Skip to main content
. 2020 Oct 10;22(10):1143. doi: 10.3390/e22101143
Algorithm 3. The training phase of the PCC-FS algorithm
Input: original training data, iterative times T
Output: TQ binary classifiers ƕr,j, r=1, 2,,T;j=1, 2,,Q
Steps
  1. generate Xtrain through feature selection process;

  2. learn label couplings and generate Ɣj for each label by Equation (14), j=1, 2,,Q;

  3. initialize χtrain1,j with zero matrix [0]m×Q;

  4. for r1, 2,, T;

  5. for j1, 2, , Q;

  6. lprer,j=Ƈ(Ɣj);

  7. xr,j=[Xtrain,lprer,j];

  8. χtrainr,j=[xr,j,Ytrain(j)];

  9. ƕr,jB(χtrainr,j);

  10. Ƈ(j)=ƕr,j(xr,j);

  11. end for;

  12. end for.