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Abstract

Boolean models, wherein each component is characterized with a binary (ON or OFF) variable, 

have been widely employed for dynamic modeling of biological regulatory networks. However, 

the exponential dependencse of the size of the state space of these models on the number of nodes 

in the network can be a daunting prospect for attractor analysis of large-scale systems. We have 

previously proposed a network reduction technique for Boolean models and demonstrated its 

applicability on two biological systems, namely, the abscisic acid signal transduction network as 

well as the T-LGL leukemia survival signaling network. In this paper, we provide a rigorous 

mathematical proof that this method not only conserves the fixed points of a Boolean network, but 

also conserves the complex attractors of general asynchronous Boolean models wherein at each 

time step a randomly selected node is updated. This method thus allows one to infer the long-term 

dynamic properties of a large-scale system from those of the corresponding reduced model.
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1. Introduction.

The ever-accelerating pace of experimental data generation has laid the foundation for 

developing network models of biological systems wherein the components of a system are 

represented by nodes and the interactions among them by edges. Analyzing these network 

models and studying their dynamics can unravel unknown facets of the underlying 

biological systems. Among different dynamic modeling approaches, discrete models, in 

which each component is assumed to have a finite number of qualitative states, have been 

increasingly employed in modeling biological regulatory networks [10, 18, 19, 20, 23]. The 
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simplest discrete dynamic models are the so-called Boolean models that assume only two 

states (ON or OFF) for each component [8, 21].

Since Boolean models are parameter free, they serve as a suitable starting point for modeling 

biological systems for which a detailed kinetic characterization of the interactions is not 

available. In particular, attractor analysis of these models is of immense biological 

importance as it can provide valuable insights into the long-term behaviors, i.e. observed 

phenotypes, of these systems in response to environmental stimuli and internal perturbations 

[1, 5, 6, 9, 15, 16]. For example, it allows one to predict the long-term activity levels of 

components or to determine key components influencing different cellular traits. However, 

the exponential dependence of the size of the state space of Boolean models on the number 

of nodes in the network makes the identification of all attractors of even relatively small 

systems computationally intractable. In particular, it has been proven that determination of 

the existence of fixed points in Boolean networks is a strong NP-complete problem [24]. 

There have been several efforts to reduce the state space of Boolean models by simplifying 

the underlying networks. In [2, 11, 14] a network reduction method based on the removal of 

stable variables (i.e, variables that stabilize in an attracting state after a transient period, 

irrespective of updating strategy or initial conditions) and leaf nodes (i.e., nodes with out-

degree = 0) was proposed. In another study, Naldi et al. [12] proposed a reduction method 

for simplifying finite-state logical models by iteratively removing nodes without a self loop 

from the network. In this method, the logical rules for the reduced models were constructed 

using reduced ordered multivalued decision diagrams. This method was proven to preserve 

the fixed points of a system, but it may introduce spurious oscillations into the reduced 

model [12]. Subsequently, Veliz-Cuba [22] adapted this method for the reduction of Boolean 

networks by iteratively removing nodes without a self loop from the network and 

simplifying the redundant Boolean functions.

Boolean models of biological regulatory networks, such as signal transduction networks, 

which involve one or more sustained signals (source nodes), often contain stabilized nodes 

(stable variables). In a previous work [15], we proposed a two-step network reduction 

method that (i) identifies and eliminates the stabilized nodes; and (ii) iteratively merges 

simple mediator nodes, i.e., nodes having in-degree and out-degree of one. We note that the 

second step automatically excludes the removal of nodes with a self-loop because a node 

with in- and out-degree of one and with a self-loop would need to be isolated. We previously 

employed this reduction method to identify attractors of the abscisic acid signal transduction 

network in plants as well as the T-LGL leukemia survival signaling network in humans [15, 

16], and using numerical simulations showed that it is effective in reducing the size of a 

Boolean network model without affecting its long-term dynamic properties. For both 

systems, the proposed reduction method enabled us to make predictions about the effect of 

node perturbations on the long-term behaviors of the systems. For example, we identified 

several potential therapeutic targets for T-LGL leukemia, some of which were supported by 

existing experimental evidence and the rest can guide future wet-bench experiments [16]. In 

this paper, we provide a rigorous mathematical proof that our method not only conserves the 

fixed points of a system, but also conserves the complex attractors of general asynchronous 

Boolean models wherein at each time step a randomly selected node is updated. We 
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illustrate this reduction method on two toy networks and highlight the results of our previous 

effort on the attractor analysis of the abscisic acid signaling network as well.

2. Network reduction method.

A biological regulatory network can be represented by a directed graph G = A, ℰ  where 

the set of vertices (nodes) A describes different components of the system, and the set of 

edges ℰ denotes the regulatory interactions among the nodes. The orientation of each edge 

in the network is determined based on the direction of mass transfer or information 

propagation from the upstream to the downstream component. In addition, each edge has a 

positive or negative sign signifying activation or inhibition, respectively. The source nodes 

(i.e., nodes with in-degree = 0) of this graph, if they exist, represent external inputs (signals) 

to the network.

