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Abstract

CD8 T cells provide limited protection against Mycobacterium tuberculosis (Mtb) infection in

the mouse model. As Mtb causes chronic infection in mice and humans, we hypothesize

that Mtb impairs T cell responses as an immune evasion strategy. TB10.4 is an immunodo-

minant antigen in people, nonhuman primates, and mice, which is encoded by the esxH

gene. In C57BL/6 mice, 30–50% of pulmonary CD8 T cells recognize the TB10.44−11 epi-

tope. However, TB10.4-specific CD8 T cells fail to recognize Mtb-infected macrophages.

We speculate that Mtb elicits immunodominant CD8 T cell responses to antigens that are

inefficiently presented by infected cells, thereby focusing CD8 T cells on nonprotective anti-

gens. Here, we leverage naturally occurring polymorphisms in esxH, which frequently occur

in lineage 1 strains, to test this “decoy hypothesis”. Using the clinical isolate 667, which con-

tains an EsxHA10T polymorphism, we observe a drastic change in the hierarchy of CD8 T

cells. Using isogenic Erd.EsxHA10T and Erd.EsxHWT strains, we prove that this polymor-

phism alters the hierarchy of immunodominant CD8 T cell responses. Our data are best

explained by immunodomination, a mechanism by which competition for APC leads to domi-

nant responses suppressing subdominant responses. These results were surprising as the

variant epitope can bind to H2-Kb and is recognized by TB10.4-specific CD8 T cells. The

dramatic change in TB10.4-specific CD8 responses resulted from increased proteolytic deg-

radation of A10T variant, which destroyed the TB10.44-11epitope. Importantly, this polymor-

phism affected T cell priming and recognition of infected cells. These data support a model

in which nonprotective CD8 T cells become immunodominant and suppress subdominant

responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv

sequence-based vaccines could lead to a mismatch between T cells that are primed by
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vaccines and the epitopes presented by infected cells. Reprograming host immune

responses should be considered in the future design of vaccines.

Author summary

An important question for vaccine developers is the relative potency of CD4 vs. CD8 T

cells against Mtb, as strategies differ for eliciting these different T cell subsets. Despite

robust antigen-specific pulmonary CD8 T cell responses, CD4 T cells mediate more pro-

tection than CD8 T cells in the murine model. Most CD8 T cells recognize a single anti-

gen, TB10.4, which is encoded by the esxH gene. Based on finding that TB10.44−11-specific

CD8 T cells poorly recognize Mtb-infected macrophages, we hypothesized that Mtb

evades detection by CD8 T cells and focuses the CD8 T cell response on non-protective

antigen. We termed these antigens “decoy antigens.” To test this hypothesis, we took

advantage of a natural variant of the esxH gene, which contains an A10T polymorphism

within the TB10.44−11 epitope. This polymorphism drastically alters the hierarchy of CD8

T cell responses elicited by Mtb. These data suggest that immunodomination by the

TB10.4 epitope acts to suppress subdominant CD8 T cell responses to other Mtb antigens,

impairing the CD8 T cell response to other Mtb antigens, some of which might be pre-

sented by Mtb-infected macrophages and be targets of protective immunity. Importantly,

this single amino acid polymorphism, which does not significantly alter MHC-binding or

T cell recognition, alters the half-life of the epitope and consequently, has a profound

effect on CD8 T cell priming and recognition of infected cells. These data also provide a

mechanism that could be exploited to manipulate the hierarchy of immunodominant

responses.

Introduction

Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), is the leading cause

of death from an infectious disease [1]. Mtb infects myeloid cells, largely evades humoral

immunity and persists intracellularly by inhibiting vesicular trafficking and phagolysosome

fusion [2]. The protective role of CD4 T cells is a reflection of bacillary occupation of the pha-

gosome as Mtb protein antigens in the vacuolar compartment are processed and sampled by

class II MHC. While CD8 T cells predominantly recognize peptides generated in the cytosol

and sampled by class I MHC, vacuolar antigens can enter the class I MHC pathway through a

process called cross-presentation [3]. Robust CD8 T cell responses are generated when unin-

fected DC cross-present Mtb antigens that are acquired by the uptake of apoptotic vesicles or

exosomes derived from infected cells [4]. However, the role of CD8 T cells in host protection is

controversial. On the one hand, CD8 T cells confer far less protection than CD4 T cells in the

murine aerosol TB model [5]. Yet, recent data from the NHP TB model indicates that CD8 T

cell responses correlate with protection elicited by vaccination [6–8]. The ability to improve

vaccine efficacy by targeting CD8 T cells would be an important advance. In the mouse model,

CD8 T cells make only a modest contribution to protective immunity despite a robust immune

response (see below). To understand why protection mediated by CD8 T cells is suboptimal in

the mouse model, we have advanced the hypothesis that some immunodominant Mtb antigens

act as decoys by eliciting CD8 T cell responses that inefficiently recognize infected cells [9].

Understanding the mechanisms that interfere with CD8-mediated protection could provide

new strategies for the development of protective vaccines.
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EsxH is an essential gene that is part of the ESX3 type VII secretion system [10]. The esxH
gene encodes the protein TB10.4, which elicits both CD4 and CD8 T cell responses in human

and mice, and has been incorporated into vaccines undergoing clinical trials (e.g., AERAS-

402) [11]. After Mtb aerosol infection of C57BL/6J mice, 30–50% of pulmonary CD8 T cells

are specific to the TB10.44−11 epitope [12]. TB10.44−11-specific CD8 T cells mediate protection

when transferred to immunocompromised mice, but TB10.44−11-immunization did not pro-

tect immunocompetent mice against Mtb challenge [13, 14]. Recently, we found that TB10.44

−11-specific CD8 T cells do not recognize Mtb-infected macrophages, which is difficult to rec-

oncile with the immunodominance of TB10.4-specific CD8 T cell response [9].

Why the CD8 T cell response to TB10.4 is immunodominant is unclear [13]. Immunodo-

minant CD8 T cell responses are frequently seen after viral infection [15]. One mechanism

observed during HIV, CMV and poxvirus infection, among others, is immunodomination

[16–19]. Immunodomination is defined as a dominant CD8 T cell response which positively

reinforces itself by inhibiting CD8 T cell responses to other sub-dominant epitopes [20, 21].

The inability of immunodominant TB10.4-specific CD8 T cell response to recognize Mtb-

infected macrophages suggests that this type of response could be an evasion strategy that ben-

efits Mtb. By stimulating a dominant CD8 T cell response that cannot recognize infected mac-

rophages, TB10.4 might act as a decoy antigen, and prevent the generation of other Mtb-

specific CD8 T cell responses that could potentially mediate protection, while at the same time,

creating an inflammatory environment that promotes bacterial transmission.

To investigate these questions, we examined the highly polymorphic nature of esxH, and

identified a “hotspot” in the TB10.44−11 epitope, particularly in lineage 1. We leveraged natu-

rally occurring polymorphisms among clinical isolates to study immunodomination and

immune evasion. By using the clinical isolate 667, which has a polymorphism at the tenth

amino acid in the TB10.4 protein (i.e., A10T), we show that the hierarchy of the Mtb-specific

CD8 T cell response is driven by immunodomination. We then considered whether this

change in hierarchy could result from altered presentation of the TB10.44−11 epitope or arise

from a change in function of the TB10.4 protein. We prove that the alteration in immunodo-

minance was due to the variation in esxH by developing a set of isogenic Erdman strains with

the same A10T polymorphism. Finally, we discovered that the A10T polymorphism changes

the processing of the TB10.44−11 epitope and leads to its accelerated destruction. This change

in the epitope sequence, which does not significantly alter MHC-binding or T cell recognition,

alters the half-life of the epitope and consequently, has profound effects on CD8 T cell priming

and immunodomination.

Results

The TB10.44−11 epitope is a hotspot for polymorphisms in the esxH gene of

Mtb

Numerous human T cell epitopes in the TB10.4 protein, which is encoded by esxH gene, have

been identified from individuals with diverse HLA haplotypes (Fig 1A). In addition, three immu-

nodominant epitopes have been identified in C57BL/6 and BALB/c mice (shaded grey, Fig 1A)

[12, 22, 23]. As esxH is an essential gene required for iron homeostasis and virulence, and its dele-

tion leads to attenuation in vivo [24], it was not feasible to test the “decoy hypothesis” by esxH
deletion. Therefore, we investigated whether naturally occurring polymorphisms in virulent Mtb

strains could be leveraged to study the how immunodominance affects host immunity.

