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Abstract

Hepatocellular carcinoma (HCC) has one of highest mortalities globally amongst cancers, but has 

limited therapeutic options once in the advanced stage. Hepatitis B or C virus infection are the 

most common drivers for HCC carcinogenesis, triggering chronic liver inflammation and adding 

to the complexity of the immune microecosystem of HCC. The emergence of immunotherapy has 

afforded a new avenue of therapeutic options for patients with advanced HCC with a history of 

hepatitis B or C virus infection. This article reviews the change of immunity elicited by hepatitis B 

or C virus infection, the immune feature of HCC, and the clinical evidence for immunotherapy in 

advanced HCC and discusses future directions in this field.
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INTRODUCTION

Liver cancers are the fourth leading cause of cancer-related mortality worldwide[1,2], and 

there are over 800,000 new primary liver cancer cases around the world each year[3]. 
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Hepatocellular carcinoma (HCC) accounts for 75%−85% of these cases and is one of the 

most aggressive liver cancers[1]. The incidence of HCC is increasing in many high-income 

countries[2]. The majority of HCC occurs in patients with underlying chronic liver diseases 

triggered by various risks dependent on geographic area, sex, age, and degree of liver 

damage[4]. Furthermore, males are twice as likely as females to develop HCC[5].

HCC can be caused by both viral and non-viral factors. HCC develops secondary to chronic 

infection with the hepatitis B virus (HBV) or hepatitis C virus (HCV). High serum levels of 

HBV DNA and HCV RNA viral load are considered to be independent risk factors for 

developing HCC in patients infected by these diseases[6,7]. HBV vaccination has greatly 

reduced the incidence of HCC in certain geographic areas[8]. Moreover, improved screening 

and treatment of HCV infection has also reduced virus-related HCC cases in non-epidemic 

regions[9].

Non-viral risk factors for the development of HCC include excessive alcohol consumption, 

environmental exposure to aflatoxin, metabolic disorders, non-alcoholic steatohepatitis, and 

genetic disorders[10]. It is unsurprising that non-viral risk factors are more common causes 

of HCC in countries such as the USA, UK, and other high income countries. Frequently, 

viral infection is complicated with non-viral risk factors leading to HCC development. 

Systematic treatment is the standard approach to control advanced HCC, given that most 

patients present with advanced stage disease, which limits curative approaches such as 

surgical resection, liver transplantation, and local liver-directed therapy. Recent molecular 

landscape analysis has led to the development of systematic targeted therapies for advanced 

HCC, including sorafenib[11] and lenvatinib[12] in the first line setting, and regorafenib[13], 

cabozantinib[14], and ramucirumab[15] as second line options. The breakthrough of cancer 

immunology research has provided effective immunotherapy by blocking 

immunosuppressive mechanisms and enhancing host immune surveillance. This leads to the 

recognition of tumour and execution of a tumour-specific response capable of treating 

malignancy, including HCC[16]. HBV- or HCV-related HCC represents a special entity 

compared to non-viral HCC. This review discusses the immune response to HBV and HCV 

infection, the immunology of HCC, and summarizes the current status of immunotherapy in 

HCC in the context of HBV or HCV infection.

HBV INFECTION AND IMMUNE TOLERANCE

Studies have shown that HBV not only has a direct carcinogenic effect through the 

integration of viral DNA and the oncoprotein HBV-encoded X protein (HBx), but also has 

an indirect carcinogenic effect due to chronic immune suppression[17]. HBV has been 

considered as a stealth virus and acute infection does not lead to a strong activation of 

interferon (IFN) and pro-inflammatory responses[18–22]. Liver resident macrophage Kupffer 

cells are able to interact with hepatitis B surface antigen (HBsAg) and produce pro-

inflammatory cytokines, but Toll-like receptor expression is down-regulated by 

HBeAg[23,24]. Indirect activation of natural killer (NK) cells can occur via Kupffer cell 

derived IL-12 and IL-18[23,25], evidenced by the increased expression of activation markers 

CD69 and NKG2D and lower levels of inhibitory markers NKG2A[26,27], but these are 

functionally suppressed[28]. These suggest that NK cells are unable to clear the infection on 
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their own. The weakness of the innate response does not impair the induction of a vigorous 

HBV-specific CD4 T cell response[29], that subsequently generates a large number of 

cytokines necessary for the effective development of cytotoxic CD8 T cells and B cell 

antibody production[30]. Potent HBV antigen-specific CD8+ T cell responses can control 