Boolean models assume each node of the network has only two states – ON (1) and OFF (0). 

The state of each node v is determined based on a Boolean function (rule) 

Bv : 0, 1 mv 0, 1 , where mv is the number of regulators of v. In general Bv is expressed 

via the Boolean operators AND, OR, and NOT, but other implementations are also possible. 

In Boolean models, time is an implicit variable and can be implemented using synchronous 

or asynchronous update algorithms. Synchronous models assume similar timescales for all 

the processes involved in a system, which is often unrealistic for modeling biological 

regulatory networks [13]. Asynchronous models, on the other hand, allow updating the 

nodes’ states individually based on their own timescales [21]. Several asynchronous 

algorithms have been proposed so far, including the random order asynchronous [3, 7], 

deterministic asynchronous [4], and general asynchronous [7] algorithms. In a previous 

work [15], we carried out a comparative study of these asynchronous methods applied to the 

same biological system. That study suggested that the general asynchronous method, 

wherein at each time step a randomly selected node is updated, is the most efficient and 

informative asynchronous updating strategy.

By updating the nodes’ states according to the synchronous or asynchronous algorithms, one 

can obtain the state of the whole system at each time step, which is expressed by a vector 

whose v’th element represents the state of node v at that time step. We note that the Boolean 

model of a network with n nodes n = A  has a total of 2n states and at most n possible 

transitions for each state. These states and the allowed transitions among them form the state 

transition graph of the system. Starting from an initial state in the state transition graph and 

iteratively updating the nodes’ states, the state of the system evolves over time and 

eventually converges to an attractor. Attractors, which describe the long-time behavior of a 

system, fall into two categories: fixed points (steady states), wherein the state of the system 

does not change, and complex attractors, wherein the system oscillates among a set of states. 

As fixed points are time-independent, they are the same in both synchronous and 

asynchronous methods. In contrast, complex attractors are highly dependent on the method 

of update. For example, it was observed that oscillations present in the synchronous method 

may be absent from the corresponding asynchronous methods [5, 15].
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In the following we describe a reduction method that facilitates the identification of 

attractors in large networks, and provide a mathematical proof that it conserves attractors of 

a given Boolean network under the general asynchronous update method. This method 

consists of two steps: (i) identifying and eliminating the nodes whose states stabilize due to 

their regulation and irrespective of timing or initial condition; and (ii) iteratively merging 

simple mediator nodes, i.e., nodes having in-degree and out-degree of one. The first step is 

especially suited for biological regulatory networks with one or more source nodes whose 

states can be fixed at an ON or OFF value, e.g. based on the existing experimental evidence. 

The two steps are outlined in Algorithms 1 and 2.

2.1. Reduction algorithms.

Algorithm 1:

Identifying and eliminating the stabilized nodes.

Input: Boolean functions B1,B2, …, Bn corresponding to each node,

(I) for each node i

 if Bi is a constant function

  for each node j where Bj depends on i

   - insert the value of Bi into Bj

   - simplify Bj using Boolean algebra

  remove node i and function Bi

(II) Repeat step (I) until no additional constant Boolean function is obtained.

Output: B1, B2, …, Bp. Note that n – p variables have been stabilized and thus removed from the network.

Algorithm 2:

Merging simple mediator nodes.

Input: Boolean functions B1, B2, …, Bp from Algorithm 1.

(I) for each node triple (u, v, w)

 if Bv depends only on u

  if Bw depends only on v

   if Bu does not depend on w, and Bw does not depend on u

    replace Bw v  with Bw Bv u

    remove node v and function Bv
(II) Repeat step (I) until no node with in-/out-degree of one remains.

Output: B1
R

, B2
R

, …, Bq
R, the Boolean rules for the reduced network Gℛ = Vℛ, ℰℛ

.

These two algorithms are illustrated in Figure 2.1. For the network given in part (a), node u 
is a source node. Let us assume that it is always ON. Then node v, which is inhibited by u, is 

stabilized in an OFF state after a time delay. Based on Algorithm 1, u and v can thus be 

removed from the network. In addition, the Boolean rule for node w, which depends on the 

stabilized node v, is simplified accordingly. For the network given in part (b), node v has an 

SAADATPOUR et al. Page 4

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in-degree and out-degree of one and can be removed according to Algorithm 2 (node u will 

be connected to w in the reduced network).

2.2. Conservation of attractors.

In the following we prove that there is a one-to-one correspondence between attractors of the 

original Boolean model and those of the reduced model under Algorithms 1 and 2. As 

mentioned before, fixed points of a Boolean network model are update-independent. As 

such, the proof of the conservation of fixed points under the reduction method is 

independent of the method of update. Complex attractors, on the other hand, depend on the 

update method. In order to prove the conservation of complex attractors, we consider the 

general asynchronous approach in which at each time step a randomly selected node is 

updated.

