m

+

.
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Note that E is the set of all the distributions that result in an element of MCII after marginalization
over Wm

Mm
CII “

$

&

%

P P PpZq|DQ P Em : Ppzq “
m
ÿ

j“1

QpxqQpwjq

n
ź

i“1

Qpyi|xi, wjq

,

.

-

.

Calculating the KL-divergence between P P E f and E results in the new measure.

Proposition 2. Let P P E f . Minimizing the KL-divergence between P and E leads to

ΦT “ inf
QPE

DZˆWmpP ‖ Qq “
ÿ

z,w
Ppz, wq log

ś

i
Ppyi|x, wq

ś

i
Ppyi|xi, wq

“
ÿ

i

IpYi; XIztiu|Xi, Wq.

In the definition above IpYi; XIztiu|Xi, Wq is the conditional mutual information defined by

IpYi; XIztiu|Xi, Wq “
ÿ

yi ,x,w
Ppyi, x, wq log

Ppyi, xIztiu|xi, wq
Ppyi|xi, wqPpxIztiu|xi, wq

.

It characterizes the reduction of uncertainty in Yi due to XIztiu when W and Xi are given. Therefore
this measure decomposes to a sum in which each addend characterizes the information flow towards
one Yi. Writing this as conditional independence statements, ΦT is 0 if and only if

Yi KK XIztiu|tXi, Wu.

Ignoring W would lead exactly to the conditional independence statements in Equation (3). For a more
detailed description of the conditional mutual information and its properties, see Reference [19].

Furthermore, ΦT “ 0 if and only if the initial distribution P factors according to the graph that
belongs to E . This follows from Proposition 2 and the fact that the KL-divergence is 0 if and only if
both distributions are equal. Hence this measure truly removes the causal cross-connections.

Additionally, by using that W KK X, we are able to split up the conditional mutual information
into a part corresponding to the conditional independence statements of Property 1 and another
conditional mutual information.

IpYi; XIztiu|Xi, Wq “
ÿ

yi ,x,w
Ppwq log

˜

Ppyi, xIztiu|xiq

Ppyi|xiqPpxIztiu|xiq
¨

Ppyi, xiqPpxqPpyi, x, wqPpxi, wq
Ppyi, xqPpxiqPpyi, xi, wqPpx, wq

¸

“ IpYi; XIztiu|Xiq `
ÿ

yi ,x,w
Ppwq log

Ppyi, xiqPpxqPpyi, x, wqPpxi, wq
Ppyi, xqPpxiqPpyi, xi, wqPpx, wq

“ IpYi; XIztiu|Xiq `
ÿ

yi ,x,w
Ppwq log

Ppw, xIztiu|yi, xiq

Ppw|yi, xiqPpxIztiu|yi, xiq

“ IpYi; XIztiu|Xiq ` IpW; XIztiu|Yi, Xiq.

Since the conditional mutual information is non-negative, ΦT is 0 if and only if the conditional
independence statements of Equation (3) hold and additionally the reduction of uncertainty in W due
to XIztiu given Yi, Xi is 0.

In general, we do not know what the ground truth of our system is and therefore we have to
assume that W is a hidden variable. This leads us back to ΦCII . Minimizing over all possible W
might compensate a part of the causal information flow. One example, in which accounting for an
exterior influence that does not exist leads to a value smaller than the true integrated information,
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was discussed earlier in the context of Property 2. There we refer to an example in Reference [12]
where ΦSI exceeds ΦI in a setting without an exterior influence. Similarly, ΦCII is smaller or equal to
the true value ΦT .

Proposition 3. The new measure ΦT is an upper bound for ΦCII

ΦCII ď ΦT .

Hence by assuming that there exists a common exterior influence, we are able to show that ΦCII
is bounded from above by the true value, that measures all the intrinsic cross-influences. We are able
to observe this behavior in Section 2.2.2.

2.1.2. Relationships between the Different Measures

Now we are going to analyze the relationship between the different measures ΦSI , ΦG, ΦCIS and
ΦCII . We will start with ΦG and ΦCII . Previously we already showed that ΦCII satisfies Property 1
and since ΦG does not satisfy Property 1, we have

MG ĘMCII .

To evaluate the other inclusion, we will consider the more refined parametrizations of elements
P PMm

CII and Q PMG as defined A1. These are

Ppzq “ Ppxq f2px1, y1qg2px2, y2q
ÿ

w
Ppwq f1pw, y1q f3px1, y1, wqg1pw, y2qg3px2, y2, wq

“ Ppxq f2px1, y1qg2px2, y2qφpx1, x2, y1, y2q

Qpzq “ hn`1pxqhn`2pyq
n
ź

i“1

hipyi, xiq,

where f1, f2, f3, g1, g2, g3, h1, h2, h3, h4 are non-negative functions such that P, Q P PpZq and

φpx1, x2, y1, y2q “
ÿ

w
Ppwq f1pw, y1q f3px1, y1, wqg1pw, y2qg3px2, y2, wq.

Since φ depends on more than Y1 and Y2, Ppzq does not factorize according to MG in general.
Hence MCII ĘMG holds.

Furthermore, looking at the parametrizations allows us to identify a subset of distributions that
lies in the intersection of MG and MCII . Allowing P to only have pairwise interactions would lead to

Ppzq “ Ppxq f̃2px1, y1qg̃2px2, y2q
ÿ

w
Ppwq f̃1pw, y1qg̃1pw, y2q

“ Ppxq f̃2px1, y1qg̃2px2, y2qφ̃py1, y2q,

with the non-negative functions f̃1, f̃2, g̃1, g̃2 such that P P PpZq and

φ̃py1, y2q “
ÿ

w
Ppwq f̃1pw, y1qg̃1pw, y2q.