HBV replication and reduce it to undetectable levels during acute HBV infection[31]. In 

chronic HBV infection, the antiviral functionality of NK cells is also impaired, evidenced by 

an alteration of the phenotype and the receptors of NK cells[32]. This inhibition of NK cell 

activity is mainly mediated by myeloid-derived suppressor cells (MDSCs) via NKp30 

receptor on NK cells[33] and pro-inflammatory cytokines[34]. In addition, accumulated liver 

MDSCs due to HBV infection suppress CD8+ T cell function and promote systemic CD8+ 

T cell exhaustion[35], characterized by high expression levels of inhibitory receptors such as 

CTLA-4, PD-1, and TIM-3[36,37]. Furthermore, they inhibit CD4+ T cells and metabolically 

regulate HBV-related liver damage[38]. MDSCs can induce the development of 

immunosuppressive regulatory T cells (Tregs) during chronic HBV infection primarily via a 

TGFb and the IL-10-dependent signalling pathway[39]. Tregs specifically inhibit CD8+ T 

cell activity; further blocking HBV-specific immune responses, leading to HBV persistence. 

On the other hand, low levels of HBV activity controlled by HBV antigen-specific CD8+ T 

cells lead to sustained liver inflammation and the functional depletion of HBV antigen-

specific CD8+ T cells[40–42]. Hence, immunotherapies targeting these inhibitory receptors 

may modulate the progression of HCC [Figure 1]. Moreover, the exhausted CD8+ T cells 

experience impaired metabolic function and DNA repair capacity that further deteriorates 

their functions[43]. This highlights a complex interaction among the abovementioned 

immune cells during HBV infection, sustaining immune disorders and inflammation in the 

liver, which predispose patients to HCC development.

HCV INFECTION AND IMMUNE TOLERANCE

The dysregulation in immune surveillance triggered by HCV infection is also thought to be 

one of the mechanisms by which HCV causes HCC. During acute HCV infections, NK cells 

are activated with enhanced cytotoxicity and IFN production[44]. However, 70% of HCV-

infected patients progress to chronic infection[45], partially due to decreased NK cell levels 

and function[46]. HCV antigen-specific CD8+ T cells participate in controlling HCV 

infection[47]. However, non-synonymous mutations in HCV are common, resulting in an 

escape from CD8+ T-cell recognition[48,49]. Moreover, HCV antigen-specific T cells 

undergo massive apoptosis during the chronic phase[50]. It has been reported that CD8+ T 

cell exhaustion develops following prolonged exposure to HCV antigens[51–53]. During 

chronic infection, HCV activates monocytes and macrophages, leading to the secretion of 

pro-inflammatory cytokines[54]. The released pro-inflammatory cytokines IL-6 and TNF not 

only promote macrophage apoptosis[55], but also aggravate liver disease progression and 

HCC development[56]. In the setting of HCV infection, impaired macrophage phagocytosis 

may contribute to chronic infection and subsequent uncontrolled inflammation that promotes 

liver disease. Similar to HBV, HCV infection is also linked to the presence of MDSCs[57] 

and an expansion of Tregs via IL-10[58] and IL-12[59,60]. Tregs both suppress the HCV 

antigen-specific CD8+ T cell response in chronic infection and control memory cells. In 

addition, HCV impedes dendritic cell (DC) function by altering the adaptive response of 
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CD4+ and CD8+ T cells, and cytokine release[61,62]. This suggests that HCV often disturbs 

antigen presentation along with humoral and cell-mediated immune response, resulting in 

chronic HCV infection and progressive liver damage [Figure 1].

IMMUNE EVASION MECHANISMS OF HCC ASSOCIATED WITH HBV/HCV

Following persistent chronic liver inflammation due to HBV and HCV infection and 

immune imbalances, HCC develops with specific immunological features. There were 22% 

of 196 HCC samples displaying high or moderate levels of lymphocyte infiltration from an 

analysis of TCGA HCC samples, with high expression of immunosuppressive molecules and 

enriched Tregs, resting DCs and undifferentiated M0 macrophages compared to normal 

livers. This indicates an immunosuppressed microenvironment in this group of HCC 

patients. HBV/HCV infection status appeared not to be significantly associated with these 

observations[63]. There was also T-cell enrichment with heterogenetic clonal expansion of 

CD8+ T-cell populations with exhausted characteristics based on the sequencing of T-cell 

receptors (TCR) in TILs[64,65]. Interestingly, a further study showed CD8+ resident memory 

cells were enriched in HBV-related HCC with higher PD-1 expression and functionally more 

exhausted than non-virus-related HCC[66]. Increased numbers of CD14+ HLA-DR−/low 

MDSCs were found to be related to HCC progression[67]. Furthermore, infiltrating MDSCs 

not only suppress T-cell proliferation via arginase to deplete arginine[67], but also promote 