Let us denote the state transition graphs of the original and reduced models by ℳ = S, T
and ℳR = SR, TR , respectively, wherein S and SR denote the set of states in the respective 

models, and the directed edges in T and TR represent the allowed transitions among the 

states. In the following we consider the case of removing a single node v. The general case 

of removing a sequence of nodes follows by induction.

DEFINITION 2.1. An attractor of a Boolean model, in the context of graph theory, is an 

absorbing set of states C ⊂ S that forms a strongly connected component of ℳ. Here, a 

strongly connected component is a set of states for which there is a path between every pair 

of states, and an absorbing set is a subgraph of the state transition graph that no path can 

leave it (i.e., with no out-component).

This definition automatically implies that an attractor is always a maximal strongly 

connected component.

DEFINITION 2.2. Let the removed node v be the kth node in the list of nodes of the original 

Boolean model. The projection map π : S SR following the removal of v is given by

s = s 1 , …, s k − 1 , s k , s k + 1 , …, s n π s = s 1 , …, s k − 1 , s k + 1 , …, s n ,

where s(i) denotes the ith coordinate of s. For any set of states C ⊆ S, we define π(C) = 

{π(s) : s ∈ C}, and the pre-image of any state set CR ⊆ SR as 

π−1 CR = s : s ∈ S, π(s) ∈ CR .

DEFINITION 2.3. Attractors of a Boolean network model are conserved under a reduction 

method if for any attractor C in the original model, π(C) is an attractor of the reduced 

model, and the pre-image of any attractor in the reduced model contains exactly one 

attractor of the original model.

THEOREM 2.4. The reduction method outlined in Algorithms 1 and 2 conserves the fixed 

points of a Boolean network model.
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Proof. Since our reduction method does not remove nodes with a self-loop, the proof of 

Theorem 2.4 of [22] holds true in our case. □

DEFINITION 2.5. [12] A transition s, s′ ∈ T is preserved under the reduction method if and 

only if π(s) = π(s′) or π(s), π s′ ∈ TR.

In the following theorem we show that when removing the stabilized nodes not only 

complex attractors but also the state transitions are preserved in the sense of Definition 2.5.

THEOREM 2.6. The reduction rule outlined in Algorithm 1 conserves complex attractors of a 

Boolean network model under the general asynchronous update method.

Proof. Let us consider removing the stabilized node v with the fixed state cv. We first show 

that when removing v any transition in T is preserved in the sense of Definition 2.5, and 

conversely any transition in TR is a projection of at least one transition in T. Let 

s, s′ ∈ T. If s = s′, i.e., when the transition is a self loop, then π(s) = π(s′) and by 

Definition 2.5 this transition is preserved. Otherwise, as we consider the general 

asynchronous approach, s and s′ differ at only one position. If s and s′ differ at the position 

of node v, i.e., when the transition (s, s′) involves a transient state of v before it stabilizes, 

then again π(s) = π(s′) and by Definition 2.5 the transition is preserved. If v has already 

stabilized, then it has the same state in both s and s′, i.e., s(k) = s′(k) considering that v is 

the kth node in the list of nodes of the original Boolean model. Thus there is i ≠ k such that 

s(i) ≠ s′(i) and Bi(s) = s′(i). Since v is a stabilized node, we also have Bi(s) = Bi
R(π(s)). In 

addition, since i ≠ k, (π(s′))(i) = s′(i). Therefore Bi
R(π(s)) = Bi(s) = s′(i) = π s′ (i). Thus 

π(s), π s′ ∈ TR, implying that transition (s, s′) is preserved. Conversely, let z, z′ ∈ TR

with z = (z(1),…, z(k − 1), z(k + 1),…, z(n)) and z′ = (z′(1),…, z′(k − 1), z′(k + 1),…, z′
(n)). Thus there is i ≠ k such that z(i) ≠ z′(i) and Bi

R(z) = z′(i). Note that z(j) = z′(j) for any j 

≠ i, k. Without loss of generality assume that i > k. Let s = (z(1),…, z(k − 1), cv, z(k + 1),…, 

z(i − 1), z(i), z(i + 1),…, z(n)) and s′ = (z(1),…, z(k − 1), cv, z(k + 1),…, z(i − 1), z′(i), z(i + 

1),…, z(n)). Then π(s) = z and π(s′) = z′, and Bi(s) = Bi
R(z) = z′(i) = s′(i). Thus 

s, s′ ∈ T.

