Skip to main content
. Author manuscript; available in PMC: 2020 Oct 30.
Published in final edited form as: Int J Transgend. 2016 Nov 22;18(2):199–214. doi: 10.1080/15532739.2016.1252300

Table 4.

Logistic regression models predicting physical health variables.

Arthritis, gout, lupus, fibromyalgia (N = 324) Asthma (N = 338)
Block 1 Block 2 Block 1 Block 2
Control Variables B (SE) Odds Ratio B (SE) Odds Ratio B (SE) Odds Ratio B (SE) Odds Ratio
 Health insurance (y/n) 1.00* (0.51) 2.72 1.17* (0.52) 3.23 0.66 (0.41) 1.94 0.74^ (0.43) 2.1
 Exercise in past mo. (y/n) −0.28 (0.30) 0.76 −0.33 (0.31) 0.72 −0.21 (0.29) 0.81 −0.29 (0.29) 0.75
 Age 0 39*** (0.09) 1.48 0 44*** (0.10) 1.55 −0.10 (0.09) 0.9 −0.13 (0.09) 0.88
Predictor Variables
 Race (White/POC) 0.90* (0.36) 2.46 0.81* (0.32) 2.26
 Annual household income −0.11 (0.12) 0.89 0.07 (0.11) 1.08
 No. adults in household 0.02 (0.14) 1.02 −0.18 (0.13) 0.84
 No. children in household −0.20 (0.22) 0.82 −0.22 (0.20) 0.8
Model Results
 Omnibus Model Test (χ2) 26.54*** (df = 3) 34 14*** (df = 7) 4.45 (df = 3) 14.47* (df = 7)
 Nagelkerke R2 0.12 0.15 0.02 0.06
^

p < .10.

*

p < .05.

***

p < .001.