Treg expansion through the production of IL-10 and TGF-β, and inhibit effector T cells 

through PD-L1[67]. In addition, high IL-10 secretion by MDSCs results in the skewing of 

resident tumour-associated macrophages (TAMs) and monocytes to an immunosuppressive 

phenotype[68]. They release TGF-β and VEGF to promote tumour growth and development, 

promoting cancer stem cells and metastasis[69], stimulating Tregs, and suppressing NK 

cells[70]. Noticeably, Tregs are enriched in HCC[64]. This enrichment is prominent in HBV-

related HCC with greater expression of PD-1 and increased suppressive function, which 

represents a more immunosuppressive and exhausted immune microenvironment in HBV-

related HCC compared to the non-virus-related HCC[66]. The increased Tregs not only 

suppressed HBV antigen-specific immune responses, but also suppressed HCC tumour 

antigen-specific immune responses[71]. DCs are severely dysregulated in HCC, with a subset 

of CD14+ DCs expressing high levels of CTLA-4 which indicates an inhibitory 

phenotype[72]. In addition to these immune cells, several other stromal cells, such as NK 

cells, endothelial cells and cancer-associated fibroblasts, orchestrate immune evasion in 

HCC[73]. For example, endothelial cells in cancer tissues reportedly produce the C-X-C 

motif chemokine ligand 12, facilitating the recruitment of MDSCs[74]. Together, these data 

suggest that HCC is an immunogenic malignancy, rendering it an attractive target for 

immunotherapy [Figure 1].

CURRENT IMMUNOTHERAPY OF HBV- AND HCV-RELATED HCC

Immunotherapy, specifically immune checkpoint inhibition, has been considered a useful 

treatment option for HCC, evidenced by both pembrolizumab (anti-PD-1) and nivolumab 

(anti-PD-1) with or without ipilimumab (anti-CTLA4) approved as second line therapy, and 

atezolizumab (anti-PD-L1) with bevacizumab approved as first line treatment options. In 

addition to immune checkpoint inhibitors (ICIs), several immunotherapy approaches are in 
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development, including antibodies targeting specific tumour-associated antigens (TAAs), 

adoptive cell therapy, vaccination based on TAAs or mutation-associated neoantigens 

(MANAs) and oncolytic viruses. Although the infection of HBV and HCV is highly 

associated with HCC development, data on response outcomes specifically in this population 

included in trials is scarce.

IMMUNE CHECKPOINT INHIBITORS

Tremelimumab, a CTLA-4 inhibitor, was the first immune checkpoint inhibitor (ICI) that 

showed encouraging results in patients with advanced HCC. In a phase II study including 

patients with advanced HCC and chronic HCV infection, tremelimumab showed an 

objective response rate (ORR) of 17.6%, a disease control rate (DCR) of 76.4%, a median 

time to progression of 6.48 months, and a median overall survival (OS) of 8.2 months[75]. 

Importantly, in this study, tremelimumab also exhibited antiviral effects evidenced by a 

significant decline in viral load. There were no treatment-related deaths and the treatment 

was mostly well tolerated.

In the open-label phase I/II CheckMate 040 trial, nivolumab was assessed as first-line 

therapy in patients with advanced HCC. The protocol had three concurrent cohorts of 

patients, including non-viral infected, HBV, and HCV infected advanced HCC. The results 

showed an ORR of 15%, a DCR of 58%, and a median OS of 15.6 months in the dose-

escalation phase. The six-month OS was 83%, the nine-month OS was 74%, and the median 

duration of response (DOR) was 17 months in the dose-expansion phase. The most common 

treatment-related adverse events (TRAEs) were rash (23%) and pruritus (19%)[76]. Hepatitis 

flares were not reported. However, in the phase III randomized, double blind, multicentre 

CheckMate-459 trial, nivolumab failed to show statistical significance in OS benefit though 

there was a clear trend of improvement in OS for patients treated with nivolumab compared 

to sorafenib [Table 1][77]. The viral infection history of the patient population remains 

unclear. Nivolumab is also being studied in the phase III CheckMate-9DX study as adjuvant 

treatment after curative therapy (surgery or ablation) for HCC in patients with a high risk of 

recurrence compared with placebo (NCT03383458). Recent reports from the combination of 

nivolumab and ipilimumab in patients with advanced or metastatic HCC showed an ORR of 

33% with an 8% complete response (CR) among a total of 49 patients. There was a median 

DOR of 17 months with TRAEs of grade 3 or higher in 34% of patients. Among the trial 

cohort, 57% had an active HBV infection and 8% had an active HCV infection, and no 

evidence of viral hepatitis reactivation was detected[68]. Nivolumab and ipilimumab in the 

neoadjuvant setting (NCT03222076) have shown promising preliminary results of 29% 

pathologic CR with 34% TRAEs (5 HCV-positive and 1 HBV infected patients were 

reported).