Now let C be an attractor of ℳ. We claim that π(C) is an attractor of ℳR, and in addition C 
is the only attractor in π−1(π(C)). Since any transition in C is preserved in the reduced 

model, π(C) is strongly connected. We show that π(C) is absorbing as well. If not, there 

must exist a transition z, z′ ∈ TR such that z ∈ π(C) and z′ ∉ π(C). Then the argument 

above implies that there exists a transition s, s′ ∈ T such that π(s) = z and π(s′) = z′. z′ ∉ 
π(C) implies s′ ∉ C. Then s ∈ C and s′ ∉ C implying that C is not absorbing, a 

contradiction. Thus π(C) is an attractor of ℳR. In order to show the second part of the 

claim, take any z ∈ π(C) and let π−1(z) = {sa, sb}. Since v is a stabilized node, it must have 

the fixed state cv in at least one of the states in π−1(z). Without loss of generality, let sa be 

such a state. Then we have sa ∈ C. Now sb can have a transient state of v, and thus any 

subset of π−1(π(C))\C containing sb cannot be absorbing. This implies that C is the only 

attractor in π−1(π(C)).
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Suppose now that CR is an attractor of ℳR. We claim that there exists a unique attractor C of 

ℳ such that C ⊆ π−1 (CR). Our argument on preservation of transitions implies that π−1(CR) 

contains a strongly connected component C of ℳ. If C is not absorbing, then there must 

exist a transition s, s′ ∈ T such that s ∈ C and s′ ∉ C. This implies that π(s), π s′ ∈ TR

such that π(s) ∈ CR and π (s′) ∉ CR, a contradiction with CR being absorbing. Thus C is an 

attractor of ℳ. If such a C is not unique, i.e., there are two attractors C1 and C2 in π−1(CR), 

then π(C1) and π(C2) are attractors of ℳR. Since CR is an attractor containing π(C1) and 

π(C2), we have π(C1) = π(C2) = CR. Since C1 is the only attractor in π−1(π(C1)), we 

conclude that C1 = C2. □

THEOREM 2.7. The reduction rule outlined in Algorithm 2 conserves complex attractors of a 

Boolean network model under the general asynchronous update method.

In order to prove Theorem 2.7 we make use of a symbolic-dynamics approach. To this end, 

we first introduce the following notations and definitions. Note that the set of nodes A can 

be thought of as an alphabet wherein each node represents a letter. In our model there is 

exactly one Boolean function that updates each node, so we use the letters in alphabet A as 

synonyms for the corresponding Boolean functions as well. Thus each letter can also 

represent a Boolean function and the words formed by these letters are transformations 

between states. In other words, each word represents an order of update in the general 

asynchronous method. Let W(A) be the set of words composed from alphabet A, including 

the empty word.

Consider node v satisfying the conditions of Algorithm 2, that is a node whose in-degree and 

out-degree is one with an edge coming from node u and an edge going to node w. Assume 

that there is no edge between u and w. Let V = v ⊆ A, U = v, w ⊆ A, and 

Uc = A\U. We also define a reduced alphabet AR with node set A\V wherein the node w 
has a new Boolean rule w that copies (or negates) the state of u. Thus in terms of Boolean 

functions AR = (A\ v, w ) ∪ w . We note that w is equivalent to vw in the original model. 

Let W = w  and Wc = AR\W.

DEFINITION 2.8. Given a subset N ⊆ A of the nodes in G, two states si and sj are N-equivalent, 

denoted as si = N sj, if and only if for any node in N, si and sj have the same value at that 

node.

Clearly, for any M ⊆ N, si = N sj implies si = M sj.

DEFINITION 2.9. State sj is reachable from si through A under N, denoted as si ≻ A, N sj, if 

and only if there is a word x ∈ W(A) such that six = N sj. Here, six denotes the updated 

state after applying the letters in x to si.

We note that si ≻ A, N sj is a transitive operation, so if s1 ≻ A, N s2 and s2 ≻ A, N s3 then 

s1 ≻ A, N s3.
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THEOREM 2.10. s1 ≻ A, A sn if and only if there exist intermediate states s2, s3, …, sn−1 such 

that

s1 ≻ U, A s2 ≻ Uc, A s3 ≻ U, A s4 ≻ … ≻ Uc, A sn − 1 ≻ U, A sn . (2.1)

Proof. If s1 ≻ A, A sn, then from Definition 2.9, there is a word x ∈ W(A) such that 

s1x = A sn. As A = U ∪ Uc, the word x can be decomposed into (possibly empty) words 

with letters in U and Uc. Thus there exist intermediate states s2, s3,…, sn−1 satisfying 2.1. 

Conversely, if 2.1 holds, then there exist words x1 ∈ W(U), x2 ∈ W Uc , …, xn − 1 ∈ W(U)
such that s1x1 = A s2, s2x2 = A s3,…, and xn − 1 = A sn. Then x := x1×2…xn−1 is a word 

in W(A) and s1x = A sn. Thus s1 ≻ A, A sn. □

LEMMA 2.11. If si ≻ U, A sj, then si ≻ U, AR sj.

Proof. Since si ≻ U, A sj, there exists a word x ∈ W U  such that six = A sj. As the node 

set of the reduced alphabet AR is a subset of the node set of A sj. Thus si ≻ U, AR sj. □

LEMMA 2.12. If si ≻ U, AR sj, then si ≻ W, AR sj or siw ≻ W, AR sj.