This P is an element of MG XMCII .
In the next part we will discuss the relationship between MCII and MCIS. The elements in MCII

satisfy the conditional independence statements of Property 1, therefore

MCII ĎMCIS.
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Previously we have seen that making the state space of W large enough can approximate a distribution
between the Yis, see Theorem 1. This gives the impression that MCII and MCIS coincide. However,
based on numerically calculated examples, we have the following conjecture.

Conjecture 1. It is not possible to approximate every distribution Q PMCIS with arbitrary accuracy by an
element of P PMCII . Therefore, we have that

MCII ĹMCIS.

The following example strongly suggests this conjecture to be true.

Example 1. Consider the set of distributions that factor according to the graph in Figure 8

NCIS “ tP P PpZq|Ppzq “ Ppx1qPpx2qPpy1|x1, y2qPpy2qu.

X1

X2

Y1

Y2

Figure 8. Graph of the model NCIS.

This model satisfies the conditional independence statements of Property 1 and is therefore a subset of the
model MCIS. In this case X1 and X2 are independent of each other, hence from a causal perspective the influence
of Y2 on Y1 should be purely external. Therefore we try to model this with a subset of MCII

NCII “
ď

mPN
Nm

CII ,

Nm
CII “

$

&

%

P P PpZq|DQ P PpZ ˆWmq : Ppzq “ Qpx1qQpx2q

m
ÿ

j“1

Qpy1|x1, wjqQpy2|wjqQpwjq

,

.

-

(6)

and this corresponds to Figure 9.

X1

W

X2

Y1

Y2

Figure 9. Graph of the model NCII .

Using the em-algorithm described in Section 2.1.3 we took 500 random elements of NCIS and
calculated the closest element of NCII by using the minimum KL-divergence of 50 different random
input distributions in each run. The results are displayed in Table 1.



Entropy 2020, 22, 1107 15 of 32

Table 1. The results of the em-algorithm between NCIS and NCII .

|W | Minimum Maximum Arithmetic Mean

2 0.011969035529826939 0.5028091152589176 0.15263592877594967
3 0.021348311360946 0.5499395859771526 0.1538653506807848
4 0.014762084688030863 0.3984635189946462 0.15139198568055212
8 0.017334311629729246 0.4383731978333986 0.15481967618112732
16 0.024306996171092318 0.4238222051787452 0.1490336847067273

300 0.016524177216064712 0.47733473380366764 0.15493896625208842

This is an example of an element lying in MCIS, which cannot be approximated by an element
in MCII .

Now we are going to look at this example from the causal perspective. Proposition 1 states
that ΦCIIpP̃q is 0 if and only if P̃ is the limit of a sequence of distributions in MCII corresponding
to distributions on the extended space that factor according to the split model. Hence a distribution
resulting in ΦCII ą 0 cannot be explained by a split model with an exterior influence. Taking into
account that MCIS does not correspond to a graph, we do not have a similar result describing the
distributions for which ΦCIS “ 0. Nonetheless, by looking at the graphical model NCIS, we are able to
discuss the causal structure of a submodel of MCIS, a class of distributions for which ΦCIS “ 0 holds.

If we trust the results in Table 1, this would imply that the influence from Y2 to Y1 is not purely
external, but that there suddenly develops an internal influence in timestep t` 1 that did not exist in
timestep t. Therefore the distributions in NCIS do not belong to the stationary Markovian processes
MPpZq, depicted in Figure 1, in general. For these Markovian processes the connections between
the Yis arise from correlated Xis or external influences, as pointed out by Amari in Section 6.9 [10].
So from a causal perspective NCIS does not fit into our framework. Hence the initial distribution P̃,
which corresponds to a full model, will in general not be an element of NCIS. However, the projection
of P̃ to MCIS might lie in NCIS as illustrated in Figure 10.

MPpZq

P̃‚

MCIS

NCIS
‚

Figure 10. Sketch of the relationships among MPpZq,MCIS and NCIS.

When this is the case, then P̃ is closer to an element with a causal structure that does not fit into
the discussed setting, than to a split model in which only the causal cross-connections are removed.
Hence a part of the internal cross-connections is being compensated by this type of model and therefore
this does not measure all the intrinsic integrated information.

Further examples, which hint towards MCII ĹMCIS, can be found in Section 2.2.2.
Adding the hidden variable W seems not to be sufficient to approximate elements of MCIS.

Now the question naturally arises whether there are other exterior influences that need to be included
in order to be able to approximate MCIS. We will explore this thought by starting with the graph
corresponding to the split model MSI , depicted in Figure 11 on the left. In the next step we add hidden
vertices and edges to the graph in a way such that the whole graph is still a chain graph. An example
for a valid hidden structure is given in Figure 11 in the middle. Since we are going to marginalize
over the hidden structure, it is only important how the visible nodes are connected via the hidden
nodes. In the case of the example in Figure 11 we have a directed path from X1 to X2 going through
the hidden nodes. Therefore we are able to reduce the structure to a gray box shown on the right in
Figure 11.
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X1

X2

Y1

Y2

X1

X2

Y1

Y2

W1 W2

W3

X1

X2

Y1

Y2

Figure 11. Example of an exterior influence on the initial graph.

Then we use the Algorithm A3 mentioned earlier, which converts a chain graph with hidden
variables to a chain mixed graph reflecting the conditional independence structure of the marginalized
model. This leads to a directed edge from X1 to X2 by marginalizing over the nodes in the hidden
structures. Seeing that this directed edge already existed, the resulting model now is a subset of MSI
and therefore does not approximate MCIS.

Following this procedure we are able to show that adding further hidden nodes and subgraphs of
hidden nodes does not lead to a chain mixed graph belonging to a model that satisfies the conditional
independence statements of Property 1 and strictly contains MCII .

Theorem 2. It is not possible to create a chain mixed graph corresponding to a model M, such that its
distributions satisfy Property 1 and MCII ĹM, by introducing a more complicated hidden structure to the
graph of MSI .

In conclusion, assuming that Conjecture 1 holds, we have the following relations among the
different presented models.