Pembrolizumab is a recombinant monoclonal human antibody for human PD-1. A non-

randomized, multicentre, open-label phase II study (KEYNOTE-224) tested the efficacy and 

safety of pembrolizumab in patients with advanced HCC as a second line treatment option, 

showing an ORR of 17% and a median OS of 12.9 months. HCV positive (n = 26) and HBV 

positive (n = 22) patients did not have reactivation of viral hepatitis[78]. However, the 

subsequent phase III randomized control trial KEYNOTE-240 of pembrolizumab as second 
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line treatment in advanced HCC failed to show a statistically significant improvement in 

progression-free survival (PFS) or OS. Even so, pembrolizumab showed a reduced risk of 

death by 22% and an improved PFS compared with placebo. 25.9%, 15.5%, and 58.6% 

patients were affected by HBV, HCV, or non-infected in the pembrolizumab treatment 

cohort, respectively, in comparison to 21.5%, 21%, and 85% in the placebo cohort. A 

subgroup analysis indicated that patients with HBV infection treated with pembrolizumab 

had a superior median OS compared to those treated with placebo; there was no OS benefit 

in the group of HCV infected or non-infected patients[79]. There are two on-going phase III 

trials of pembrolizumab, including KEYNOTE-394, to evaluate pembrolizumab in Asian 

HCC patients, and KEYNOTE-937 to evaluate pembrolizumab as an adjuvant therapy in 

HCC patients after curative treatment.

Other PD-1 antibodies, including tislelizumab (BGB-A317), camrelizumab (SHR-1210) and 

cemiplimab (REGN2810), also have shown anti-tumour activity in HCC, with response rates 

of 16.7% (all responders were HBV infected)[80], 13.8%[81] and 19.2%[82], respectively. 

Interestingly, in the trial of camrelizumab, 83% of patients enrolled were infected with HBV. 

An increase in HBV titre was noted in 46 participants, but the majority of these occurred 

after disease progression or after the last dose of treatment. Conversion to HBsAg positive 

from negative status was not reported during the treatment[81]. A phase III trial 

(RATIONALE 301) of tislelizumab versus sorafenib as first-line treatment in patients with 

unresectable HCC is currently underway (NCT02412773) [Table 2].

Durvalumab (MEDI4736) is an anti-PD-L1 monoclonal antibody. In a phase I/II trial of 

Child-Pugh class A advanced HCC patients, durvalumab achieved an OS rate of 10.3% in 39 

patients in the second line setting. There was comparable ORR of 25% in patients with HCV 

infections and similar rates of TRAEs[83]. Furthermore, the combination of durvalumab with 

tremelimumab in patients with advanced HCC in the second line setting showed an ORR of 

20% (2 responders were HCV infected), median PFS of 7.8 months, and median OS of 15.9 

months amongst the 10 patients (7 HCV and 1 HBV infected)[84]. However, the other study 

reported this combination in advanced HCC showing no response in 9 patients with HCV 

infection, 1 responder in 11 patients with HBV infection, and an ORR of 35% among 20 

uninfected patients with an overall ORR of 20%[85]. The on-going phase 3 HIMALAYA 

study evaluating durvalumab and tremelimumab compared with sorafenib or durvalumab 

monotherapy in the first-line setting in unresectable HCC (NCT03298451) may provide 

further information regarding the response status of HBV- or HCV-infected patients 

following anti-PD-L1 treatment.

It remains unknown whether virally-induced HCC is more prone to immune attack either 

secondary to the presence of foreign viral antigens or an immune response to the virus, 

compared to non-viral associated HCC. A recent pooled analysis assessed the efficacy of 

anti-PD1 or PDL1 in HBV infected HCC patients in comparison to non HBV infected HCC 

patients[86]. The results indicated that patients with HBV infection achieved ORRs similar to 

their non-infected counterparts, and this was seen with single and multi-agent treatment 

regimens. A lower disease control rate (DCR) was reported in HBV-infected HCC patients; 

stable disease was more likely to be seen in non-viral HCC, but this observation was not 

statistically significant. Drug efficacy evaluated as ORR and DCR of HCV-infected HCC 
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patients compared to HBV positive HCC and non-viral HCC was similar, and reached 

statistical significance. Although clinical activity was observed for the most part in non-viral 

associated HCC patients, the interpretation of potential differences in response based on 

viral aetiology remains limited by the small number of patients and would require further 

evaluation with prospective, randomized, and double-blind clinical trials.