Proof. Since si ≻ U, AR sj, there exists a word x ∈ W U  such that six = AR sj. We need 

to show the existence of a word y ∈ W W  with siy = AR sj, or a word y′ ∈ W W  with 

siwy′ ≻ AR sj. Since x can only alter the states of v or w, and v cannot be observed, it 

suffices to show that siy (or siwy′) and six have the same value at the position of node w. 

Indeed, all possible choices for x ∈ W U  are equivalent to one of the following cases:

• If x = v, then y can be the empty word;

• If x = vw, then we can take y = w;

• If x ∈ {w, wv}, then y′ can be the empty word.

It is straightforward to see that for the above y’s (or y′’s), siy (or siwy′) and six have the 

same value at the position of node w. □

LEMMA 2.13. If si ≻ Uc, A sj, then si ≻ Wc, A sj.

Proof. It follows directly from the fact that Wc = AR\ w = A\ v, w = Uc. □

LEMMA 2.14. If si ≻ Wc, A sj, then si ≻ Wc, AR sj.

Proof. The proof is the same as the proof of Lemma 2.11. □

PROPOSITION 2.15. If s1 ≻ A, A sn, then either s1 ≻ AR, AR sn or there exists a word 

x ∈ W Wc  such that s1xw ≻ AR, AR sn.
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Proof. If s1 ≻ A, A sn, then Theorem 2.10 implies that there exist intermediate states s2, s3,

…, sn−1 such that

s1 ≻ U, A s2 ≻ Uc, A s3 ≻ U, A s4 ≻ … ≻ Uc, A sn − 1 ≻ U, A sn .

We prove the assertion by induction on the length of this sequence starting from the right 

end. If the length of the sequence is one, there are two possible cases:

• s1 ≻ U, A sn: In this case, by Lemma 2.11 we have s1 ≻ U, AR sn. Then based 

on Lemma 2.12, s1 ≻ W, AR sn. or s1w ≻ W, AR sn. Since W ⊆ AR, 

s1 ≻ AR, AR sn or s1w ≻ AR, AR sn. By taking x to be the empty word in 

W Wc , we have s1 ≻ AR, AR sn or s1xw ≻ AR, AR sn.

• s1 ≻ Uc, A sn: In this case, based on Lemma 2.13, s1 ≻ Wc, A sn, and then by 

Lemma 2.14, s1 ≻ Wc, AR sn. Since Wc ⊆ AR, s1 ≻ AR, AR sn.

Assume sl ≻ A, A sn implies sl ≻ AR, AR sn or there exists x′ ∈ W Wc  such that 

slx′w ≻ AR, AR sn. Now let sl − 1 ≻ A, A sn.

If sl − 1 ≻ A, A sn and sl ≻ AR, AR sn, then either sl − 1 ≻ U, A sl ≻ AR, AR sn or 

sl − 1 ≻ Uc, A sl ≻ AR, AR sn. In the first case, sl − 1 ≻ U, A sl implies sl − 1 ≻ U, AR sl 

(Lemma 2.11). So based on Lemma 2.12 either sl − 1 ≻ W, AR sl or sl − 1w ≻ W, AR sl. 

Then sl − 1 ≻ AR, AR sn. or sl − 1w ≻ AR, AR sn. With x being the empty word, we have 

sl − 1 ≻ AR, AR sn or sl − 1xw ≻ AR, AR sn. In the second case, sl − 1 ≻ Uc, A sl implies 

sl − 1 ≻ Wc, A sl (Lemma 2.13), and as a result sl − 1 ≻ Wc, AR sl (Lemma 2.14). Since 

Wc ⊆ AR, sl − 1 ≻ AR, AR sl. Therefore sl − 1 ≻ AR, AR sn.

If sl − 1 ≻ A, A sn and slx′w ≻ AR, AR sn for some x′ ∈ W Wc , then based on the former 

condition we have two cases:

• sl − 1 ≻ U, A sl and slx′w ≻ AR, AR sn: In this case, according to the first 

condition there exists a word y ∈ W U  such that sl − 1y = A sl. Then 

sl − 1yx′w = A slx′w. Since x′ ∈ W Wc  and it does not change the state of v, 

sl − 1yx′w = A sl−1ywx′. Thus sl − 1ywx′ = A slx′w. Since x′ ∈ W Wc  and 

Wc ⊆ A, we then have sl − 1yw ≻ A, A slx′w. Since yw ∈ W U , we get 

sl − 1 ≻ U, A slx′w. Now Lemmas 2.11 and 2.12 imply that sl − 1 ≻ W, AR slx

′w or sl − 1w ≻ W, AR slx′w. Since W ⊆ AR and slx′w ≻ AR, AR sn, we then 

have sl − 1 ≻ AR, AR sn or sl − 1w ≻ AR, AR sn. By taking x to be the empty 

word, we get sl − 1 ≻ AR, AR sn or sl − 1xw ≻ AR, AR sn.