The frequency of esxH polymorphisms among 3,363 M. tuberculosis clinical isolates from

Holt et al and Walker et al, spanning lineages 1–4 (i.e., L1, L2, L3 and L4), was determined by

whole-genome sequencing [25, 26]. A total of 86 isolates contained non-synonymous
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Fig 1. The esxH gene is highly polymorphic among clinical Mtb isolates. (A) Reported TB10.4 epitopes recognized by human T cells from the IEDB database (www.

iedb.org). Y axis represents the length of the 96 amino-acid TB10.4 protein. Each horizontal red bar spans an individual reported epitope. Grey shaded areas represent

mouse TB10.4-specific T cell epitopes: H2-Kb-restricted TB10.44−11, H2-Kd-restricted TB10.420−28, and I-Ad-restricted TB10.474−88. (B) The locations of EsxH

polymorphisms are represented along the linear sequence of the protein (green), with the number of isolates containing each polymorphism based on the whole genome

sequences from Holt et al and Walker et al [25, 26]. Regions of the protein with a high frequency of polymorphisms are shaded grey. The bar color corresponds to the

different Mtb lineages: lineage 1 (L1), purple; L2, blue; L3, white; and, L4, red. The table shows the total numbers of polymorphisms in each lineage, and the χ2 and p values

compared to L1. (C) Whole-genome SNP-based phylogenies represent the polymorphisms across all clinical isolates within lineage 1. Each circumference line signifies a

distinct polymorphism indicated in the grey box labeled “Lineage 1.” Each red dot cluster represents each time the indicated polymorphism evolved independently. Red

stars designate the A10V polymorphism which evolve separately three times. The table shows the acquisition rate of esxH variations based on the identification of genome-

wide SNP events within each phylogeny and the number of events which were within esxH.

https://doi.org/10.1371/journal.ppat.1009000.g001
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polymorphisms in esxH (2.56%), of which the majority (77 isolates) resulted in amino acids

changes between positions N7 and G13 (Fig 1B, S1 Table). Clinical isolates with esxH polymor-

phisms were not randomly distributed among the four M. tuberculosis lineages. In particular,

75 of 594 (12.5%) isolates belonging to L1 contained esxH polymorphism, while the frequency

in lineages L2, L3 and L4 were significantly lower with 4 of 1239 (0.32%), 0 of 529 (0%), and 7

of 1001 (0.7%), respectively (two-sided chi-square: L1 vs L2, χ2 = 147.4, p< 0.0001; L1 vs L3,

χ2 = 71.57, p< 0.0001; L1 vs L4, χ2 = 108.7, p< 0.0001).

To understand the evolution of esxH variants, we constructed whole-genome SNP-based

phylogenies for each lineage separately (Fig 1C). By mapping the genome-wide SNP alignment

back to the phylogenetic tree, we could identify 55,703 SNP mutation events within the L1

phylogeny, of which 16 were within esxH. Assuming that each lineage was equally likely to

alter esxH by chance, the number of variations in L1 was significantly higher than expected

when compared with L3 (0 of 32400 mutations, two-sided chi-square, χ2 = 9.308, p = 0.0023)

and L4 (4 of 57937 mutations, two-sided chi-square, χ2 = 7.684, p = 0.0056). The trend was

consistent compared with L2 (4 of 36353 mutations, χ2 = 1.783, p = 0.075). Overall, these data

suggest that L1 isolates are more likely to acquire esxH polymorphisms compared with the

modern L2, L3 and L4 strains. We further calculated the number of times each SNP within L1

evolved independently by mapping the esxH variations back on the phylogeny. Each esxH vari-

ant evolved once except for A10V which evolved 3 times and could be found in one clade of

four isolates and two unrelated isolates (purple stars, Fig 1C). Among the esxH variants, A10T

is the most abundance which were found in 41 isolates. Since all of these clinical strains were

by definition virulent, we elected to study the mechanism and the impact of the A10T poly-

morphism on immunodomination and immune evasion.

The clinical isolate 667 and Erdman elicit different hierarchies of antigen-

specific CD8 T cells

To determine whether esxH polymorphisms affect T cell responses in vivo, we infected C57BL/

6J mice with the clinical isolate 667 [27]. 667 was selected because it has a single nonsynon-

ymous polymorphism in esxH that results in the amino acid substitution A10T, which is the

most frequent variation among the clinical isolates. Although it has ~1,700 SNPs compared to

Erdman or the laboratory reference strain H37Rv, there are no differences among the genes

that encode the major antigens ESAT6, Ag85B, CFP10, and MTB32a, which we use to measure

T cell responses in the mouse tuberculosis model.

Following aerosol infection with Erdman, the frequency of antigen-specific T cells was

monitored by flow cytometry using tetramers of peptide-loaded MHC molecules. When

the cells were stained with the TB10.44−11/Kb tetramer corresponding to the IMYNYPAM

epitope (hereafter referred to as “WT”), 26% of lung CD8 T cells were specific for TB10.44−11;

in contrast, fewer than 1% of lung CD8 T cells recognized TB10.44−11 after 667 infection

(Fig 2A and 2B). Not only was the frequency of TB10.44−11-specific CD8 T cells diminished

after 667 infection, but there was also a reduction in the absolute number of TB10.44−11-spe-

cific CD8 T cells, a decrease that persisted during the course of infection (Fig 2C, S1A Fig).

The frequency and number of ESAT6-specific CD4 T cells elicited by the two bacterial strains

was similar (Fig 2B and 2C). Importantly, the frequency and number of MTB32a309-318-specific

CD8 T cells was significantly greater after 667 infection, relative to Erdman infection (Fig 2A–

2C, S1B Fig). These differences were observed in nine independent paired infections, which

included 96 individually analyzed mice (Fig 2D). Antigen-specific CD8 T cells expressed high

levels of KLRG1 and low levels of CD127, independently of the bacterial strain, which was con-

sistent with an effector cell phenotype (S1C Fig).
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Fig 2. The hierarchy of immunodominant CD8 T cell responses after Erdman vs. 667 infection. Lung T cell responses were evaluated five weeks after infection of

C57BL/6J mice with ~100 aerosolized Erdman or 667 bacilli. (A) Representative flow cytometry plots of MTB32a309-318 and TB10.44−11 tetramer staining of pulmonary

CD8 T cells from Erdman- or 667-infected C57BL/6J mice. The frequency (B) or absolute number (C) of TB10.4- or MTB32a-specific CD8, or ESAT6-specific CD4 T

cells in the lungs of infected mice after Erdman or 667 infection. (D) The frequency (left) and total numbers (right) of Mtb-specific CD4 or CD8 T cells, from nine

independent paired Erdman (closed symbols) and 667 (open symbols) infections. Each point is the average of 4–8 mice and lines connect the paired infections. (E) The

number of TB10.4-specific CD8 T cells in the lungs of mice infected with Erdman (closed symbols) or 667 (open symbols) was quantified by staining the different cell
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We next considered whether the reduction in the TB10.44−11-specific CD8 T cell response

observed after 667 infection could be arise from a change in the fine specificity of TB10.44−11-

specific CD8 T cells in 667 infected mice such that they preferentially recognized the A10T epi-

tope. To test this possibility, we compared WTTB10.44−11/Kb tetramers to tetramers loaded with

the “A10T” variant peptide IMYNYPTM (hereafter referred to as “A10TTB10.44−11”). Direct

comparison of the two tetramers showed that both identified in similar number of TB10.44−11-

specific CD8 T cells in Erdman-infected mice (Fig 2E, filled symbols). In contrast, in 667-

infected mice, the WTTB10.44−11/Kb tetramer underestimated the number of TB10.44−11-specific

CD8 T cells (Fig 2E, open symbols). This suggested that two populations of T cells elicited by

Erdman and 667 differed in the avidity for the peptide/MHC complex. To determine the mag-

nitude of this effect, we performed competitive tetramer staining. The WTTB10.44−11/Kb tetra-

mers, but not the A10TTB10.44−11/Kb tetramers, bound CD8 T cells elicited by Erdman

suggesting higher avidity interaction of the former (S2A Fig). In contrast, both tetramers bound

to 667-elicited TB10-specific CD8 T cells, although there was a clear preference for the
A10TTB10.44−11/Kb tetramer despite the ability of both tetramers to bind independently (S2B

Fig). Hereafter we used the A10TTB10.44−11/Kb tetramer to quantify TB10.44−11-specific CD8 T

cells after 667 infection. The number of TB10.44−11-specific CD8 T cells was 271,000 ± 163,000

after Erdman infection compared to 9,500 ± 19,000 after 667 infection (Fig 2F, p<0.0001,

median ± SD). Thus, the CD8 T cell response to TB10.44−11 after 667 infection was largely

abolished.

Since we observed a loss of the dominant TB10.44−11 response during 667 infection, we

sought to determine whether a cryptic epitope of TB10.4 would emerge after 667 infection.

Cryptic epitopes are ones that do not ordinarily elicit a T cell response but can induce T cells if

immunodominance is altered as has been described for ESAT6 [28]. We screened a peptide

library of the TB10.4 protein plus other known epitopes using T cells from 667-infected or

Erdman-infected mice but did not identify any new epitopes (S2 Table, S3 Fig). We also sought

to determine whether the EsxHA10T polymorphism affected the Kd-restricted CD8 T cell

response to TB10.420−28 or the I-Ad-restricted CD4 T cell response to TB10.474−88 in Mtb-

infected BALB/c mice [23, 29]. The TB10.420−28-specific CD8 T cell response was diminished

in 667 vs. Erdman infected mice only in one of three experiments (S4 Fig). The TB10.474−88-

specific CD4 T cell response was of similar magnitude after 667 or Erdman infection in all

experiments (S4 Fig). Thus, these data show that 667 infection elicits a hierarchy of Mtb-spe-

cific CD8 T cells that quantitatively differs from the reproducible hierarchy elicited by Erdman

infection in C57BL/6 mice. These data are consistent with immunodomination being the

mechanism by which immunodominant TB10.44−11-specific CD8 T cell response suppresses

other subdominant responses and indicates that the EsxHA10T polymorphism can be used to

perturb the hierarchy of Mtb antigens recognized by CD8 T cells.