MI ĹMG

MI ĹMCII ĹMCIS

MSI ĹMCII ĹMCIS

A sketch of the inclusion properties among the models is displayed in Figure 12.

MCII MCIS

MI

MG

MSI

Figure 12. Sketch of the relationship between the manifolds corresponding to the different measures.

Every set that lies inside MCIS satisfies Property 1 and every set that completely contains MI
fulfills Property 2.

2.1.3. em-Algorithm

The calculation of the measure Φm
CII with

Φm
CII “ inf

QPMm
CII

DZ pP̃ ‖ Qq
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can be done by the em-algorithm, a well known information geometric algorithm. It was
proposed by Csiszár and Tusnády in 1984 in Reference [20] and its usage in the context of neural
networks with hidden variables was described for example by Amari et al. in Reference [21].
The expectation-maximization EM-algorithm [22] used in statistics is equivalent to the em-algorithm
in many cases, including this one, as we will see below. A detailed discussion of the relationship of
these algorithms can be found in Reference [23].

In order to calculate the distance between the distribution P̃ and the set Mm
CII on Z we will

make use of the extended space of distributions on Z ˆWm, PpZ ˆWmq. Let MW|Z be the set of all
distributions on Z ˆWm that have Z-marginals equal to the distribution of the whole system P̃

MW|Z “
 

P P PpZ ˆWmq | Ppzq “ P̃pzq, @z P Z
(

“
 

P P PpZ ˆWmq | Ppz, wq “ P̃pzqPpw|zq, @pz, wq P Z ˆWm( .

This is an m-flat submanifold since it is linear w.r.t Ppw|zq. Therefore there exists a unique e-projection
to MW|Z.

The second set that we are going to use is the set Em of distributions that factor according to the
split model including the common exterior influence. We have seen this set before in Section 2.1.1.

Em “

#

P P PpZ ˆWmq | Ppz, wq “ Ppxq
n
ź

i“1

Ppyi|xi, wqPpwq, @pz, wq P Z ˆWm

+

. (7)

This set is in general not e-flat, but we will show that there is a unique m-projection to it. We are able to
use these sets instead of P̃ and Mm

CII because of the following result.

Theorem 3 (Theorem 7 from Reference [21]). The minimum divergence between MW|Z and Em is equal to
the minimum divergence between P̃ and Mm

CII in the visible manifold

inf
PPMW|Z ,QPEm

DZˆWmpP ‖ Qq “ inf
Q̃PMm

CII

DZ pP̃ ‖ Q̃q.

Proof of Theorem 3. Let P, Q P PpZ ˆWmq, using the chain-rule for KL-divergence leads to

DZˆWmpP ‖ Qq “ DZ pP ‖ Qq `DW |Z pP ‖ Qq,

with
DW |Z pP ‖ Qq “

ÿ

pz,wqPZˆWm

Ppz, wqlog
Ppw|zq
Qpw|zq

.

This results in

inf
PPMW|Z ,QPEm

DZˆWmpP ‖ Qq “ inf
PPMW|Z ,QPEm

!

DZ pP ‖ Qq `DW |Z pP ‖ Qq
)

“ inf
PPMW|Z ,QPEm

!

DZ pP̃ ‖ Qq `DW |Z pP ‖ Qq
)

“ inf
QPMm

CII

DZ pP̃ ‖ Qq.

The em-algorithm is an iterative algorithm that first performs an e-projection to MW|Z and then
an m-projection to Em repeatedly. Let Q0 P Em be an arbitrary starting point and define P1 as the
e-projection of Q0 to MW|Z

P1 “ arg inf
PPMW|Z

DZˆWmpP ‖ Q0q.
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Now we define Q1 as the m-projection of P1 to Em

Q1 “ arg inf
QPEm

DZˆWmpP1 ‖ Qq.

Repeating this leads to

Pi`1 “ arg inf
PPMW|Z

DZˆWmpP ‖ Qiq, Qi`1 “ arg inf
QPEm

DZˆWmpPi`1 ‖ Qq.

The correspondence between these projections in the extended space PpZ ˆWmq and one m-projection
in PpZq is illustrated in Figure 13.

Figure 13. Sketch of the em-Algorithm.

The algorithm iterates between the extended spaces MW|Z and Em on the left of Figure 13.
Using Theorem 2.1.3 we gain that this minimization is equivalent to the minimization between P̃ and
Mm

CII . The convergence of this algorithm is given by the following result.

Proposition 4 (Theorem 8 from Reference [21]). The monotonic relations

DZˆWmpPi ‖ Qiq ě DZˆWmpPi`1 ‖ Qiq ě DZˆWmpPi`1 ‖ Qi`1q

hold, where equality holds only for the fixed points pP̂, Q̂q PMW|Z ˆ Em of the projections

P̂ “ arg inf
PPMW|Z

DZˆWmpP ‖ Q̂q

Q̂ “ arg inf
QPEm

DZˆWmpP̂ ‖ Qq.

Proof of Proposition 4. This is immediate, because of the definitions of the e- and m-projections.

Hence this algorithm is guaranteed to converge towards a minimum, but this minimum might be
local. We will see examples of that in Section 2.2.2.

In order to use this algorithm to calculate ΦCII we first need to determine how to perform an e-
and m-projection in this case. The e-projection from Q P Em to MW|Z is given by

Ppz, wq “ P̃pzqQpw|zq,
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for all pz, wq P Z ˆWm. This is the projection because of the following equality

DZˆWmpP ‖ Qq “
ÿ

pz,wqPZˆWm

Ppz, wq log
Ppz, wq
Qpz, wq

“
ÿ

zPZ
P̃pzq log

P̃pzq
Qpzq

`
ÿ

pz,wqPZˆWm

Ppz, wq log
Ppw|zq
Qpw|zq

.