SAADATPOUR et al. Page 9

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• sl − 1 ≻ Uc, A sl and slx′w ≻ AR, AR sn: In this case, the first condition and 

Lemma 2.13 imply that sl − 1 ≻ Wc, A sl. Thus there is a word x″ ∈ W Wc

such that sl − 1x″ = A sl, implying sl − 1x″x′w = A slx′w ≻ AR, AR sn. By 

taking x : = x″x′ ∈ W Wc , we have sl − 1xw ≻ AR, AR sn.

So, sl − 1 ≻ A, A sn implies sl − 1 ≻ AR, AR sn or sl − 1xw ≻ AR, AR sn for some 

x ∈ W Wc . Thus, by induction, s1 ≻ A, A sn implies s1 ≻ AR, AR sn or there is 

x ∈ W Wc  such that s1xw ≻ AR, AR sn. □

PROPOSITION 2.16. If s1 and sn are two states in an attractor of A, then s1 ≻ AR, AR sn.

Proof. Suppose s1 and sn belong to the attractor C of A. Then from Definition 2.1, s1vw ∈ C, 

and that s1vw ≻ A, A sn. Now by Proposition 2.15, s1vw ≻ AR, AR sn or 

s1vwxw ≻ AR, AR sn for some x ∈ W Wc . In the former case, since vw is equivalent to w

and thus is in W AR , we have s1 ≻ AR, AR sn. In the latter case, our simplification rules 

imply that s1vwxw ≻ AR s1vwx (because x on the left hand side does not alter the state of v, 

so the second w has no effect). Since vwx ∈ W AR , we then have s1 ≻ AR, AR sn. □

Now using the preceding results we prove that if two states are reachable from each other in 

the original model, their projections under π have the same property.

Proposition 2.17. If sa and sb are two states in an attractor of A, then π sa ≻ AR, AR π(sb) 

and π sb ≻ AR, AR π(sa).

Proof. From Definition 2.1, if sa and sb are in the same attractor, sa ≻ A, A sb and 

sb ≻ A, A sa. By Proposition 2.16, sa ≻ AR, AR sb and sb ≻ AR, AR sa. Then we have 

π(sa) ≻ AR, AR π(sb) and π(sb) ≻ AR, AR π(sa). □

Finally, we prove that there is a one-to-one correspondence between complex attractors of 

the original and reduced models.

LEMMA 2.18. For every complex attractor C in the original model ℳ, π(C) is a complex 

attractor in the reduced model ℳR.

Proof. Let C be a complex attractor in ℳ. For any za, zb ∈ π(C) there exist sa, sb ∈ C such 

that π(sα) = za and π(sb) = zb. Since C is a complex attractor, sa ≻ A, A sb and sb ≻ A, A

sa. Then Proposition 2.17 implies that za ≻ AR, AR zb and zb ≻ AR, AR za. Thus π(C) is 

strongly connected.

On the other hand, suppose za ∈ π(C) and zb ∉ π(C). Choose sa ∈ C∩π−1(za) and sb ∈ π
−1(zb). Then sav ∈ C and sb ∉ C. Since C is an attractor, sav ⊁ A, A sb. Since the words in 
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AR are a subset of the words in A, sav ⊁ A, A sb implies π(sa) ⊁ AR, AR π(sb). Thus we 

have za ⊁ AR, AR zb. This means that no path leaves π(C) and thus π(C) is an absorbing 

set.

Since π(C) is strongly connected and absorbing, by Definition 2.1 it is an attractor in ℳR. □

LEMMA 2.19. For every complex attractor CR of ℳR, there exists an attractor C of ℳ such 

that C ⊆ π−1(CR).

Proof. Take any attractor CR of ℳR. Let z ∈ CR and define s1 = A π−1(z)υ. We note that such 

a state is uniquely defined, since updating of node v erases any ambiguity in the preimage 

and that s1v = A s1.

Let G be the set of all states in ℳ reachable from s1, including itself. By definition, G is an 

absorbing set, and must contain an attractor. We claim that G ⊆ π−1(CR), and thus the 

preimage π−1(CR) must contain an attractor.

In order to prove G ⊆ π−1(CR), we first note that

π(s1) ≻ AR π(π−1(z)v) = ARz ∈ CR,

so s1 ∈ π−1(CR). Now, take t ∈ G\{s1}. By the definition of G, s1 ≻ A, A t. Then by 

Proposition 2.15, either s1 ≻ AR, AR t or there exists x ∈ W Wc  such that 

s1xw ≻ AR, AR t. If s1 ≻ AR, AR t, π(s1) ≻ AR, AR π(t). Otherwise, s1xw ≻ AR, AR t 

for some x ∈ W Wc . Since s1 = A s1v, s1vxw ≻ AR, AR t. Since w commutes over 

W Wc , s1vxw ≻ AR, AR t. Now since vw is equivalent to w ∈ W ⊂ AR and Wc ⊂ AR, we 

have s1 ≻ AR, AR t and π(s1) ≻ AR, AR π(t). So, in both cases, π(s1) ≻ AR, AR π(t). Since 

π(s1) ∈ CR and CR is an attractor, π(t) ∈ CR. Thus t ∈ π−1(CR) and the claim is proven. □

LEMMA 2.20. For any complex attractor C of ℳ, C ⊆ D = π−1(π(C)) and C is the only 

attractor inside D.