667 is less fit than Erdman

We predicted that abolishing a “decoy antigen” would enhance the ability of the immune

response to mediate protection against Mtb. To determine the ability of the immune response

to control 667 vs. Erdman bacterial replication, mice were infected with each strain using a

populations using the TB10.44−11/Kb tetramer (i.e., loaded with IMYNYPAM) or the A10TTB10.44−11/Kb tetramer (i.e., loaded with IMYNYPTM) separately using

individual mice from 4 independent paired infections, 38 mice in total. The data was pooled and analyzed. The diagonal line is the line of unity for this analysis. (F)

Absolute numbers of TB10.4-specific CD8 T cells in the lungs of mice infected with Erdman or 667. The number of cells was determined by staining with the TB10.44

−11/Kb tetramer (i.e., loaded with IMYNYPAM) or the A10TTB10.44−11/Kb tetramer (i.e., loaded with IMYNYPTM). Nine independent experiments were performed

and analyzed 4–6 weeks post infection, with a total of 96 mice. Statistical testing by a two-tailed, unpaired Student’s T test. ��, p<0.01; ���, p<0.005; and ����,

p<0.0001.

https://doi.org/10.1371/journal.ppat.1009000.g002

PLOS PATHOGENS Immune evasion by Mycobacterium tuberculosis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009000 October 19, 2020 7 / 29

https://doi.org/10.1371/journal.ppat.1009000.g002
https://doi.org/10.1371/journal.ppat.1009000


low-dose aerosol infection model. In 13 independent experiments across several time points,

667-infected mice had fewer CFU in the lung and spleen compared to Erdman-infected mice

and had prolonged survival (Fig 3A–3C). Thus, it appears that 667 is less virulent than Erd-

man. However, as a clinical isolate, 667 is by definition virulent; and the Erdman strain used in

these experiments has been passaged through mice to maintain its virulence. While the patho-

genic potential of these two strains is determined in part by intrinsic factors (i.e., genetically

determined), we wished to assess how differences in the adaptive immune response elicited by

these two mycobacterial strains affects pathogenicity.

To determine whether the different T cell responses elicited by 667 and Erdman (see Fig 2)

affected their growth in vivo, RAG1 KO and C57BL/6J mice were infected with a pool of bar-

coded Mtb clinical isolates, which also contained Erdman and 667, by the intravenous route.

In the spleens of RAG1 KO mice, 667 grew similarly to Erdman, showing that in the absence

of T and B cells, 667 did not have a growth defect (Fig 3D). In C57BL/6J mice, which have an

intact immune system, both strains were similarly controlled, as indicated by no change in

their relative abundance between 2 to 3 weeks after infection (Fig 3E). When the relative

increase of 667 and Erdman were directly compared, there was no difference except in the

spleens of RAG1 KO mice 3 wpi (Fig 3F). Thus, 667 is not intrinsically attenuated and we con-

clude that adaptive immunity is critical in controlling bacterial growth, most clearly observed

by the change in relative abundance between RAG1 KO and C57BL/6J mice, two- and three-

weeks post-infection.

The A10T polymorphism alters the CD8 T cell response elicited by Mtb

infection

Our experiments with 667 and Erdman show that naturally occurring polymorphisms between

pathogenic Mtb strains can alter the hierarchy of antigens that CD8 T cells recognize and affect

the outcome of infection. As there are 1,700 snps between Erdman and 667, we next sought to

determine if EsxHA10T was sufficient to alter the hierarchy of the CD8 T cells response elicited

by Mtb. Oligo recombineering was used to change a single amino acid in the TB10.44−11 epi-

tope from IMYNYPAM (i.e., the Erdman “allele”) to IMYNYPTM (the 667 “allele”), which

allowed us to generate isogenic Erdman strains that differed only at this position (S5A Fig).

Hereafter, we will refer to these isogenic strains as Erd.EsxHWT and Erd.EsxHA10T, respec-

tively. Using unmanipulated Erdman strain as a reference for normalization, these isogenic

strains had equivalent mRNA expression of the genes that encode immunodominant antigens

including esxH (S5B Fig).

We measured antigen-specific T cell responses elicited by infection with the isogenic strains

Erd.EsxHWT and Erd.EsxHA10T, using specific tetramers (i.e., the WTTB10.44−11/Kb and
A10TTB10.44−11/Kb tetramers, respectively). After Erd.EsxHA10T infection, there was a sig-

nificant reduction in the TB10.44−11-specific CD8 T cell response in C57BL/6J, as observed

after 667 infection (Fig 4A and 4B). Similarly, the frequency and absolute number of

MTB32a309-318-specific CD8 T cells was significantly increased after Erd.EsxHA10T infection

compared to Erd.EsxHWT (Fig 4A and 4B). The CD4 T cell responses to ESAT6, Ag85B, and

EsxG after Erd.EsxHWT and Erd.EsxHA10T, were similar. Mtb-specific T cell response elicited

by Erd.EsxHWT or Erd.EsxHA10T infection in BALB/c mice did not differ, similar to 667 infec-

tion (S6 Fig). When determined whether the change in immunodominance was associated

with improved bacterial control, the bacterial burden in the lung and spleen did not signifi-

cantly differ between Erd.EsxHWT versus Erd.EsxHA10T infected mice (Fig 4C). Thus, the Esx-

HA10T polymorphism is sufficient to alter the hierarchy of immunodominant CD8 T cell

responses in C57BL/6J mice, but under these conditions did not affect bacterial growth.
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Fig 3. Infection with 667 is less virulent than Erdman. The bacterial burden is measured by CFU from lung (A) or spleen (B) homogenates from Erdman

(filled) or 667 (open) infected C57BL/6J at different timepoints post infections. CFU data were compiled from 13 (lung) or 6 (spleen) independent experiments,

from 4 to 30 weeks post infections. (C) The survival of C57BL/6 mice after Erdman (solid) or 667 (dashed) infection, which is one of two independent results

with similar results. In this experiment, the d1 CFU was 158 (667) or 55 (Erdman). (D-E) A barcoded pool of clinical Mtb isolates was administered

intravenously to C57BL/6J (black) or RAG1 KO (red) mice, and 4–8 mice of each strain were harvested for lungs and spleens to recover bacteria at 1 (circle), 14

(triangle), and 21 (square) days post infection. (D) The pseudo CFU of 667 and Erdman in spleen were determined by the relative abundance of the respective

Mtb strains multiplied by total CFU in the spleen. (E) CFU fold-change (versus d1 CFU) of 667 or Erdman abundance in the spleen was compared between

C57BL/6J (black) and RAG1 KO (red) mice. (F) CFU fold-change (versus d1 CFU) of 667 (open) vs. Erdman (closed) in the spleens of C57BL/6J (black) and
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667-infected macrophages inefficiently present Mtb antigens to CD8 T cells

The CD8 T cell contribution to Mtb control can be difficult to demonstrate, especially in the

face of an intact CD4 T cell response. Therefore, we next sought to determine whether altering

the hierarchy of immunodominant CD8 T cell responses led to function changes in the recog-

nition of infected macrophages. We previously reported that TB10.44−11-specific CD8 T cells

do not recognize infected macrophages [9]. Given the dominance of the TB10.44−11-specific

CD8 T cell response in the lung, we hypothesized that TB10.4 might be acting as a decoy anti-

gen. Our finding that following 667 and Erd.EsxHA10T infections, few TB10.44−11-specific CD8

T cells were detected and instead, a greater expansion of MTB32a-specific CD8 T cells were

elicited, supported this idea (Fig 2 and Fig 4). To further test this hypothesis, we determined

whether abrogation of the immunodominant TB10.44−11 epitope resulted in an expansion of

CD8 T cells that better recognized Mtb-infected macrophages. Therefore, we quantified T cell

recognition of Mtb-infected macrophages by the Mtb-infected macrophage intracellular cyto-

kine staining assay (MIM-ICS) [30].

Pulmonary T cells were purified from the Erdman- or 667-infected C57BL/6J mice and co-

cultured with H37Rv-infected macrophages. IFNγ production was measured by the MIM-ICS

assay as a readout of T cell recognition [30]. CD4 T cells from Erdman- or 667-infected

C57BL/6J mice recognized H37Rv-infected macrophages similarly, and in a dose-dependent

manner (Fig 5A). Thus, these two bacterial strains elicit CD4 T cell responses that had a similar

capacity to recognize infected macrophages. There was little or no recognition of infected mac-

rophages by CD8 T cells at a low MOI, as previously reported [30]. Contrary to our prediction,

Erdman-elicited CD8 T cells, but not 667-elicited CD8 T cells, recognized H37Rv-infected

macrophages at a high MOI (Fig 5B).

We considered whether the inability of 667-elicited CD8 T cells to recognize H37Rv-

infected macrophages could reflect a strain- or lineage-specific CD8 T cell response. To

address this question, we performed the reciprocal experiment and measured the ability of

CD4 or CD8 T cells from Erdman- or 667-infected mice to recognize 667-infected macro-

phages. CD4 T cells from Erdman- and 667-infected mice recognized 667-infected macro-

phages similarly (Fig 5C). In contrast, neither Erdman nor 667-elicited CD8 T cells

significantly recognized 667-infected macrophages (Fig 5D). When considering the bacterial

loads of in vitro H37Rv and 667 infections, the actual MOIs were not significantly different

among paired conditions (S7A Fig), suggesting that the bacterial uptake or intracellular growth

were similar. These results show how the mycobacterial strain can profoundly affect antigen

presentation and subsequent CD8 T cell responses.

We next determined whether the altered CD8 T cell response elicited by Erd.EsxHA10T

affected global recognition of Mtb-infected macrophages by T cells. CD4 and CD8 T cells

from Erd.EsxHWT and Erd.EsxHA10T infected mice recognized H37Rv-infected macrophages

similarly (Fig 5E and 5F). CD8 T cells from Erd.EsxHWT and Erd.EsxHA10T-infected mice also

recognized Erd.EsxHWT-infected macrophages similarly (Fig 5G). Since Erd.EsxHA10T fails to

elicit an immunodominant response to the TB10.44−11 epitope, one may have expected Erd.