Given the profound immunomodulatory effect of the vascular epithelial growth factor 

(VEGF) pathway and dominant presence of angiogenesis in HCC, there increasing interest 

in testing the anti-tumour efficacy of ICIs in combination with anti-angiogenetic agents. For 

example, the anti-PD-L1 antibody atezolizumab was studied in a phase Ib study in 

combination with bevacizumab in the first-line setting for advanced HCC with Child-Pugh B 

liver disease[87]. This study showed promising early findings, resulting in an ORR of 34% 

with one CR[87]. This led to the multicentre, open-label, randomized phase III trial IMbrave 

150, which evaluated this combination compared with sorafenib[88]. This study enrolled 336 

patients; 49% were infected with HBV, 21% were infected with HCV, and 30% were non-

viral in the combination cohort. In the sorafenib cohort 165 patients were enrolled; 46% had 

HBV, 22% had HCV, and 32% did not have hepatitis viral infections. The reported 12-month 

OS was 67.2% in the atezolizumab with bevacizumab group and 54.6% in the sorafenib 

cohort. Grade 3 or greater adverse events were reported in 56.5% of patients who received at 

least one dose of the combination treatment, and in 55.1% of patients in the sorafenib 

cohort. Interestingly, the subgroup analysis showed a superior OS benefit in patients with 

either HBV or HCV infection treated with combination therapy[88]. The FDA has approved 

the combination of atezolizumab and bevacizumab for the treatment of patients with 

unresectable HCC as a first line treatment option [Table 1]. There are other reports using 

ICIs in combination with anti-angiogenic therapies including pembrolizumab and 

lenvatinib[89], durvalumab with ramucirumab[90], nivolumab with ipilimumab and 

cabozantinib[91], as well as avelumab with axitinib[92]. There are on-going trials with the 

same strategy, including atezolizumab and cabozantinib (COSMIC-312, NCT03755791), 

pembrolizumab with lenvatinib (LEAP-002, NCT03713593), SHR-1210 and apatinib 

(NCT03764293), and sintilimab (anti-PD-1) with bevacizumab biosimilar (ORIENT-32, 

NCT03794440).

The combined use of locoregional therapies such as ablation and transcatheter arterial 

chemoembolization (TACE) could improve the effectiveness of immunotherapies against 

HCC[93]. There are on-going phase III trials evaluating the outcome of the combination of 

ICIs with these modalities. For example, durvalumab and bevacizumab, or placebo with 

TACE in both intermediate HCC (EMERALD-1, NCT03778957) and high-risk HCC 

(EMERALD-2, NCT03847428), pembrolizumab with stereotactic body radiation therapy 

(NCT03316872), pembrolizumab following TACE (PETAL, NCT03397654) or Y90 

(NCT03099564), and nivolumab with Y90 (NCT03033446).

Other immune checkpoint molecules, such as LAG3, TIM-3, 4–1BB, CD40, and OX40, can 

also be targeted and combined with PD-1/PD-L1 or CTLA-4 blockade in patients with HCC 

(NCT03005782, NCT03099109, NCT03241173). Biphasic antibodies to target PD-1 and 

other immune checkpoints concurrently are being studied as well (NCT03517488, 

NCT03752398).
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CELL-BASED IMMUNOTHERAPY

There are several cell-based immunotherapies being studied in patients with advanced HCC, 

including chimeric antigen receptor T (CAR-T) cells, cytokine-induced killer cells (CIKs) 

and T cell receptor (TCR)-engineered T cells.

Proteins found in HCC currently being investigated as targets in CAR-T cell research in 

early stage studies include GPC3 (NCT02905188, NCT03084380, NCT03130712, 

NCT03198546, and NCT03302403), AFP (NCT03349255), EpCAM (NCT03013712), c-

Met/PD-L1 (NCT03672305), MUC-1 (NCT03198546), and DR5, c-Met or EGFRvIII 

(NCT03638206). The earliest study in CEA positive liver metastases treated with CAR-T 

cells was reported in a phase I trial. Anti-CEA CAR-T administered through hepatic artery 

infusion with or without systemic IL-2 treatment resulted in one case of stable disease (SD)
[94]. HCC patients were not included, however. A phase I trial with anti-GPC3 CAR-T cells 

for relapsed or refractory GPC3-positive HCC showed one PR and three SD observed 

among 6 patients, respectively. No dose-limiting toxicity was identified and only one grade 3 

fever was reported[95].