Proof. C ⊆ π−1(π(C)) follows immediately from Definition 2.2. Let z ∈ π(C) and {sa, sb} = 

π−1(z), and without loss of generality, take sa ∈ C. Under our model’s restrictions, v either 

copies or negates the state of u. In either case, sav = A sb or sbv = A sa. If sav = A sb, then 

since sa ∈ C and C is an attractor, sb ∈ C. If sbv = A sa, then any subset of D\C containing sb 

cannot be absorbing. Since this holds for all z ∈ π(C), no subset of D\C can be an attractor. 

□

LEMMA 2.21. For any complex attractor CR of ℳR, π−1 (CR) contains a unique attractor of 

ℳ.
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Proof. Suppose CR is an attractor of ℳR. By Lemma 2.19, π−1(CR) must contain an 

attractor. Suppose then C1 and C2 are attractors in π−1(CR). By Lemma 2.18, π(C1) and 

π(C2) are attractors of ℳR. Since CR is an attractor and contains π(C1) and π(C2), we must 

have π(C1) = π(C2) = CR. By Lemma 2.20, C1 is the unique attractor in π−1(π(C1)), so C1 = 

C2. We thus conclude that attractors in pre-images must be unique. □

Proof of Theorem 2.7. It follows directly from Lemmas 2.18–2.21.

In summary, our reduction method projects attractors to attractors, does not merge attractors, 

and does not create spurious attractors.

3. Examples and Applications.

Now we provide some examples of attractor conservation under our reduction method. The 

first example, given in Figure 3.1, shows that if we remove node v with in- and out-degree of 

one, then fixed points are conserved; both the original and reduced models have two fixed 

points. Note that the fixed points of the reduced model are projection under π of the ones in 

the original model.

The second example, given in Figure 3.2, shows that upon removal of node v with in- and 

out-degree of one complex attractors are conserved; both the original and reduced models 

have exactly one complex attractor in this case.

We previously employed our reduction method to simplify the abscisic acid (ABA) signaling 

network with 43 nodes [15] as well as the T-LGL leukemia survival signaling network with 

60 nodes [16]. For the former network, which has five source nodes, we totally eliminated 

93% of the nodes, and for the latter network with six source nodes, we removed 87% of the 

nodes. For example, for the ABA network after removing the stabilized nodes we obtained 

the sub-network with 13 nodes illustrated in Figure 3.3a (for the description of Boolean rules 

one can refer to [15]). Then we eliminated the nodes with in/out-degree of one (such as PLC, 

GC and cGMP) and also the leaf nodes (KEV and KAP). It was recently proven that the 

removal of leaf nodes conserves attractors of a Boolean model [11]. We note that in this 

example we also applied a more general reduction method of removing a node with in/out-

degree of one even though its up-and down-stream nodes have a common edge, such as in 

the case of InsP3 following the removal of PLC. After reduction, we obtained a simplified 

network with only three nodes as depicted in Figure 3.3b. The state transition graph of this 

simplified network is given in Figure 3.3c. As we can see the system has only one fixed 

point in which all the three nodes stabilize in the OFF state. In [15] we verified using 

numerical simulations that the 13-node network has a single attractor as well.

For both systems, the reduction method enabled us to correctly identify attractors of the 

original systems and make predictions about the effect of node perturbations on the final 

outcomes. Some of our predictions were corroborated by the existing experimental data and 

the rest can direct followup wet-bench experiments. For example, for the ABA system we 

found that in the case of knocking out a particular node of the network, both the original and 

reduced models lead to oscillation, and for the T-LGL signaling network we identified 19 
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potential therapeutic targets for T-LGL leukemia, 67% of which were supported by 

experimental data.

4. Discussion.

In this paper, we presented a two-step reduction method for Boolean network models and 

rigorously proved that it conserves the attractors of the original system under the general 

asynchronous Boolean model. It eliminates stable variables that have the same value on 

every attractor and removes simple mediator nodes. A great advantage of our method over 

the other existing methods [12, 22] is that it does not create spurious attractors in the 

reduced model. This method is especially suited for simplifying large-scale biological 

regulatory networks that involve sustained signals. Its application to two relatively large 

signaling networks with more than 1012 states in their state transition graphs demonstrated 

its ability to identify all attractors of the underlying systems and to make experimentally 

testable predictions about the long-term behaviors of the systems. Integration of our 

reduction method with the removal of leaf nodes (nodes with out-degree=0) as proposed in 

[2, 11, 14] can be very effective in simplifying biological regulatory networks.