EsxHWT elicited CD8 T cells to recognize Mtb-infected macrophages better than CD8 T cells

elicited by Erd.EsxHA10T. However, the similar recognition of Mtb-infected macrophages is

consistent with the failure of the TB10.44−11 epitope to be presented by Erd.EsxHWT or

H37Rv-infected macrophages [9]. These results were independently confirmed by showing

RAG1 KO (red) mice. Statistical significance of survival curves (C) was determined by log-rank (Mantel-Cox) test; p value is shown. Statistical significance of

CFU fold-change (D, E, F) were analyzed by a two-way ANOVA with Tukey (D) or Sidak’s (E, F) multiple comparison test. p values are indicated by asterisks:
��, p<0.01, ���, p<0.001, ����, p<0.0001. Not all comparisons are shown for clarity.

https://doi.org/10.1371/journal.ppat.1009000.g003
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Fig 4. The A10T polymorphism leads to a change in immunodominance of the CD8 T cell response after 667 infection. C57BL/6J mice were infected with

Erd.EsxHA10T or Erd.EsxHWT by the aerosol route and the lung T cell response was analyzed five weeks later by (A-B) tetramer staining and (C) the bacterial

burden. (A) Representative flow cytometry plots of the frequency of MTB32a309-318- and TB10.44−11-specific CD8 T cells (left), or ESAT6-specific CD4 T cells

(right), after Erd.EsxHWT or Erd.EsxHA10T infection in the lungs of C57BL/6J mice. (B) The frequency and absolute number of antigen-specific T cells elicited
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that polyclonal CD8 T cells from Erdman-infected mice recognize ΔesxH- and esxHWT-com-

plemented ΔesxH-infected macrophages similarly (S8 Fig). Surprisingly, Erd.EsxHWT-elicited

CD8 T cells failed to recognize Erd.EsxHA10T-infected macrophages as well as Erd.EsxHA10T-

elicited CD8 T cells (Fig 5H), despite the ability of antigen-specific CD8 T cells from both Erd.

EsxHWT and Erd.EsxHA10T in vivo infections to activate and recognize their cognate epitopes

(Fig 5I). Again, the bacterial loads of in vitro Erd.EsxHWT and Erd.EsxHA10T infections were

not significantly different (S7B Fig). Thus, natural EsxHA10T polymorphism induce distinct T

cell responses that affect the ability of elicited T cells to recognize infected macrophages. We

next sought to understand mechanistically why the EsxHA10T polymorphism abrogated the

CD8 T cell response to the TB10.44−11 epitope.

CD8 T cells recognize naturally occurring variants of the TB10.44−11

epitope

The EsxHA10T polymorphism could abrogate the CD8 T cell response because the epitope is no

longer produced, because it fails to bind to class I MHC, or because it is no longer recognized

by T cells. As the A10T polymorphism, similar to most esxH polymorphisms, is within the

TB10.44−11 epitope and doesn’t affect presentation of other TB10 epitopes (S4 Fig, S6 Fig), we

hypothesized that the polymorphism would disrupt TB10.44−11 binding to H-2 Kb. Among the

variant epitopes (i.e., P9S, A10T, A10V and M11I), only small differences were predicted in

their binding to Kb, compared to the WT dominant sequence (i.e., IMYNYPAM) and all had

IC50 values between 5.6–9.5 nM (S3 Table). We experimentally confirmed these predictions by

an RMA-S Kb stabilization assay using synthetic WT, P9S, A10T, A10V and M11I peptides (S2

Table). Data was analyzed after normalization and modeling using ECAnything (Prism 8). WT

peptide stabilized Kb expression with an IC50 of 14,363, which was ~2-fold greater than the

SIINFEKL peptide control (IC50: 7,318) (see Fig 6A, S9 Fig) [31]. The IMANAPAM peptide

with Y6A/Y8A mutations, was designed and predicted to bind Kb 200-fold less than the WT

epitope and failed to stabilize Kb (Fig 6A, S3 Table). The WT peptide was only 1.5-2-fold more

effective at stabilizing Kb than A10T (IC50: 28,078), M11I (IC50: 29,075), A10V (IC50: 21,278),

and 4.1-fold better than P9S (IC50: 59,349). Thus, it was unlikely that MHC binding could

account for the inability of the A10T variant to elicit TB10.44−11-specific CD8 T cells.

In the context of H2-Kb, some of the polymorphic residues, including the 7th amino acid of

epitope, the location of the A10T substitution, were predicted to be solvent exposed and make

contact with the TCR [31]. To address whether the variations in the TB10.44−11 sequence

affected T cell recognition, we used primary CD8 T cell lines elicited by M. tuberculosis Erd-

man and specific for the WT TB10.44−11 epitope [9]. The TB10RgR CD8 T cell line recognized

and proliferated in a dose-dependent manner to all polymorphic peptide epitopes with the fol-

lowing hierarchy WT ~ M11I > A10T ~ A10V > P9S (Fig 6B), an order similar to the pep-

tide’s ability to stabilize cell surface Kb expression on RMA-S cells. Thus, we infer that T cell

recognition was largely driven by peptide binding to Kb. We used other TB10.44−11-specific

CD8 T cell lines (TB10Rg3, TB10RgL and TB10RgP), all with distinct TCRs. We compared the

ability of TB10RgR, TB10Rg3, TB10RgL and TB10RgP to recognize the WT and A10T

epitopes.

by five independent paired infections of isogenic Erd.EsxHWT (open) and Erd.EsxHA10T (closed) strains determined by tetramer staining. The TB10-specific

CD8 T cell responses elicited by the isogenic strains Erd.EsxHWT and Erd.EsxHA10T, was determined using the specific tetramers WTTB10.44−11/Kb and
A10TTB10.44−11/Kb tetramers, respectively. Each point is the average of 5 mice and lines connect the paired infections. (C) The bacterial burden was measured

by CFU from lung (left) or spleen (right) homogenates from Erd.EsxHWT or Erd.EsxHA10T infected C57BL/6J at different timepoints post infections. CFU data

were compiled from 4 independent experiments, from 5 to 19 weeks post infections. Statistical significance was determined by a two-tailed, unpaired Student’s

T test. p values are indicated by asterisks: �,<0.05; ��, p<0.01; ���, p<0.001; ����, p<0.0001.

https://doi.org/10.1371/journal.ppat.1009000.g004
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All four T cell lines recognized the two TB10 epitopes with a similar hierarchy: TB10RgP ~

TB10Rg3 > TB10RgR > TB10RgL (Fig 6C). While TB10RgP, TB10Rg3, and TB10RgR all rec-

ognized the WT and A10T epitopes similarly, TB10RgL only recognized the A10T epitope

with low avidity. Importantly, the TCRs used by TB10RgR and TB10RgL differ by two amino

acids–one in the CDR3α region and one in the CDR3β region [13]. As both of these T cells

Fig 5. T cell recognition of infected macrophages. CD4 (A, C) or CD8 T cells (B, D) purified from the lungs of Erdman- or 667-infected mice were cultured

with H37Rv-infected (A, B) or 667-infected (C, D) macrophages and the MIM-ICS assay was performed. MIM-ICS assay of isogenic strains elicited (E) CD4 T

cells and (F) CD8 T cells in recognizing H37Rv-infected macrophages. Isogenic strains elicited CD8 T cells were also measured for their recognition ability of

(G) Erd.EsxHWT-infected and (H) Erd.EsxHA10T-infected macrophages. The X axis is the actual multiplicity of infection (MOI) as determined by CFU plating.

Statistical significance was determined by multiple t testing, and p values<0.05 are shown above the bars. (I) Erd.EsxHWT- or Erd.EsxHA10T-elicited CD8 T

cells were cultured with uninfected macrophages (UI) or macrophages plus the indicated peptide epitopes or anti-CD3 mAb. Statistical significance was

determined by one-way Anova, and p values<0.05 are shown above the bars. Results are representative of two (A-H) or three (I) different independent

experiments.

https://doi.org/10.1371/journal.ppat.1009000.g005
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were elicited by the WT epitope, and were clonally expanded in vivo [13], these data show the

fine specificity of TCRs for their cognate antigens, and reveals how T cells elicited against one

Mtb strain (including vaccine strains) may be unable to recognize other Mtb strains. Impor-

tantly, these data show that the A10T epitope of 667 can both bind to Kb and be recognized by

T cells. Thus, the different marked reduction of the TB10.44−11-specific CD8 T cell response

following 667 and Erd.EsxHA10T infection cannot be explained by an inability of CD8 T cells

to recognize the variant IMYNYPTM epitope.

The A10T polymorphism alters TB104-11 epitope production

Why the A10T substitution in the TB10.4 protein should abrogate the TB10.44−11-specific

CD8 T cell responses was unclear. As the A10T variant peptide (i.e., IMYNYPTM) could bind

Fig 6. Naturally occurring variants of the TB10.44−11 epitopes bind Kb and stimulate TB10.44−11-specific CD8 T cells. (A) RMA-S Kb stabilization assay. Variant

peptides were titrated, added to RMA-S cells, and the relative H-2 Kb surface expression (MFI) was determined by flow cytometry. The following peptides were used:

SIINFEKL (positive control), IMANAPAM (negative control), “WT” TB10.44−11, and the following variants of TB10.44−11: A10T, A10V, P9S, and M11I. (B) The

proliferation of the TB10.44−11-specific CD8 T cell line TB10RgR was measured by eFluor450 dilution 48 hours after co-culture with macrophages pulsed with titrated

amounts of the indicated peptides. (C) Proliferative response of the TB10RgP, TB10Rg3, TB10RgR, and TB10RgL CD8 T cell lines 48 hours after co-culture with

macrophages pulsed with titrated amounts of WT TB10 peptide (left) or A10T peptide (right). Each assay was repeated 4 times.

https://doi.org/10.1371/journal.ppat.1009000.g006
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to Kb (Fig 6A, S3 Table) and was recognized by TB10.44−11-specific CD8 T cells, we predicted

Mtb strains with the A10T polymorphism should elicit TB10.44−11-specific CD8 T cells. We

next hypothesized whether the A10T polymorphism affects the antigen processing of the

TB10.4 protein in Mtb-infected cells.