Cytokine-induced killer cells (CIKs) are a mixture of heterogeneous immune cells generated 

by the ex vivo expansion of peripheral blood mononuclear cells with the support of IL-2, 

IFNg, and anti-CD3 monoclonal antibodies. A randomized phase II trial in treatment-naïve 

patients with HCC (over 50% patients had HBV infection) demonstrated that CIK therapy 

prolonged OS and PFS, compared to standard of care[96]. A multicentre open-label 

randomized phase III trial in patients with HCC after curative treatment demonstrated that 

CIK therapy prolonged recurrence-free survival and OS, though a significant proportion of 

patients with CIK infusion developed adverse events. In this trial, CIK infusion seemed to 

benefit the HBV-infected population (over 80% of the patient population) more than the 

HCV-infected or the uninfected group. No information of hepatitis flares or conversion was 

reported[97].

TCR-engineered T cells are generated by integrating a cloned tumour antigen-specific TCR 

into T cells. Phase I trials are currently evaluating genetically modified T cells expressing 

AFP-specific TCRs in patients with advanced HCC (NCT03132792) and an autologous 

TCR-engineered T cell therapy targeting MAGEA1 in solid tumours including HCC 

(NCT03441100). Since HBV-DNA integration is often seen in HBV-related HCC, cell based 

therapy studies in HCC have looked into the possibility of using the HBV antigens 

expressed in HCC cells as a target for autologous TCR redirected therapy[98,99]. Vector-

mediated gene transfer may be a means to introduce HLA-A2-restricted, HBV-specific 

TCRs into T cells of chronic HBV- and HBV-related HCC patients. Through TCR gene 

transfer, it has been demonstrated that TCR transduced T cells have the capacity of 

recognizing HCC cell lines expressing HBV antigens. This data showed that HBV-specific T 

cell clones cause apoptosis of HCC tumour cells that express the HBV X protein, proving 

that HBV proteins are identified by the immune system as non-self-tumour antigens[100]. 

Nevertheless, HBV antigens were expressed in HCC metastases and there is published 

evidence of the recognition of tumour cells by lymphocytes engineered to express HBV-

specific receptor TCR with HCC autologous T cells genetically modified to express and 
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HBV-specific TCR and treat chemo-resistant metastatic HCC[101]. These findings suggest 

that autologous TCR therapy redirected against HBV-associated HCC may have therapeutic 

potential in the future.

VACCINES

Vaccines against HBV and HCV reduce the likelihood of developing HCC. Vaccine therapy 

in HCC is an area of important on-going research with the goal of improving the immune 

response against malignant cells through tumour specific antigens and subsequent T cell 

activation[102]. Clinical study protocols including different stages of HCC have been 

conducted by the Cancer Vaccine development for the HCC Consortium (HEPAVAC)[103].

Both RNA and peptide-based vaccines are under investigation. A phase I/II trial for 

advanced solid tumours including HCC treated with NCI-4650, an mRNA-based vaccine, 

was terminated due to slow accrual (NCT03480152). Peptide-based vaccines for HCC 

utilize shared TAAs. A phase I trial evaluated the anti-tumour efficacy of an AFP-derived 

peptide vaccine subcutaneously injected in 15 patients with HCC; 10 HCV and 2 HBV 

infected patients. The study showed that the vaccine was well tolerated and 33% of the 

patients had an AFP-specific cytotoxic CD8+ T cell response. One patient had a CR for over 

2 years and 8 patients had stable disease[104]. GPC3 is another antigen that is highly 

expressed in HCC. In a phase I trial of 33 patients (8 HBV and 15 HCV infected), the GPC3 

peptide vaccine was well tolerated and induced a GPC3-specific T cell response. There was 

one PR (HCV infected) and 19 showing SD. GPC3-specific T cell frequency correlated with 

OS while higher GPC3-specific T cell frequency showed longer OS[105]. The additional 

PD-1 blockade seemed to augment the efficacy of the GPC3 vaccine by increasing the 

number of vaccine-induced cytotoxic T lymphocytes[106]. A phase II trial of a TERT-derived 

peptide vaccine in combination with low dose cyclophosphamide showed no effective 

antitumor response in 40 advanced HCC patients[107]. A study utilizing IMA970A with 

CV8102 vaccines has completed but the results have not yet been published 

(NCT03203005). Current vaccine trials include the hepcortespenlisimut-L vaccine 

(NCT02256514, NCT02232490), pneumonia vaccine (NCT03942328), heat shock protein-

peptide complex vaccine (NCT04206254), Quilt-2.025 NANT neoepitope yeast vaccine 

(NCT03552718), DNAJB1-PRKACA fusion kinase peptide vaccine (NCT04248569), 

personalize DC vaccine (NCT03674073, NCT04147078) and multiple signals loaded DC 

vaccine (NCT04317248). The results of these trials will be instructive for the next 

generation of vaccine trial design.