The first addend is a constant for a fixed distribution P̃ and the second addend is equal to 0 if and
only if Ppw|zq “ Qpw|zq. Note that this means that the conditional expectation of W remains fixed
during the e-projection. This is an important point, because this guarantees the equivalence to the EM
algorithm and therefore the convergence towards the MLE. For a proof and examples see Theorem 8.1
in Reference [10] and Section 6 in Reference [23].

After discussing the e-projection, we now consider the m-projection.

Proposition 5. The m-projection from P PMW|Z is given by

Qpz, wq “ Ppxq
n
ź

i“1

Ppyi|xi, wqPpwq

for all pz, wq P Z ˆWm.

The last remaining decision to be made before calculating ΦCII is the choice of the initial
distribution. Since it depends on the initial distribution whether the algorithm converges towards
a local or global minimum, it is important to take the minimal outcome of multiple runs. One class
of starting points that immediately lead to an equilibrium, which is in general not minimal, are the
ones in which Z and W are independent P0pz, wq “ P0pzqP0pwq. It is easy to check that the algorithm
converges here to the fixed point P̂

P̂pz, wq “ P̃pxq
1

|Wm|

n
ź

i

P̃pyi|xiq

P̂pzq “ P̃pxq
n
ź

i

P̃pyi|xiq.

Note that this is the result of the m-projection of P̃ to MSI , the manifold belonging to ΦSI .

2.2. Comparison

In order to compare the different measures, we need a setting in which we generate the probability
distributions of full systems. We chose to use weighted Ising models as described in the next section.

2.2.1. Ising Model

The distributions used to compare the different measures in the next chapter are generated by
weighted Ising models, also known as binary auto-logistic models as described in Reference [24]
Example 3.2.3. Let us consider n binary variables X “ pX1, . . . , Xnq, X “ t´1, 1un. The matrix
V P Rnˆn contains the weights vij of the connection from Xi to Yj as displayed in Figure 14. Note that
this figure is not a graphical model corresponding to the stationary distribution, but merely displays
the connections of the conditional distribution of Yi “ yi given X “ x with the respective weights

Ppyj|xq “
1

1` e
´2β

n
ř

i“1
vijxiyj

. (8)
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The inverse temperature β ą 0 regulates the coupling strength between the nodes. For β close to zero
the different nodes are almost independent and as β grows the connections become stronger.

X1
v1 1

v2 1

v2 2

v1 2

X2

Y1

Y2

Figure 14. The weights corresponding to the connections for n “ 2.

We are calculating the stationary distribution P̂ by starting with a random initial distribution P0

and then multiplying by (8) in the following way

Pt`1pxq “
ÿ

xPX
Ptpxq ¨

n
ź

j“1

Ppyi|xq,

this leads to
P̂ “ lim

tÑ8
Pt.

There always exists a unique stationary distribution, see for instance Reference [24], Theorem 5.1.2.

2.2.2. Results

In this section we are going to compare the different measures experimentally. Note that we do
not have an exterior influence in these examples, so that ΦT “ ΦSI holds.

To distinguish between the Causal Information Integration ΦCII calculated with different sized
state spaces of W, we will denote

Φm
CII “ inf

QPMm
CII

DZ pP̃ ‖ Qq.

We start with the smallest example possible, with n “ 2, and the weight matrix

V “

˜

0.0084181 ´0.2401545
0.39270161 0.37198751

¸

shown in Figure 15. In this example every measure is bounded by ΦI and the measures ΦI , ΦG and
ΦSI display a limit behavior different from ΦCIS and the ΦCII . The state spaces of W have the size 2, 3,
4, 36 and 92 and the respective measures are displayed in shades of blue that get darker as the state
space gets larger. In every case the em-algorithm has been initiated 100 times with a random input
distribution in order to find a global minimum. Minimizing over the outcome of 100 different runs
turns out to be sufficient, at least empirically, to reveal the behavior of the global minima. On the right
side of this figure, we are able to see the difference between ΦCIS and ΦCII . Considering the precision
of the algorithms we assume that a difference smaller than 5e-07 is approx. zero. We can see that in a
region from β “ 15 to β “ 25 the measures differ even in the case of 92 hidden states. So this small
case already hints towards MCII ĹMCIS.
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Figure 15. Ising model with 2 nodes and the differences between ΦCIS and ΦCII .

Increasing n from 2 to 3 makes the difference even more visible, as we can see in Figure 16
produced with the weight matrix

V “

¨

˚

˝

´0.43478388 0.47448218 0.36808313
0.52117467 0.00672578 ´0.7387737
´0.56114795 ´0.96941243 ´0.76408711

˛

‹

‚

.

Here we are able to observe a difference in the behavior of ΦG compared to the other measures,
since we see that ΦI , ΦSI , ΦCII and ΦG are still increasing around β « 1.1, while ΦG starts to decrease.

Figure 16. Ising model with 3 nodes.

Now, we are going to focus on an example with 5 nodes. Since it is very time consuming to
calculate ΦCIS for more than 3 nodes, we are going to restrict attention to ΦI , ΦG, ΦSI and ΦCII .
The weight matrix

V “

¨

˚

˚

˚

˚

˚

˝

´0.35615839 ´0.09775903 0.89743801 ´0.00604247 ´0.03897772
´0.2260056 0.47769717 ´0.4302256 0.18692707 0.25140741
´0.86081159 ´0.18348132 ´0.71528754 ´0.08100602 ´0.64364176
´0.13967234 ´0.03233011 ´0.81057654 ´0.33327558 ´0.57447322
0.18920264 ´0.99054716 0.32088358 0.69100397 ´0.69206604

˛

‹

‹

‹

‹

‹

‚
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produces the Figure 17. This example shows that ΦSI is not bounded by ΦI and therefore does not
satisfy Property 2. Since the focus in this examples lies on the relationship between ΦSI and ΦI ,
the em-algorithm was run with ten different input distributions for each step.