The processing of the TB10.44−11 epitopes by lysosomal extracts from murine macrophages

was quantified by mass spectrometry [31–33]. Briefly 34-mer peptides (i.e., TB10.41−34) con-

taining alanine (WT) or threonine (A10T) at residue 10 were incubated with C57BL/6J thio-

glycolate-elicited peritoneal macrophage (TG-PM) or bone-marrow derived dendritic cell

(BMDC) lysosomal extracts and degradation peptides and cleavage sites were identified and

quantified at various time points (Fig 7A and 7B, and S10A Fig). This assay recapitulates

endogenous processing of epitopes in primary cells while allowing the analysis of peptide

production and cleavage sites [31]. We analyzed the relative amount of peptides starting

(N-terminus) or ending (C-terminus) at each residue during macrophage or BMDC lysosomal

degradation (Fig 7C and S10B Fig). Both N- and C-terminal cleavage sites were mostly in the

first third of the sequence. During macrophage lysosomal degradation, cutting sites after resi-

dues I4 and Y6 within epitope IMYNYP[A/T]M (TB10.44−11) were significantly higher in the

A10T 34-mer while Y8 (and Y21 outside the epitope) were more frequent in the WT sequence.

In BMDC lysosomal extracts (from the same mice as the macrophages) enhanced N- and

C-terminal cleavage sites were observed at residue Y2 within TB10.44−11 epitope and at several

sites outside the epitope (S10B Fig). These results are consistent with variant A10T altering

peptide degradation patterns in macrophage and BMDC lysosomes.

We measured the production of TB10.44−11 and N-extended TB10.44−11 over a 1-hour deg-

radation (Fig 7D; S10C Fig). The production of the TB10.44−11 IMYNYPAM from the WT

34-mer was detected at 2 minutes only in macrophages (0.043% of total amount of peptides)

and increased over 60 minutes (0.297%). In contrast the production of IMYNYPTM was

slower (none detected after 2 minutes), peaked at 10 minutes (0.147%) and decreased (0.09

and 0.067% left at 30 and 60 minutes), leaving IMYNYPTM production 2.7 to 4.7-fold lower

than IMYNYPAM production at these time points. In BMDC TB10.44−11 IMYNYPAM and

IMYNYPTM epitopes were not detected at 2 minutes but similarly produced at 10 and 30 min-

utes. The production of WT IMYNYPAM kept increasing to 0.499% while that of IMY-

NYPTM plateaued at 0.252% (S10C Fig left panel). Thus, in agreement with the degradation

patterns, in both cell types, the production of IMYNYPTM is reduced due to higher sensitivity

to lysosomal degradation. We also measured the production of N-extended TB10.44−11 as N-

extended peptides may still bind poorly to MHC but also reveal patterns of reduced antigen

processing (Fig 7D and S10C Fig, right panels). In both macrophages and BMDC, IMYNYPTM

peptides N-extended by up to 3aa were produced in higher quantity at all time points with a

peak of at 10.36% at 10 minutes in macrophages and 4.9% in BMDC while N-extended IMY-

NYPAM remained <4.32% in macrophages and 2.5% in BMDC at all time points. These data

suggest that IMYNYPTM extended by 1, 2, or 3 aa may not be efficiently trimmed, but possibly

lead to shorter peptides that destroy the IMYNYPTM epitope, as seen by the presence of

enhanced cleavage sites within IMYNYPTM. The higher production of IMYNYPAM compared

to IMYNYPTM was also observed when the substrate was the first 25aa of the sequence showing

the effect of the mutation on peptide production was not due to the use of a specific 34mer

peptide.

We measured the production of TB10.44−11 IMYNYPAM or IMYNYPTM and N-extended

peptides in 6–7 different experiments with extracts from matched macrophages and BMDC

from different batches of mice (Fig 7E, S10D Fig). While the amount of peptide produced in

each experiment was variable between batches, the mutation A10T significantly reduced the

production of IMYNYPTM peptide at 30–60 minutes in macrophages while its effect was less
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pronounced in BMDC. N-extended IMYNYPTM peptides were significantly better produced

after a 30–60 minutes degradation in both cell types (Fig 7E, S10D Fig).

Altogether our data suggest that murine macrophages and to a lesser extent DC may not be

able to process and present IMYNYPTM, or present it less efficiently, thus explaining the inef-

ficient priming and expansion of TB10.44−11-specific CD8 T cells following 667 or Erd.Esx-

HA10T infection and the inefficient recognition of macrophages infected with 667. Therefore,

the A10T polymorphism results in impaired processing of a CD8 T cell antigen and has a pro-

found effect on the hierarchy of Mtb-specific CD8 T cells.

Discussion

Here, we leverage a natural occurring polymorphism (i.e., the A10T substitution) in the EsxH

protein to uncover the hierarchical structure of the antigen-specific CD8 T cell response elic-

ited by Mtb. The TB10.44−11-specific CD8 T cell response, which is immunodominant in

C57BL/6J mice after H37Rv or Erdman infection, was largely absent after infection with 667

or Erd.EsxHA10T. This was accompanied by an expansion of the sub-dominant MTB32a309-

318-specific CD8 T cell response. This outcome was surprising as the A10T and WT variants of

the TB10.44−11 epitope had similar abilities to bind Kb and stimulate T cell proliferation.

Instead, a change in the processing of the TB10.44−11 epitope modulated the CD8 response. To

our knowledge, this is the first demonstration of a single amino acid substitution causing a

major antigenic shift in the Mtb-specific CD8 T cell response following infection with virulent

Mtb. These mechanistic insights provide a basis for reprograming host immune responses,

which is an important consideration for the future design of vaccines against TB.

We previously reported that TB10.44−11-specific CD8 T cells do not efficiently recognize

infected macrophages [9]. We speculated that TB10.4 might act as a decoy antigen, which inter-

feres with the expansion of CD8 T cells that recognize Mtb epitopes presented by Mtb-infected

macrophages. To test this hypothesis, we engineered isogenic strain Erdman strains with the

EsxHA10T polymorphism, to determine how the overall CD8 T cell response would change in

the absence of the TB10.44−11 immunodominant epitope. The ability of polyclonal CD8 T cells,

elicited in the presence or absence of the TB10.44−11 epitope, to recognize Mtb-infected macro-

phages was measured by the MIM-ICS assay [30]. Two different aspects of CD8 responses were

assessed by this assay: 1) the specificity and frequency of T cells elicited by Mtb in vivo (i.e., T

cell priming); and 2) processing and presentation of Mtb antigens by infected macrophages in
vitro. Varying the Mtb strain had no effect on CD4 T cell recognition of infected macrophages,

indicating that our matching of the infectious dose of the different mycobacterial strains in vivo
and in vitro was adequate. We found that 667-infected macrophages poorly stimulated CD8 T

cells compared to H37Rv-infected macrophages, demonstrating antigen presentation can be

altered by Mtb polymorphisms. Finally, Erd.EsxHA10T-elicited CD8 T cells recognized macro-

phages infected with Erd.EsxHA10T better than with Erd.EsxHWT (compare Fig 5G vs. 5H).

From this result we infer that Erd.EsxHA10T changes the repertoire of Mtb-specific CD8 T cell

elicited by in vivo infection and alters class I MHC presentation by infected macrophages.

Fig 7. Different peptide degradation patterns of TB10.41−34 with alanine or threonine at position 10 in macrophage lysosomes. (A) Amino acid sequence

of 34-mer peptides (i.e., TB10.41−34) containing alanine (WT) or threonine (A10T) at residue 10 (B) Experimental scheme of the in vitro peptide degradation

assay in macrophage lysosomal extracts and WT and A10T TB10.4-1-34-mer sequences. (C) N- (left) and C- (right) terminus cleavage sites determined at 60

minutes. The relative amount of peptides starting (left panel) or ending (right panel) at each residue was quantified during the degradation of WT (black bars)

and A10T (open bars) TB10.4-1-34-mer peptides. N = 6 experiments; �, p<0.05. (D) Production of TB10.44−11 epitope (left panel) and N-extended TB10.44−11

(right panel) from WT (black circles) or A10T 34-mer (open circles) at 60 minutes. One representative experiment. (E) Production of TB10.44−11 epitope from

WT (black circles) and A10T (open circles) TB10.4-1-34-mer peptides was determined at 10, 30, 60 minutes in six independent experiments. P values

calculated with Wilcoxon matched-pairs signed rank test.

https://doi.org/10.1371/journal.ppat.1009000.g007
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Our initial prediction was that Erd.EsxHA10T infection would elicit a higher frequency of

CD8 T cells capable of recognizing infected macrophages than Erd.EsxHWT. While both Erd.