ONCOLYTIC VIRUSES

Oncolytic viruses have attracted lots of attention with the hope of tumour eradication 

through selective direct viral replication within tumour cells and activation of cell-mediated, 

tumour-specific immunity[108]. For example, JX-594 (Pexa-Vec, pexastimogene 

devacirepvec), derived from a strain of vaccinia, has been studied in HCC[109,110]. In a 

randomized phase 2 study with 20% HCV infected and 40% HBV infected patients among 

the 40 enrolled participants, JX-594 resulted in one CR and three PR[109]. Nevertheless, it 

also showed high-dose JX-594 doubled OS to 14.7 months from 6.7 months in the low-dose 
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treatment group. All patients in the study experienced minimal TRAEs. In contrast, a phase 

2b trial in 129 HCC patients in the second line setting, including 51.1% HBV- and 14.0% 

HCV-infected, did not show an OS benefit among 129 patients, compared to those treated 

with best supportive care[111]. Patients are presently being recruited for a clinical trial to test 

JX-594 with nivolumab (NCT03071094) and with sorafenib (NCT02562755), for treatment 

of advanced HCC as a first-line treatment.

FUTURE DIRECTIONS

HCC is a heterogenic disease in terms of aetiology. HBV or HCV infection add to the 

complexity of the immune response in HCC. There are emerging data to illuminate the 

immune landscape, pathway, and mutation profiles of HCC that may provide aetiology-

directed study design to obtain the best combination with immunotherapy in the future. 

Information about the specific immune and genetic landscape of HCV-related HCC is 

limited, however. In addition, the availability of reported response outcome from patients 

with different aetiologies in completed clinical trials would provide important data. The 

ultimate goal is to create aetiology-specific or even personalized therapies for HCC patients.

Furthermore, the schedule and sequence of this combination approach needs further 

evaluation to determine the optimal timing in order to obtain maximal tumour-directed 

immunological cell killing, whilst avoiding off-target effects. With more evidence available 

from other cancer types, especially haematological malignancies, utilizing a maintenance 

strategy versus moving to a first line or neoadjuvant approach for curative therapy in early 

HCC is also an interesting topic. In addition, along with the illumination of the effect of the 

gastrointestinal tract microbiome in HCC[112], novel strategies in combination with 

antimicrobial therapy might be part of future treatment regimens (NCT03785210), such as 

chemotherapy, targeted therapy and radiation.

The overall clinical response to cell-based immunotherapy has not been robust, which 

indicates that this therapy may be more helpful when there is a lower disease burden or these 

precisely designed cells need to be used concurrently with other therapies in order to control 

HCC, e.g., in combination with ICIs. Moreover, there are subtle but substantial aspects of 

cell-based immunotherapy that need further evaluation, including virus antigen specific TCR 

therapy. A further example requiring better understanding is the mechanism by which 

trafficking of CAR-T cells into HCC cells to execute anti-tumour effects in situ can be 

achieved. This is a distinct problem observed in solid tumours that is not encountered in 

CAR-T technology in haematological malignancies.

Lastly, since the overall response to immunotherapy in HCC is suboptimal, it would be 

critical to identify responder candidates before treatment begins in order to improve the 

outcomes in patients with HCC associated with HBV or HCV infection. Though tumour 

mutation burden, PD-L1 expression, TILs, IFN signature and circulating tumour DNA have 

been indicated as predicative markers in other types of tumours, there has not been strong 

evidence showing that these markers are valuable in HCC. Therefore, further efforts to 

identify the predictive biomarkers that may help guide the selection of patients with HCC 

who are appropriate for ICIs are needed, such as microbiome and TCR repertoire targets. 

Bonilla et al. Page 10

Hepatoma Res. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT03071094
https://clinicaltrials.gov/ct2/show/NCT02562755
https://clinicaltrials.gov/ct2/show/NCT03785210


Along with this, intelligent, correlative studies from paired tumour biopsies will be helpful 

to identify the best therapeutic approaches, timing, and sequences, and improve outcomes of 

patients with HCC.
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Figure 1. 
Schematic mechanism of immune evasion across the spectrum from inflammation by 

chronic hepatitis B (HBV) and C virus (HCV) infection to resultant hepatocellular 

carcinoma (HCC). The complexity of the mechanism involves multiple immune cells and 

various collections of cytokines. A: immune tolerance induced by HBV and HCV infection; 

B: immune evasion driven by the crosstalk between tumour cells and immune cells in HCC. 