It is worth mentioning that when removing a sequence of nodes that satisfy the conditions of 

Algorithm 1 or 2, our reduction method is independent of the order in which the nodes are 

chosen for elimination. Indeed, as our method does not allow the removal of auto-regulated 

nodes, the proof of Proposition 2.3 in [22] holds in our case as well. We note, however, that 

in the process of node removals, some of the nodes that cannot be eliminated at early steps 

(due to, for example, having in- and out-degree of more than one) may be eligible for 

removal after elimination of other nodes in the network. In addition, although we presented 

Algorithm 1 before Algorithm 2 for simplicity of notation, these two steps are actually 

independent of each other and can be applied on a system in any order.

Taking a step further, the proof of attractor conservation in the case of removing simple 

mediator nodes in Boolean models can be straightforwardly extended to iteratively removing 

nodes with in-degree or out-degree of one with no dependency between the downstream or 

upstream nodes, respectively. This extended reduction rule has been previously employed in 

the context of network inference of a mammalian signal transduction network [17].

It should be noted that although the proposed reduction method conserves the attractors of a 

given system, it can change the state transition graph and thus may have an impact on the 

relative size of the basins of attraction (defined as the set of states that can reach an 

attractor). However, this change is not expected to be drastic as, for example, we found in a 

previous study that the basins of attraction of the attractors for two reduced sub-networks of 

the T-LGL signaling network were approximately of the same relative size [16]. Further 

work is needed to determine any possible relation between the sizes of basins of the 

attractors of the original and reduced models.

In exploring the mathematics of an exact model reduction, there are intersections with a 

number of areas of pure mathematics and theoretical computer science. For example, the 

asynchronous Boolean networks that we focused on in this paper are a special case of non-
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deterministic finite state machines and of finite automata. From an algebraic perspective, our 

analysis can be also related to the theory of trace monoid actions and automatic semigroups. 

As such, some of these formalisms could be potentially used to further simplify the results 

presented in this study or to develop new ones.

Overall, our reduction method can greatly facilitate studying the long-term behavior of 

Boolean dynamic models of large-scale biological regulatory networks. A future extension 

of this method includes relaxing the assumption of independency between upstream and 

downstream nodes of the simple mediator nodes. It would be also interesting to study the 

applicability of this reduction method in identifying attractors of a broader class of dynamic 

models of biological regulatory networks.
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Fig. 2.1. 
Illustration of Algorithms 1 and 2. Dashed nodes are removed by the algorithms. 

Arrowheads represent activation and blunt edges indicate inhibition. (a) A simple network 

illustrating the removal of stabilized nodes as described in Algorithm 1. Node u is a source 

node with a constant Boolean function. Both u and v are stabilized and can be removed from 

the network. (b) A simple network illustrating the removal of simple mediator nodes as 

described in Algorithm 2. Node v with in-degree and out-degree of one is removed.
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Fig. 3.1. 
An example model-reduction illustrating conservation of fixed points. (a) Original network 

and respective Boolean rules. Arrowheads represent activation and blunt edges represent 

inhibition. The symbol * denotes the future state of the target node. (b) Reduced network 

and Boolean rules upon removal of node v from the network given in (a). (c) State transition 

graph of the original model. The binary digits from left to right represent the state of the 

nodes u, v, and w, respectively.(d) State transition graph of the reduced model. The binary 

digits from left to right represent the state of the nodes u and w, respectively. In (c) and (d), 

directed edges signify allowed transitions among states, and self-loops appear when a node 

is updated but its state does not change. The states with a gray background are fixed points 

of the systems.
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Fig. 3.2. 
An example model-reduction illustrating conservation of complex attractors. (a) Original 

network and respective Boolean rules. Arrowheads represent activation and blunt edges 

represent inhibition. The symbol * denotes the future state of the target node. (b) Reduced 

network and Boolean rules upon removal of node v from the network given in (a). (c) State 

transition graph of the original model. The binary digits from left to right represent the state 

of the nodes u, v, w and r, respectively. (d) State transition graph of the reduced model. The 

binary digits from left to right represent the state of the nodes u, w and r, respectively. In (c) 

and (d), the directed edges signify allowed transitions among states, and self-loops appear 

when a node is updated but its state does not change. The states with a gray background 

form complex attractors of the systems.
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Fig. 3.3. 
Reduced models of the ABA signaling network. (a) The sub-network obtained by removing 

the stabilized nodes. (b) The simplified sub-network and its corresponding Boolean rules 

obtained after shortening of the linear pathways. (c) The state transition graph of the sub-

network given in (b). The binary digits from left to right represent the state of the nodes CIS, 

Cac2 + , and Ca2+ATPase, respectively. The directed edges signify the allowed transitions 

among states. Self-loops appear when a node is updated but its state does not change. The 

state with a gray background is the only fixed point of the system. This figure has been 

adapted from [15].
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