EsxHA10T- and Erd.EsxHWT-elicited CD8 T cells recognize H37Rv- and Erd.EsxHWT-infected

macrophages similarly, only Erd.EsxHA10T-elicited CD8 T cells recognized Erd.EsxHA10T-

infected macrophages. This loss of recognition by Erd.EsxHWT-elicited CD8 T cells instead of

a gain of recognition by Erd.EsxHA10T-elicited CD8 T cells suggest a more complicated inter-

pretation. There are likely to be other decoy antigens that become dominant when the

response to TB10.4 is abrogated. A strong candidate is Mtb32a309-318. Despite the greater

Mtb32a309-318-specific CD8 T cell response after Erd.EsxHA10T infection, there is no greater

recognition of infected macrophages. The discrepancy between the frequency of CD8 T cells

that recognize Mtb32a309-318 vs. infected macrophages suggests that Mtb32a309-318 might be a

decoy antigen. While Erd.EsxHA10T- and Erd.EsxHWT-elicited CD8 T cells recognize H37Rv-

and Erd.EsxHWT-infected macrophages similarly, the repertoire of antigens recognized might

be different. Such a difference could give rise to the discrepancy in the recognition of Erd.Esx-

HA10T-infected macrophages. In addition, we don’t know whether the CD8 T cells elicited by

Erd.EsxHWT and Erd.EsxHA10T are similar. We measure their IFNγ response, but there could

be other CD8 T cells that are recognizing infected macrophages but not making IFNγ [32].

Other possibilities include global effects on T cell priming or antigen presentation. Clearly, the

mechanistic basis for these changes is more complex than we had originally envisioned.

We wished to understand why the A10T amino acid substitution abrogated the TB10.4-spe-

cific CD8 T cell response, particularly when the variant epitope could bind and be recognized

by CD8 T cells. As EsxH inhibits class II MHC antigen presentation [33], we hypothesized that

that the A10T polymorphism altered EsxH protein function and affected class I MHC presen-

tation. While we did not formally address this hypothesis, we found that the A10T polymor-

phism altered the processing of epitope as revealed by in vitro degradation assays. Thus, the

IMYNYPTM epitope was more rapidly degraded, which provides a mechanism for why,

despite its potential to bind to Kb and be recognized by CD8 T cells, this variant epitope is

largely non-immunogenic. These results provide an example of how the recognition of pep-

tide-pulsed APC and Mtb-infected cells can be discordant.

We previously proposed that TB10.4 acts as a decoy antigen by eliciting an immunodomi-

nant CD8 T cell response, which cannot recognize infected macrophages [9]. Our new results

are consistent with the immunodominance of the CD8 T cell response to TB10.4 arising by

immunodomination. Immunodomination is the suppression of subdominant CD8 T cell

responses by an immunodominant CD8 T cell response and develops because of competition

for APC [16–21]. By ablating the immunogenicity of the TB10.44−11 epitope, the CD8 T cell

response to MTB32a becomes dominant, establishing that the TB10.4-specific CD8 T cell

response diminishes the expansion of CD8 T cells specific to other Mtb antigens. The dramati-

cally altered T cell response toward previously sub-dominant epitopes establishes that immu-

nodomination shapes the CD8 T cell response to Mtb. A future area for investigation is to

determine how competition for APC shapes the CD4 and CD8 T cell responses to Mtb.

A second prediction of our decoy hypothesis is that by eliminating the “decoy antigen,”

other CD8 T cell responses would expand, recognize Mtb-infected macrophages, and mediate

protection. The altered CD8 T cell response, greater bacterial control, and prolonged survival

of mice infected with 667 compared to Erdman was consistent with this hypothesis. Proving

that this difference was due to an altered CD8 T cell response could have pursued by infecting

CD8-deficient mouse strains (e.g., CD8a KO). However, as there are ~1700 snps between 667

and Erdman, we focused on the isogenic Erdman strains. As C57BL/6 mice controlled Erd.

EsxHA10T and Erd.EsxHWT infection similarly, the differences in bacterial burden and survival

after Erdman and 667 infection cannot be attributed to the EsxHA10T polymorphism. While
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there were no differences in CFU, the altered CD8 T cell response could have affected lung

inflammation. Qualitatively, no differences in lung histopathology was observed 19 wpi,

although quantitative criteria were not used to assess potential differences. We did not observe

that reducing the TB10.44−11 response resulted in better recognition of infected macrophages

or increased protection in vivo. We do not yet know whether the MTB32a epitope is presented

by Mtb-infected macrophages or whether the compensatory emergence of new dominant CD8

T cell responses also behaves as a decoy response. This possible redundancy in immunodomi-

nance and decoy antigens would not be surprising given the long evolutionary history of

mycobacteria with the mammalian host, and the need for decoy antigens that would be pre-

sented by numerous HLA alleles.

Two distinct pressures affect the genetic evolution of human pathogens: 1) growth and rep-

lication; and 2) host immunity. The first leads to conservation of essential functional genes

(e.g., metabolism and biosynthesis); the latter selects for microbes that can evade host immu-

nity. Interestingly, many Mtb antigens that are recognized by human T cells are genetically

conserved, implying that preserving T cell recognition of mycobacterial proteins contributes

to bacterial fitness during human infection. Other mycobacterial genes that encode T cell anti-

gens are polymorphic across different clinical isolates and lineages, and these may reflect an

evolutionary response to immune pressure. Thus, the genetic heterogeneity among clinical

Mtb isolates from TB patients could drive diverse T cell responses. The protein sequences of

Mtb antigens used in vaccines are largely based on the H37Rv lab strain, and immune

responses to vaccines and after infection, may be more heterogenous than previously expected.

Ultimately, the A10T polymorphism, and maybe other SNPs in the esxH gene, acts as a CD8 T

cell response regulator that shapes immunodominance by altering the function of TB10.4,

through its interaction with vacuolar trafficking machinery [33], its regulation of metal ions

[24] or its proteolysis (this manuscript). As esxH polymorphisms are focused in lineage 1 (L1),

the geographical clustering of both Mtb L1 and MHC could be a manifestation of T cell

pressure that promotes variation and ongoing immune evasion [34]. However, as genetic

modification of an L4 lineage strain (i.e., Erd.EsxHA10T) was sufficient to the change the

hierarchy of immune responses, the mechanism we describe should be relevant to all Mtb

lineages.

Here we uncover a hierarchy of CD8 immune responses that appears to be established by

immunodomination. We show that a single nucleotide polymorphism in the Mtb genome

alters the CD8 T cell hierarchy in C57BL/6J mice and shifts the focus of the immunodominant

response from TB10.4 to MTB32a. By focusing the CD8 T cell response on a decoy antigen

such as TB10.4, Mtb accomplishes two things. First, the dominant CD8 T cell response is one

that is unable to recognize Mtb-infected macrophages, and therefore, cannot mediate optimal

protection. Second, the presumed presentation of TB10.4 by uninfected cells could promote

inflammation and create an environment that promotes bacillary transmission [35, 36]. We

find that the A10T polymorphisms alter the processing of the TB10.44−11 epitope such that its

abundance is diminished. Thus, not only is there less epitope available for T cell priming, but

the effective abundance of Mtb peptide/MHCI complexes is likely to be below the activation

threshold of CD8 T cells. These data are of great practical significance as they show how poly-

morphisms between circulating Mtb strains in a community, and BCG or H37Rv sequence-

based vaccines could lead to a mismatch between the T cells that are primed by the vaccine

and the epitopes presented by infected cells. Thus, there is uncertainty about whether antigens

that are evolutionarily conserved versus those that are highly polymorphic should be incorpo-

rated into vaccines. Ultimately, an important goal is to identify the epitopes presented by Mtb-

infected cells and to determine whether these Mtb antigens elicit protective T cells. This

approach can provide a roadmap for rational vaccine design.
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Materials and methods

Ethics statement

Studies were conducted using the relevant guidelines and regulations, and approved by the

Institutional Animal Care and Use Committee at the University of Massachusetts Medical

School (UMMS) (Animal Welfare A3306-01), using the recommendations from the Guide for

the Care and Use of Laboratory Animals of the National Institutes of Health and the Office of

Laboratory Animal Welfare.

Animals

C57BL/6J, BALB/c and CB6F1 mice were purchased from Jackson Laboratories (Bar Harbor,

ME) and housed under specific pathogen-free conditions at UMMS. Mice were 8 to 9 weeks

old at the start of all experiments. Infected mice were housed in biosafety level 3 facilities

under specific pathogen-free conditions at UMMS.

Mycobacterium tuberculosis strains

Unless indicated, the Erdman strain was used for in vivo infections, and the H37Rv strain was

used for in vitro infections. Erd.EsxHWT and Erd.EsxHA10T were generated as described below.

The ΔesxH strain was a gift from Dr. Jennifer Philips (Washington University at St. Louis) [24,

33]. The barcoded clinical isolate pool was provided by Dr. Sarah Fortune (Harvard Univer-

sity) [27].

Mouse infections

Eight- to nine-week old female mice were infected by the aerosol route. Frozen bacterial stocks

were thawed, diluted in 0.9% NaCl with 0.02% Tween80, and sonicated before loading into a

nebulizer for Glas-col aerosol chamber (Terre Haute, IN) to deliver approximately 100 CFU to

the lungs of each mouse. The infecting dose was determined 16 hours after infection by plating

lung homogenates on 7H11 agar plates (Hardy Diagnosis). Lungs and spleens were also asepti-

cally removed, individually homogenized, and plated to determine viable bacteria.