DC: dendritic cells; MDSCs: myeloid-derived suppressor cells; TAMs: tumour-associated 

macrophages; NK: natural killer; NKT: natural killer T; Treg: regulatory T-cells; CAF: 

cancer-associated fibroblast; HBV: hepatitis B virus; HCV: hepatitis C virus; MHC: major 

histocompatibility complex; TCR: T-cell receptor; IL: interleukin; IFNg: interferon gamma; 

TNFa: tumour necrosis factor receptor alpha; TGF-β: transforming growth factor beta; CCL: 

C-C motif chemokine ligand; CXCL: C-X-C motif ligand 1; Gal-9: galactin-9; PD-1: 

programmed cell death protein; PD-L1: programmed cell death ligand 1; CTLA: cytotoxic 

T-lymphocyte-associated protein; IL: interleukin; Arg-1: arginase-1; Tim-3: T cell 

immunoglobulin and mucin domain 3; LAG-3: lymphocyte-activation gene 3; SDF-1: 

Stromal cell-derived factor 1
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Table 1.

Approved treatments for advanced HCC

Treatment Benefit Level of 
evidence Comments

Atezolizumab and 
bevacizumab[78]

↑ survival 1A Non-curative treatment, superior to first line sorafenib

In unresectable HCC, bevacizumab-atezolizumab has a better OS and PFS compared 
to sorafenib

Improved OS with bevacizumab-atezolizumab at 6 months (84.8%) and 12 months 
(67.2%) vs. 72.2% and 54.6% respectively with sorafenib

PFS is longer with atezolizumab-bevacizumab (median 6.8 months) than with 
sorafenib (median 4.3 months)

Most common grade 3 or 4 AEs: hypertension, AST increase, ALT increase, fatigue, 
proteinuria, diarrhoea, decreased appetite, pyrexia

Nivolumab[67] No survival 
benefit

1A Treatment of advanced HCC previously treated with sorafenib

Durable ORR of 14%, median duration of response 17 months

Median OS as second-line therapy:15.6 months, non-curative

Well-tolerated

In front line setting vs. sorafenib did not show increase in OS (phase III study)

Pembrolizumab[70] No survival 
benefit

1A Treatment of advanced HCC previously treated with sorafenib

Overall durable response rate of 17%, PFS 4.9 months, non-curative treatment

Well tolerated

Nivolumab and 
ipilimumab[68]

↑ survival 1A Treatment of advanced HCC after failure of sorafenib treatment

Objective response 31%, median duration of response 17 months

Most common AEs: fatigue, diarrhoea, rash, pruritus, nausea, musculoskeletal pain, 
pyrexia, cough, decreased appetite, vomiting, abdominal pain, dyspnoea, upper 
respiratory tract infection, arthralgia, headache, hypothyroidism, decreased weight, 
dizziness

More than 50% of patients may require systemic steroids to manage AEs

Evidence-based classification adapted from the National Cancer Institute. 1 = Randomized controlled trial or meta-analysis; 2 = Non-randomized 
controlled trial; 3 = Case series; A = Survival endpoint; B = Cause-specific mortality; C = Quality of life; D = Indirect surrogates. OS: overall 
survival; AEs: adverse events; HCC: hepatocellular carcinoma; ORR: objective response rate; AST: aspartate transaminase; ALT: alanine 
aminotransferase
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Table 2.

Key immunotherapy trials

Drug name Trial number Phase Comments

Camrelizumab[72] NCT02989922 II Response rate 14%.
Median OS 14.4 months (predominantly HBV-positive patients)

Tislelizumab NCT02412773 III Active recruiting

Pembrolizumab (Keynote 937) NCT03062358 III Active recruiting in Asia

Pembrolizumab (Keynote 394) NCT03062358 III Active accrual in Asia

Nivolumab (Checkmate 9DX) NCT03383458 III Currently recruiting

Nivolumab and Ipilimumab NCT03222076 II Currently recruiting

Cemiplimab[73] NCT03916627 II Currently recruiting

Tislelizumib NCT03412773 III Results pending

Durvalumab with tremelimumab and ablation[75] NCT02821754 I/II Response rate 20%
Median PFS 7.8 months

Durvalumab with tremelimumab (HIMALAYA ) NCT03298451 III Currently recruiting

PFS: progression-free survival; OS: overall survival
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