Figure 17. Ising model with 5 nodes.

Using this example, we are going to take a closer look at the local minima the em-algorithm
converges to. Considering only ΦCII and varying the size of the state space leads to the upper part in
Figure 18. This figure displays ten different runs of the em-algorithm with each size of state space in
different shades of the respective color, namely blue for Φ2

CII , violet for Φ4
CII , red for Φ8

CII and orange
for Φ16

CII . Note that we display the outcomes of every run in this case and not only the minimal one,
since we are interested in the local minima. We are able to observe how increasing the state space leads
to a smaller value of ΦCII . Additionally, the differences between the minimal values corresponding to
each state space grow smaller and converge as the state spaces increase.

Figure 18. The effect of a different sized state space.



Entropy 2020, 22, 1107 23 of 32

The bottom half of Figure 18 highlights an observation that we made. Each of the four illustrations
is a copy of the one above, where the difference between the minima are shaded in the respective
color. By increasing the size of the state space the difference in value between the various local minima
decreases visibly. We think this is consistent with the general observation made in the context of
high dimensional optimization, for example, Reference [25] in which the authors conjecture that the
probability of finding a high valued local minimum decreases when the network size grows.

Letting the algorithm run only once with |W | “ 2 on the same data leads to a curve on the left in
Figure 19.

Figure 19. Curve of one run of the em-algorithm for each β coloured according to the distribution of W.

The sets E defined in (7) and MCII (5) do not change for different values of β and therefore we
have a fixed set of local minima for a fixed state space of W. What does change with different β is
which of the local minima are global minima. The vertical dotted lines represent the steps Pβt to Pβt`1

in which the KL-divergence between the projection to MCII is greater than 0.2

DZ pPβt ,‹ ‖ Pβt`1,‹q ą 0.2,

meaning that inside the different sections of the curve, the projections to MCII are close. As β increases,
a different region of local minima becomes global. A sketch of this is shown in Figure 20.

Figure 20. Sketch of different local Minima.

The curve is colored according to the distribution of W as shown on the right side of Figure 19.
We see that a different distribution on W results in a different minimum, except for the region between
7.5 and 8. The colors light blue and yellow refer to distributions on W that are different, but symmetric
in the following way. Consider two different distributions Q, Q̂ on Z ˆW such that

Qpz, w1q “ Q̂pz, w2q and Qpz, w2q “ Q̂pz, w1q
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for all z P Z . Then the corresponding marginalized distributions in M2
CII are equal

ÿ

w
Qpz, wq “

ÿ

w
Q̂pz, w1q.

This symmetry is the reason for the different colors in the region between 7.5 and 8.
Using this geometric algorithm we therefore gain a notion of the local minima on E .

3. Discussion

This article discusses a selection of existing complexity measures in the context of Integrated
Information Theory that follow the framework introduced in Reference [7], namely ΦSI , ΦG and ΦCIS.
The main contribution is the proposal of a new measure, Causal Information Integration ΦCII .

In Reference [4] and Reference [5] the authors postulate a Markov condition, ensuring the removal
of the causal cross-connections, and an upper bound, given by the mutual information ΦI , for valid
Integrated Information measures. Although ΦSI is not bounded by ΦI , as we see in Figure 17, it does
measure the intrinsic causal cross-connections in a setting in which there exists no common exterior
influences. Therefore the authors of Reference [12] criticize this bound. Since wrongly assuming the
existence of a common exterior influence might lead to a value that does not measure all the intrinsic
causal influences, the question which measure to use strongly depends on how much we know about
the system and its environment. We argue that using ΦI as an upper bound in the cases in which
we have an unknown common exterior influence is reasonable. The measure ΦG attempts to extend
ΦSI to a setting with exterior influences, but it does not satisfy the Markov condition postulated in
Reference [4].

One measure that fulfills all the requirements of this framework is ΦCIS, but it has no graphical
representation. Hence the causal nature of the measured information flow is difficult to analyze.
We present in Example 1 a submodel of MCIS that has a causal structure, which does not lie inside the
set of Markovian processes MPpZq, that we discuss in this article. Therefore by projecting to MCIS we
might project to a distribution that still holds some of the integrated information of the original system,
although it does not have any causal cross-connections. Additionally we demonstrate that MCIS does
not correspond to a graphical representation, even after adding any number of latent variables to
the model of MSI . This is conflicting with the strong connection between conditional independence
statements and graphs in Pearls causality theory. For discrete variables ΦCIS does not have a closed
form solution and has to be calculated numerically.

We propose a new measure ΦCII that also satisfies all the conditions and has additionally a
graphical and intuitive interpretation. Numerically calculated examples indicate that ΦCII Ĺ ΦCIS.
The definition of ΦCII explicitly includes an interior influence as a latent variable and therefore aims
at only measuring intrinsic causal influences. This measure should be used in the setting in which
there exists an unknown common exterior influence. By assuming the existence of a ground truth,
we are able to prove that our new measure is bounded from above by the ultimate value of Integrated
Information ΦT of this system. Although ΦCII also has no analytical solution, we are able to use
the information geometric em-algorithm to calculate it. The em-algorithm is guaranteed to converge
towards a minimum, but this might be local. Even after letting our smallest example, depicted in
Figure 15, run with 100 random input distributions, we still get local minima. On the other hand,
in our experience the em-algorithm seems to be more reliable, and for larger networks faster, than the
numerical methods we used to calculate ΦCIS. Additionally, by letting the algorithm run multiple times
we are able to gain a notion on how the local minima in E are related to each other as demonstrated in
Figure 19.
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4. Materials and Methods

The distributions used in the Section 2.2.2 were generated by a python program and the measures
ΦI , ΦCII , ΦSI ans ΦG are implemented in C++. The python package scipy.mimimize has been used to
calculate ΦCIS. The code is available at Reference [26].
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Appendix A. Graphical Models

Graphical models are a useful tool to visualize conditional independence structures. In this
method a graph is used to describe the set of distributions that factor according to it. In our case, we are
considering chain graphs.These are graphs, with vertex set V and edge set E P V ˆV, consisting of
directed and undirected edges such that we are able to partition the vertex set into subsets V “

V1 Y ¨ ¨ ¨ YVm, called chain components, with the properties that all edges between different subsets
are directed, all edges between vertices of the same chain component are undirected and that there
are no directed cycles between chain components. For a vertex set τ, we will denote by papτq the
set of parents of element in τ, which are vertices α with a directed arrow from α to an element of τ.
Vertices connected by an undirected edge are called neighbours. A more detailed description can be
found in Reference [16].