Preparation of cells

At different times post-infection, mice were euthanized, the lungs perfused with 10 mL of cold

RPMI1640, and lung cell suspensions were prepared by coarse dissociation using the Gentle-

MACS tissue dissociator (Miltenyi Biotec, Germany). Tissue was digested for 30 min at 37˚C

with 250 U/mL collagenase (Sigma) in RPMI1640 supplemented with 10 mM HEPES, 1 mM

sodium pyruvate, 2 mM L-glutamine (all from Invitrogen Life Technologies, ThermoFisher,

Waltham, MA) and 10% heat-inactivated fetal bovine serum (HyClone, GE Healthcare Life

Sciences, Pittsburgh, PA). The tissue was further homogenized in the GentleMACS dissociator

and sequential straining through 70 μm and 40 μm nylon cell strainers (Falcon). Pulmonary T

cells were purified by positive selection using anti-CD90.2 microbeads on AutoMACS (Milte-

nyi Biotec, Germany). Thioglycolate-elicited peritoneal macrophages were obtained 4–5 days

after intraperitoneal injection of donor mice with 3% thioglycolate solution [37]. CD11b

microbeads (Miltenyi, Biotec, Germany) were used to purify the macrophages.

Peptides

We used the Immune Epitope Database tools to predict differences between the variant TB10

peptide epitopes ability to bind H-2 Kb [38]. The WT (IMYNYPAM), negative control
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(IMANAPAM), Mtb32a309-318 (GAPINSATAM) and ESAT61-15 (MTEQQWNFAGIEAAA)

peptides were synthesized by New England Peptides (Gardner, MA). Variant peptides A10T,

A10V, P9S, and M11I were synthesized by Genscript (Piscataway, NJ). The TB10.4 peptide

library was obtained from BEI Resources.

RMA-S assay

RMA-S cells were provided by Dr. Lawrence Stern laboratory (UMMS, Worcester MA).

Titrated (100uM to 1pM) were added to RMA-S cells (5x104/well) and cultured overnight at

27C in 5% CO2. The cells were the shifted to 37C for 1–2 hours, and then their surface expres-

sion of Kb was analyzed by flow cytometry.

Measurement of T cell proliferation

Purified T cells were labeled with the cell proliferation dye eFluor450 (eBiosciences). Dye dilu-

tion was used as a measure of T cell proliferation, which was determined 72 hrs after co-culture

with peptide-pulsed APC, by flow cytometry.

In vitro infection

Frozen aliquots of Mtb were thawed, grown in 7H9 media until log-phase with an OD600 of

0.6–1, washed, opsonized with TB coat (RPMI 1640, 1% heat-inactivated FBS, 2% human

serum, 0.05% Tween-80) and filtered (5μm) as previously described [9]. After manual count-

ing, the bacteria were added to macrophages on UpCell Nunc plate (Thermo Fisher Scientific,

MA) at the desired multiplicity of infection (MOI) and co-incubated overnight. The macro-

phages were subsequently washed and enumerated by trypan blue. The actual MOI was deter-

mined by lysing macrophages in replicate wells at final concentration of 1% (v/v) Triton X-100

and plating serial dilutions. CFU were enumerated after 21 days.

Mtb-Infected Macrophage Intracellular Cytokine Staining (MIM-ICS)

The MIM-ICS assay was performed as described. Briefly, TGPMs were infected overnight,

recovered, and plated (105/well). 10 μM peptides and uninfected TGPMs were used as con-

trols. Purified T cells from Mtb-infected mice were added and a standard ICS protocol was

used [30].

Peptide library screening

At the indicated timepoints, lungs and spleens were obtained from infected mice and single

cell suspensions prepared. Each peptide in the library or control peptides (10 uM) were added

to 105 lung cells/well in triplicate. After 48 hours in 5% CO2 at 37C, supernatants were filtered

(0.2 μm) and IFNγ measured by ELISA (Biolegend, CA).

Flow cytometry

Samples were fixed with 1% paraformaldehyde in PBS for >1 hr before analysis with a MACS-

Quant flow cytometer (Miltenyi Biotec). FlowJo Software (Tree Star, Portland, OR) was used

for data analysis. Single lymphocytes were gated by forward scatter versus height and side scat-

ter for size and granularity, and dead cells were excluded. Cells were stained with Zombie Vio-

let or Aqua Fixable viability dye, and the antibodies to: CD4 (GK1.5), CD8 (53–6.7), CD3ε
(145-2C11), CD19 (6D5), CD44 (IM7), CD62L (MEL-14), CD127 (A7R34), KLRG1 (2F1/

KLRG1), CD69 (H1.2F3), IFNγ (XMG1.2), F4/80 (BM8) and H-2 Kb (AF6-88.5) (all from
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Biolegend). Tetramers were obtained from the National Institutes of Health Tetramer Core

Facility (Emory University Vaccine Center, Atlanta, GA).

Barcoded clinical isolate pool infection

Barcoded Mtb strain generation, infection, and analysis were previously described [39]. Briefly,

selected clinical isolates were individually tagged with unique 8 basepair sequence, grown to

log phase, pooled, and used for intravenous infection at 1x106 Mtb per mouse. At indicated

time post infection, lungs and spleens were harvested, homogenized and plated on 7H10 sup-

plemented with oleic albumin dextrose catalase (OADC) and 20 ng/ml kanamycin. After 3

weeks of incubation, the plates were counted for CFU, and colonies were scraped for genomic

DNA extraction and sequencing by NextSeq and analysis using Python.

Generation of isogenic Erd.EsxHWT and Erd.EsxHA10T by oligo

recombineering

Oligo recombineering with long oligo containing desired base pair change were generated as

described previously [40, 41]. Erdman was grown in 7H9 broth in log phase before electropo-

ration of the pKM444 plasmid containing RecT annealase. Electroporated strains were selected

on 7H10 agar plates containing 20 ng/ml kanamycin, and PCR used to verify the presence of

pKM444 plasmid. An Erdman strain containing the Che9 phage RecT-producing plasmid was

grown in 7H9 broth to an OD of 0.5. Anhydrotetracycline (Atc, final concentration, 500 ng/

ml) was added to induce expression of RecT from the PTet promoter. The cells were grown

overnight and prepared for electroporation with esxHA10T-conferring oligo (1 ug) and an oligo

targeting the rpsL gene (0.1 ug) designed to generate a K43R mutation in the RpsL protein,

which confers resistance to streptomycin. Following outgrowth, the culture was plated on

7H10 agar plates containing 20 ng/ml streptomycin. Selection of streptomycin screens for cells

that pick up the DNA and are recombinogenic, increasing the frequency of finding the desired

SNP. Candidate colonies were picked and screened for the targeted change by PCR analysis.

In vitro epitope processing assay and mass spectrometry analysis

2 nmol of pure peptide (Biosynthesis, TX) was degraded with 15 ug of mouse macrophage or

BMDC extracts at 37C in pH4 degradation buffer as described [42]. Aliquots were taken at var-

ious time points and the reaction was stopped by addition of 5% (v/v) of Formic acid (Thermo

Fisher Scientific, MA) and the degradation products were purified by trifluoroacetic acid

(Sigma-Aldrich, MO) precipitation (final concentration 5% (v/v)) and identified by in-house

mass spectrometry as previously described [43]. Briefly, equal amounts of the purified degra-

dation products were injected into a NanoLC Ultra-HPLC (Eksigent) for salt removal and sep-

aration, then online nanosprayed into an LTQ Orbitrap Discovery mass spectrometer

(Thermo Fisher Scientific, MA) for identification. Peptides were separated in a NanoLC col-

umn (ChromXP C18, 3 um 120Å; Eksigent) over a gradient of 2–60% buffer B (buffer A: 0.1%

(v/v) formic acid in MS-grade water (Fisher Scientific, NH); buffer B: 0.1% (v/v) formic acid in

MS-grade acetonitrile (Fisher Scientific, NH) in 95 min with a conserved flow rate of 250 nl/

min. Mass spectra were recorded in the 370–2000 Daltons range. In the tandem mass spec-

trometry mode, the eight most intense peaks were selected with a window of 1 Dalton and

fragmented using helium as collision gas and a voltage of 35 V. Peaks in the mass spectra were

searched against the source peptide databases with Proteome Discoverer (version 1.3; Thermo)

and quantitatively analyzed. For a given peptide, the integrated area under the peak is propor-

tional to the relative abundance of the peptide in the sample. Each sample was run on the mass

spectrometer at least twice.
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Statistical analysis

Data are represented as mean ± standard error of the mean (SEM). For comparing two groups,

A two-tailed, unpaired student’s t-test was used to compare two groups; a one-way ANOVA

was used for>2 groups. A p value< 0.05 was considered significant. Analyses were performed

using Prism (GraphPad Software, La Jolla, CA).

Supporting information

S1 Fig. The altered CD8 T cell hierarchy induced by 667 infection is stable over time. The

total number of (A) TB10.44−11-specific, or (B) MTB32a309-318-specific, CD8 T cells in the

lungs of Erdman- or 667-infected mice detected using tetramers during the course of Mtb

infection. Each point represents an individually analyzed mouse. (C) The proportion of tetra-

mer-specific and other CD8 T cells that expressed KLRG1 or CD127. Closed bars, Erdman

infection; open bars, 667 infection. Black, TB10-specific CD8 T cells; purple, MTB32a-specific

CD8 T cells; teal, total CD8s after exclusion of TB10- and MTB32a-specific CD8s.