Definition A1. Let T be the set of chain components. A distribution factorizes with respect to a chain graph G
if the distribution can be written as follows

Ppzq “
ź

τPT

Ppxτ|xpapτqq,

where the structure of Ppxτ|xpapτqq can be described in more detail. Let Apτq, τ P T be the set of all subsets of
τY papτq, that are complete in a graph τ‹, which is an undirected graph with the vertex set τY papτq and the
edges are the ones between elements in τY papτq that exist in G and additionally the ones between elements in
papτq. An undirected graph is complete if every pair of distinct vertices is connected by an edge. Then there are
non-negative functions φa such that

Ppxτ|xpapτqq “
ź

aPApτq

φapxq.

If τ is a singleton then τ‹ is already complete. There are different kinds of independence statements
a chain graph can encode, but we only need the global chain graph markov property. In order to define
this property we need the concepts ancestral set and moral graph.

The boundary bdpAq of a set A Ď V is the set of vertices in VzA that are parents or neighbours
to vertices in A. If bdpαq Ď A for all α P A we call A an ancestral set. For any A Ď V there exists a
smallest ancestral set containing A, because the intersection of ancestral sets is again an ancestral set.
This smallest ancestral set of A is denoted by AnpAq.

Let G be a chain graph. The moral graph of G is an undirected graph denoted by Gm that consists
of the same vertex set as G and in which two vertices α, β are connected if and only if either they were
already connected by an edge in G or if there are vertices γ, δ belonging to the same chain component
such that α Ñ γ and β Ñ δ.
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Definition A2 (Global Chain Graph Markov Property). Let P be a distribution on Z and G a chain graph.
P satisfies the global chain Markov property, with respect to G, if for any triple pZA, ZB, ZSq of disjoint subsets
of Z such that ZS separates ZA from ZB in pGAnpZAYZBYZSq

qm, the moral graph of the smallest ancestral set
containing ZA Y ZB Y ZS,

ZA KK ZB | ZS

holds.

Since we are only considering positive discrete distributions, we have the following result.

Lemma A1. The global chain Markov property and the factorization property are equivalent for positive
discrete distributions.

Proof of Lemma A1. Theorem 4.1 from Reference [27] combined with the Hammersley–Clifford
theorem, for example, Theorem 2.9 in Reference [28], proves this statement.

In order to understand the conditional independence structure of a chain graph after
marginalization, we need the following alogrithm from Reference [17]. This algorithm converts
a chain graph with latent variables into a chain mixed graph with the conditional independence
structure of the marginalized chain graph. A chain mixed graph has in addition to directed and
undirected edges also bidirected edges, called arcs. The condition that there are no semi-directed
cycles also applies to chain mixed graphs.

Definition A3. Let M be the set of vertices over which we want to marginalize. The following algorithm
produces a chain mixed graph (CMG) with the conditional independence structure of the marginalized
chain graph.

1. Generate an ij edge as in Table A1, steps 8 and 9, between i and j on a collider trislide with an endpoint j
and an endpoint in M if the edge of the same type does not already exist.

2. Generate an appropriate edge as in Table A1, steps 1 to 7, between the endpoints of every tripath with
inner node in M if the edge of the same type does not already exist. Apply this step until no other edge can
be generated.

3. Remove all nodes in M.

1 iÐ mÐ j generates iÐ j
2 iÐ m – j generates iÐ j
3 iØ m —j generates iØ j
4 iÐ mÑ j generates iØ j
5 iÐ mØ j generates iØ j
6 i – mÐ j generates iÐ j
7 i – m – j generates i–j
8 mÑ i – . . . – ˝ Ð j generates iÐ j
9 mÑ i´´ ¨ ¨ ¨ ´´˝ Ø j generates iØ j

Table A1. Types of edge induced by tripaths with inner node m PM and trislides with endpoint m PM.

Conditional independence in CMGs is defined using the concept of c-separation, see for example
Reference [17] in Section 4. For this definition we need the concepts of a walk and of a collider
section. A walk is a list of vertices α0, . . . , αk, k P N, such there is an edge or arrow from αi to
αi`1, i P t0, . . . , k´ 1u. A set of vertices connected by undirected edges is called a section. If there
exists a walk including a section such that an arrow points at the first and last vertices of the section

Ñ ‚´ ¨ ¨ ¨ ´ ‚ Ð

then this is called a collider section.
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Definition A4 (c-separation). Let A, B and C be disjoint sets of vertices of a graph. A walk π is called a
c-connecting walk given C, if every collider section of π has a node in C and all non-collider sections are disjoint.
The nodes A and B are called c-separated given C if there are no c-connecting walks between them given C and
we write A KKc B|C.

Appendix B. Proofs

Proof of the Relationship (4). For n “ 2 this is immediate. Let now n ě 3 and i, j, k P t1, . . . , nu, i ‰
j ‰ k ‰ i. Applying (1) two times leads to

Qpyj, xq “
Qpyj, xIztiuqQpxq

QpxIztiuq

Qpyj, xq “
Qpyj, xIztkuqQpxq

QpxIztkuq

Qpyj, xIztiuqQpxIztkuq “ Qpyj, xIztkuqQpxIztiuq

for all px, yjq P X ˆYj. Marginalizing over the elements of Xk yields

Qpyj, xIzti,kuqQpxIztkuq “ Qpyj, xIztkuqQpxIzti,kuq

Qpyj|xIzti,kuq “ Qpyj|xIztkuq.

Using inductively the remaining relations results in (4).

Proof of Proposition 1. If ΦCIIpP̃q “ 0 holds, then

inf
QPMCII

DZ pP̃ ‖ Qq “ 0.

Since MCII is compact the infimum is an element of MCII , so there exists Q P MCII such that
DZpP ‖ Qq “ 0. Therefore P PMCII and the existence of a sequence Qm follows from the definition
of MCII .

Assume that there exists a sequence Qm that satisfies 1. and 2. Then every element Qm PMm
CII

per definition and the limit

P̃ P
ď

mPN
Mm

CII “MCII .

Hence
ΦCIIpP̃q “ inf

QPMCII
DZ pP̃ ‖ Qq “ DZ pP̃, P̃q “ 0.

Proof of Proposition 2. Let P P E f and Q P E , then the KL-divergence between the two elements is

DZˆWmpP ‖ Qq “
ÿ

z,w
Ppz, wq log

Ppxq
ś

i
Ppyi|x, wqPpwq

Qpxq
ś

i
Qpyi|xi, wqQpwq

“
ÿ

x
Ppxq log

Ppxq
Qpxq

`
ÿ

z,w
Ppz, wq log

ś

i
Ppyi|x, wq

ś

i
Qpyi|xi, wq

`
ÿ

w
Ppwq log

Ppwq
Qpwq

ě
ÿ

x
Ppxq log

Ppxq
Ppxq

`
ÿ

z,w
Ppz, wq log

ś

i
Ppyi|x, wq

ś

i
Ppyi|xi, wq

`
ÿ

w
Ppwq log

Ppwq
Ppwq

“
ÿ

z,w
Ppz, wq log

ś

i
Ppyi|x, wq

ś

i
Ppyi|xi, wq

.
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The inequality holds, because in the first and third addend, we are able to apply that the cross entropy
is greater or equal to the entropy and in the second addend we use the log-sum inequality in the
following way

ÿ

z,w
Ppz, wq log

ś

i
Ppyi|x, wq

ś

i
Qpyi|xi, wq

´
ÿ

z,w
Ppz, wq log

ś

i
Ppyi|x, wq

ś

i
Ppyi|xi, wq

“
ÿ

x,w
PpxqPpwq

ÿ

y

ź

i

Ppyi, |x, wq log

ś

i
Ppyi|xi, wq

ś

i
Qpyi|xi, wq

ě
ÿ

x,w
PpxqPpwq

˜

ÿ

y

ź

i

Ppyi, |x, wq

¸

log

ř

y

ś

i
Ppyi|xi, wq

ř

y

ś

i
Qpyi|xi, wq

“ 0.

Therefore the new integrated information measure results in

inf
QPE

DZˆWmpP ‖ Qq “
ÿ

z,w
Ppz, wq log

ś

i
Ppyi|x, wq

ś

i
Ppyi|xi, wq

.

This can be rewritten to

ÿ

z,w
Ppz, wq log

ś

i
Ppyi|x, wq

ś

i
Ppyi|xi, wq

“
ÿ

z,w
Ppz, wq log

ś

i
Ppyi, x, wqPpxi, wq

ś

i
Ppyi, xi, wqPpx, wq

“
ÿ

z,w
Ppz, wq log

ś

i
Ppyi, xIztiu|xi, wqPpxi, wq
ś

i
Ppyi|xi, wqPpx, wq

“
ÿ

z,w
Ppz, wq log

ś

i
Ppyi, xIztiu|xi, wq

ś

i
Ppyi|xi, wqPpxIztiu|xi, wq

“
ÿ

i

IpYi; XIztiu|Xi, Wq.

Proof of Proposition 3. By using the log-sum inequality we get

Φm
CII “ inf

QPMm
CII

ÿ

z
Ppzqlog

ř

w
Ppxq

ś

i
Ppyi|x, wqPpwq

ř

w
Qpxq

ś

i
Qpyi|xi, wqQpwq

ď inf
QPMm

CII

ÿ

w

ÿ

z
Ppz, wqlog

Ppxq
ś

i
Ppyi|x, wqPpwq

Qpxq
ś

i
Qpyi|xi, wqQpwq

“ inf
QPE

DZˆWmpP ‖ Qq.
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The fact that every element of Q P E corresponds via marginalization to an element in Mm
CII and every

element in Mm
CII has at least one corresponding element in Q P E , leads to the equality in the last row.

Since taking the infimum over a larger space can only decrease the value further, the relation

ΦCII ď ΦT

holds.

Proof of Proposition 5.

DZˆWmpP ‖ Qq “
ÿ

pz,wqPZˆWm

Ppz, wq log
Ppz, wq

Qpxq
n
ś

i“1
Qpyi|xi, wqQpwq

“
ÿ

pz,wqPZˆWm

Ppz, wq log Ppz, wq

`
ÿ

pz,wqPZˆWm

Ppz, wq log
1

Qpxq

`
ÿ

pz,wqPZˆWm

n
ÿ

i“1

Ppz, wq log
1

Qpyi|xi, wq

`
ÿ

pz,wqPZˆWm

Ppz, wq log
1

Qpwq

The first addend is a constant for P and the others are cross-entropies which are greater or equal to
entropy

DZˆWmpP ‖ Qq ě
ÿ

pz,wqPZˆWm

Ppz, wq log Ppz, wq

`
ÿ

pz,wqPZˆWm

Ppz, wq log
1

Ppxq

`
ÿ

pz,wqPZˆWm

n
ÿ

i“1

Ppz, wq log
1

Ppyi|xi, wq

`
ÿ

pz,wqPZˆWm

Ppz, wq log
1

Ppwq

“
ÿ

pz,wqPZˆWm

Ppz, wq log
Ppz, wq

Ppxq
n
ś

i“1
Ppyi|xi, wqPpwq

.