(PDF)

S2 Fig. IMYNYPTM-loaded tetramers verify the loss of TB10.44−11-specific CD8 T cells

after 667 infection. (A) Competitive tetramer staining was performed using H-2Kb/
WTTB10.44−11 and H-2Kb/ A10TTB10.44−11 tetramers labelled with different fluorochromes in a

single stain to assess the relative avidity of the responding CD8 T cells. CD8 T cells elicited by

Erdman infection only bind the WTTB10.44−11/Kb tetramer indicating that their avidity for the

WT epitope is greater than for the A10T variant. In contrast, CD8 T cells elicited by 667 bind

better to the A10T tetramer but are also recognized by the WT tetramer. (B) Conventional tet-

ramer staining of CD8 T cells elicited by Erdman (left) or 667 (right) infections, and stained

with the H-2Kb/ WTTB10.44−11 (top row) or H-2Kb/ A10TTB10.44−11 (bottom row) tetramer,

both in combination with the H-2Kb/MTB32a309-318 tetramer (Y axis). Cells were gated by

size, viability, and lymphocyte gate before finally gating on the CD8 T cell population.

(PDF)

S3 Fig. No new TB10.4 epitopes were detected in the absence of the TB10.44−11-specific

CD8 T cell response. To detect whether any new epitopes of TB10.4 emerge following 667

infection, single cell lung suspensions from Erdman- or 667-infected (A) C57BL/6; (B) BALB/

c; or (C) CB6F1 mice were incubated with peptides from a TB10.4 peptide library (21 peptides

of 15mers overlapping 11 amino acids; also see S2 Table) and the indicated control peptides.

Supernatants were collected after 48 hours and IFNγ production was detected by ELISA.

Three strains of mice were used to identify whether the A10T polymorphism affects the pro-

duction of T cells specific to TB10.44−11 (Kb restricted; e.g., C57BL/6), TB10.420−28 (Kd

restricted) or TB10.474−88 is (I-Ad restricted) (e.g., BALB/c). The F1 mouse was used to address

whether any difference in the immunogenicity of TB10.44−11 and TB10.420−28 was modulated

by host genetics. In this experiment, the 667-infected mice appear to have a greater IFNγ
response induced by the ESAT-6 epitope. We observed variability in the ESAT6 response in

these experiments but after several experiments concluded that these differences were not

reproducible. The variability may depend on the type of assay used. For example, the number

of ESAT6-specific tetramer+ cells in the lungs of Erdman and 667 infected mice is virtually

indistinguishable (Fig 2D). The peptide screening used total lung cells (as opposed to purified

T cells), which prevents us from normalizing the abundance of CD4 and CD8 T cells in each

sample, which is routinely done in flow cytometry experiments by specifically gating on the T

cells as is done in the flow experiments. Additionally, the exogenous peptides are not the only

source of antigen as there are endogenous APC that are infected. Alternately, APC may secrete
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IL-12 and IL-18, which could drive antigen-independent IFNγ production. However, since

this experiment is designed to identify new positive responses (e.g., cryptic epitopes); and not

differences between the two strains, we believe that this experimental design is valid. Finally,

another reason that the ESAT-6 induced IFNγ responses differs from the tetramer number is

that the ESAT6/I-Ab tetramers may only stain a subset of the total ESAT6-specific T cells (e.g.,

high avidity)(for more discussion of this issue see Patankar et al, Mucosal Immunology 2019).

(PDF)

S4 Fig. Similar CD8 T cell responses are elicited by 667 and Erdman infection in BALB/c

mice. The frequency of Kd-restricted CD8 T cells specific for TB10.420−28 and I-Ad-restricted

CD4 T cells specific for TB10.474−88 were measured using tetramers after Mtb infection.

Infected BALB/c mice were analyzed at 5 weeks post-infection with ~100 aerosolized Erdman

or 667. (A) Representative flow cytometry plots of TB10.474−88-specific CD4 T cells (top row),

or TB10.420−28-specific and EspA150-158-specific CD8 T cells (bottom row) following Erdman

(left) or 667 (right). The percentages (B) and the total cell numbers (C) of tetramer specific

cells from the lungs of BALB/c mice. The similar CD4 T cell response to the TB10.474−88 epi-

tope after 667 or Erdman infection makes it unlikely that the failure of 667 to elicit TB10.4-spe-

cific CD8 T cells is because the polymorphic TB10.4 protein (i.e., A10T) is less stable or

abundant. Similarly, Erdman elicited a comparable TB10.420−28-specific CD8 T cell response

in BALB/c mice to 667 infection. These data suggest that the changes in the immunogenicity

of TB10.44−11 is due to an epitope specific effect, and not a change that affects the global CD8

T cell response. Similarly, we examined an independent epitope recognized by CD8 T cells

after Mtb infection and found that both 667 and Erdman elicited similar frequencies of

EspA150-158-specific CD8 T cells. Thus, the CD8 T cell response elicited in BALB/c mice does

not appear to be affected by the polymorphisms present in 667, based on quantification of the

response to EspA150-158 or TB10.420−28. These data are representative of three different inde-

pendent experiments. Statistical testing performed using a one-way ANOVA. ns, non-signifi-

cant.

(PDF)

S5 Fig. Generation of Erd.EsxHWT and Erd.EsxHA10T isogenic strains. (A) Schematic repre-

sentation of oligo recombineering method to generate isogenic strains. (B) RT-PCR was used

to determine Mtb antigen gene expression by Erdman, the two isogenic strains created by

recombineering, Erd.EsxHWT and Erd.EsxHA10T, and the clinical isolate 667, all after growth

in 7H9 media. Relative expression was measured in comparison to the 16S ribosomal RNA

housekeeping gene and normalized to the non-genetically modified Erdman strain (i.e., Erd-

man).

(PDF)

S6 Fig. Infection with the Erd.EsxHWT and Erd.EsxHA10T isogenic strains does not alter

the antigen-specific CD4 and CD8 T cells response in BALB/c mice. Infected BALB/c mice

were analyzed at 5 weeks post-infection with ~100 aerosolized Erd.EsxHWT or Erd.EsxHA10T

isogenic strains. (A) Representative flow cytometry plots of TB10.420−28-specific and EspA150-

158-specific CD8 T cells (top row), or TB10.474−88-specific and Ag85A-specific CD4 T cells

(bottom row) following Erd.EsxHWT (left) or Erd.EsxHA10T (right). The percentages (B) and

the total cell numbers (C) of tetramer specific cells from the lungs of BALB/c mice. Here, the

CD8 T cell response elicited in BALB/c mice does not appear to be affected by the polymor-

phisms present in Erd.EsxHA10T, based on quantification of the response to EspA150-158 or

TB10.420−28. These data are representative of three independent experiments. None of the

comparisons between 667 and Erdman infected mice were significantly different based on
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statistical analysis performed using a one-way ANOVA. ns, not significant.

(PDF)

S7 Fig. 667 and Erdman, and Erd.EsxHWT and Erd.EsxHA10T infect macrophages simi-

larly. After monoinfection, bacterial loads were lower and survival was longer after 667 infec-

tion compared to Erdman in C57BL/6 mice. This raises the possibility that the uptake of 667

by macrophages differs from Erdman. Our competition experiment (Fig 3) shows that 667 and

Erdman are similarly fit in the spleens of T cell deficient mouse (i.e., RAG ko), and both are

controlled by adaptive immunity (i.e., in C57BL/6 mice). There did appear to be a difference

in fitness in the lung that we did not explore. When performing in vitro macrophage infec-

tions, 667 and Erdman appeared to infect macrophages similarly (A). We determined the

actual MOI after each in vitro infection by lysing infected macrophages and plating serial dilu-

tions of the lysate. By this measure, the MOI of Erdman and 667 was very similar, and any dif-

ferences were more likely due to differences in counting the bacteria before infection, rather

than differences in uptake or intracellular growth. We performed similar experiments to com-

pare Erd.EsxHWT and Erd.EsxHA10T and observed they also had a similar ability to infect mac-

rophages (B). Statistical analysis by a paired t-test showed that the difference in MOI was not

significant (A,B).

(PDF)

S8 Fig. T cell recognition of macrophages infected with EsxH-deficient compared to EsxH-

expressing Mtb strains. CD4 (left) or CD8 (right) T cells purified from the lungs of Erdman-

infected mice were cultured with ΔesxH-infected (pink) or esxHWT-complemented ΔesxH (ie.

ΔesxH::WT)-infected (teal) macrophages and the MIM-ICS assay was performed. The X axis is

the actual multiplicity of infection (MOI) as determined by CFU plating. Results are represen-

tative of two different experiments. Each data point is an average result from 5 individual

mice.

(PDF)

S9 Fig. Peptide stabilization of Kb expressed by RMA-S cells. Normalized and fitted data

from Fig 6A.using the ECanything nonlinear regression model (Prism 8) to fit the curves. By

setting F = 50, the IC50 was determined for each data set. The points are the experimental

data, the solid lines are the fitted line, and the dashed lines are the 95% confidence intervals.

This experiment was repeated four times with similar results.

(PDF)

S10 Fig. Different peptide degradation patterns of TB10.41−34 with alanine or threonine at

position 10 in BMDC extracts. (A) Experiment scheme of the in vitro peptide degradation

assay in bone-marrow derived dendritic cells lysosomal extracts. (B) N (left) and C (right) ter-

minus cleavage sites determined at 60 minutes. The relative amount of peptides starting (left)

or ending (right) at each residue was quantified during the degradation of WT (closed) and

A10T (open) TB10.4-1-34-mer peptides. N = 6 experiments; stars p<0.05. (C) Production of

TB10.44−11 epitope (left) and N-extended IM8 (right) from WT (closed) or A10T 34-mer

(open) at 60 minutes. One representative experiment. (D) Production of TB10.44−11 epitope

from WT (closed) and A10T (open) TB10.4-1-34-mer peptides was determined at 10, 30, 60

minutes in N = 6 independent experiments. P values calculated with Wilcoxon matched-pairs
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