Therefore this projection is unique.

Proof of Theorem 2. We need a way to understand the connections in a graph after marginalization.
In Reference [17] Sadeghi presents an algorithm that converts a chain graph to a chain mixed graph
that represents the markov properties of the original graph after marginalizing, see Definition A3.

Although the actual set of distributions after marginalizing might be more complicated, it is a
subset of the distributions factorizing according to the new graph, if the new graph is still a chain graph.
This is due to the equivalence of the global chain Markov property and the factorization property in
Lemma A1.

At first we will consider the case of two nodes per time step, n “ 2. We will take a close look at
the possible ways a hidden structure could be connected to the left graph in Figure A1. At first we will
look at the possible connections between two nodes, depicted on the right in Figure A1. The boxes
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stand for any kind of subgraph of hidden nodes such that the whole graph is still a chain graph and
the two headed dotted arrows stand for a line, or an arrow in any direction. Consider two nodes A and
B, then the connections including a box between the nodes can take one of the five following forms

1. they form an undirected path between A and B,
2. they can form a directed path from A to B,
3. they can form a directed path form B to A,
4. there exists a collider,
5. A and B have a common exterior influence.

A collider is a node or a set of nodes connected by undirected edges that have an arrow pointing at the
set at both ends

Ñ ‚ ¨ ¨ ¨ ‚ Ð .

X1

X2

Y1

Y2

X1

X2

Y1

Y2

Figure A1. Starting graph and possible two way interactions.

We will start with the gridded hidden structure connected to X1 and X2. Since there already is an
undirected edge between the Xis an undirected path would make no difference in the marginalized
model. The cases (2) and (3) would form a directed cycle which violates the requirements of a chain
mixed graph. A collider would also make no difference, since it disappears in the marginalized model.
A common exterior influence leads to

PpŵqPpx|ŵqPpy1|x1qPpy2|x2q “ Ppx, ŵqPpy1|x1qPpy2|x2q
ÿ

ŵ

Ppx, ŵqPpy1|x1qPpy2|x2q “ PpxqPpy1|x1qPpy2|x2q.

Now let us discuss these possibilities in the case of a gray hidden structure between Xi and Yj,
i, j P t1, 2u, i ‰ j. An undirected edge or a directed edge (3) would create a directed cycle. A directed
path (2) from Xi to Yj would lead to a chain graph in which Xi and Yj are not conditionally independent
given Xj. If there exists a collider (4) in the hidden structure, then nothing else in the graph depends on
this part of the structure and it reduces to a factor one when we marginalize over the hidden variables.
Therefore the path between Xi and Yj gets interrupted leaving a potential external influence or effect.
Those do not have an additional impact on the marginalized model. A common exterior influence (5)
leads to a chain mixed graph which does not satisfy the necessary conditional independence structure,
because using the Algorithm A3 leads to an arc between Xi and Yj, hence they are c-connected in the
sense of Definition A4.

The next possibility is a dotted hidden structure between Xi and Yi, i P t1, 2u. An undirected
path (1) and a directed path (3) would lead to a directed cycle. A directed path (2) would add no new
structure to the model since there already is a directed edge between Xi and Yi. A collider (4) does not
have an effect on the marginalized model. Adding a common exterior influence W1 on X1, Y1 results in
a new model which is not symmetric in i P t1, 2u and does not include MI , therefore it does not fully
contain MCII . By adding additional common exterior W2 influences on X2, Y2 or Y1, Y2, in order to
include MI in the new model, violates the conditional independence statements since nodes in W1

and W2 are connected in the moralized graph.
The last hidden structure between two nodes is the striped one between the Yis. An undirected

path (1) or any directed path (2), (3) lead to a graph that does not satisfy the conditional independence
statements. A collider (4) has no impact on the model and a common exterior influence leads to the
definition of Causal Information Integration.
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Connecting Y1, Y2 and Xi, i P t1, 2u leads either to a violation of the conditional independence
statements or contains a collider in which case the marginalized model reduces to one of the
cases above.

All the possible ways a hidden structure could be connected to three nodes X1, X2, Y1 by directed
edges are shown in Figure A2. Replacing any of these edges by an undirected edge would either
make no difference or lead to a model that does not satisfy the conditional independence statements.
In this case the black boxes represent sections. More complicated hidden structures reduce to this
case, since these structures either contain a collider and correspond to one of the cases above or
contain longer directed paths in the direction of the edges connecting the structure to the visible nodes,
which does not change the marginalized model.

(a)

X1

X2

Y1

Y2
(b)

X1

X2

Y1

Y2
(c)

X1

X2

Y1

Y2
(d)

X1

X2

Y1

Y2

(e)

X1

X2

Y1

Y2
(f)

X1

X2

Y1

Y2
(g)

X1

X2

Y1

Y2
(h)

X1

X2

Y1

Y2

Figure A2. The eight possible hidden structures between three nodes.

The models in (c), (d), (e), (f) and (g) contain either a collider and reduce therefore to one of the
cases discussed above or induce a directed cycle. We see that (a) and (h) display structures that do
not satisfy the conditional independence statements. The hidden structure in (b) has no impact on
the model.

A hidden structure connected to all four nodes contains one of the structures above and therefore
does not induce a new valid model.

Let us now consider a model with n ą 2. Any hidden structure on this model either connects
only up to four nodes and reduces therefore to one of the cases above, contains one of the connections
discussed in Figure A2 or only connects nodes among one point in time. The only structures possible
to add would be a common exterior influence on the Xis, a common exterior influence on the Yis or a
collider section on any nodes. All these structures do not change the marginalized model. Therefore it
is not possible to create a chain graph with hidden nodes in order to get a model strictly larger than
MCII .
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