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Abstract

Brain extraction, or skull-stripping, is an essential pre-processing step in neuro-imaging that has a 

direct impact on the quality of all subsequent processing and analyses steps. It is also a key 

requirement in multi-institutional collaborations to comply with privacy-preserving regulations. 

Existing automated methods, including Deep Learning (DL) based methods that have obtained 

state-of-the-art results in recent years, have primarily targeted brain extraction without considering 

pathologically-affected brains. Accordingly, they perform sub-optimally when applied on 

magnetic resonance imaging (MRI) brain scans with apparent pathologies such as brain tumors. 

Furthermore, existing methods focus on using only T1-weighted MRI scans, even though multi-

parametric MRI (mpMRI) scans are routinely acquired for patients with suspected brain tumors. In 

this study, we present a comprehensive performance evaluation of recent deep learning 

architectures for brain extraction, training models on mpMRI scans of pathologically-affected 

brains, with a particular focus on seeking a practically-applicable, low computational footprint 

approach, generalizable across multiple institutions, further facilitating collaborations. We 

identified a large retrospective multi-institutional dataset of n = 3340 mpMRI brain tumor scans, 

with manually-inspected and approved gold-standard segmentations, acquired during standard 

clinical practice under varying acquisition protocols, both from private institutional data and 

public (TCIA) collections. To facilitate optimal utilization of rich mpMRI data, we further 

introduce and evaluate a novel “modality-agnostic training” technique that can be applied using 

any available modality, without need for model retraining. Our results indicate that the modality-

agnostic approach1 obtains accurate results, providing a generic and practical tool for brain 

extraction on scans with brain tumors.

Keywords

Brain Extraction; Skull-stripping; Brain tumor; Glioma; Glioblastoma; Deep learning; Evaluation; 
TCIA

1. Introduction

Brain extraction, also known as skull-stripping, describes the process of removing the skull 

and non-brain tissues (e.g., neck fat) from brain magnetic resonance imaging (MRI) scans. It 

is a crucial step for pre-processing neuro-imaging datasets and has an immediate bearing on 

all subsequent investigative procedures. It is also a necessary processing step in most studies 

for compliance with privacy-preserving regulations, such as the Health Insurance Portability 

and Accountability Act of 1996 (HIPPA) and the General Data Protection Regulation of 
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2016 (GDPR). The effects of brain extraction on various analyses have been reported in the 

literature, including brain tumor segmentation (Menze et al., 2015; Bakas et al., 2018), 

lesion segmentation (Winzeck et al., 2018), cerebral hemisphere segmentation (Zhao et al., 

2010), methods for surgical interventions (Leote et al., 2018; Nadkarni et al., 2015), neuro-

degeneration (Gitler et al., 2017), devising radiation therapy (Kim et al., 2019), image 

registration (Woods et al., 1993; Klein et al., 2010), predicting Alzheimer’s disease (Frisoni 

et al., 2010), multiple sclerosis (Radue et al., 2015), estimation of cortical thickness (Haidar 

and Soul, 2006; MacDonald et al., 2000), and cortical surface reconstruction (Dale et al., 

1999; Tosun et al., 2006).

Manual delineation of the brain (Souza et al., 2018) is very laborious and time-consuming, 

resulting in inter- and intra-rater variations and affecting reproducibility in future 

applications. Multiple automated methods have been developed over the years to overcome 

these shortcomings (Smith, 2002; Segonne et al., 2004; Eskildsen et al., 2012; Doshi et al., 

2013; Shattuck et al., 2001; Iglesias et al., 2011). In recent years, DL methods, and 

particularly Convolutional Neural Networks (CNNs), have obtained state-of-the-art results in 

multiple problems of image segmentation.

Importantly, most existing computational methods for brain extraction were developed for 

and evaluated on brain scans without apparent pathologically-affected regions such as 

tumors or lesions, and they typically use only the T1-weighted MRI scans. Scans with brain 

tumors may present an important challenge for supervised machine learning algorithms that 

exclusively train on scans of healthy subjects, causing them to fail, particularly in the 

proximity of the tumor regions. Suboptimal brain extraction on these scans may result in 

parts of the skull and neck, which usually have tumor-like radiographic characteristics, being 

included on the final brain mask, or tumor regions being considered as non-brain, hence in 

both cases adversely affecting consecutive analyses. Example snapshots of such problematic 

brain extraction using the brain extraction tool (BET) (Smith, 2002) are shown in Fig. 1.

Another important challenge of brain extraction on multi-institutional, multi-parametric 

MRI (mpMRI) scans with tumors is the complexity and variability of the imaging data. 

Brain tumor scans acquired during standard clinical practice or even research studies and 

clinical trials, include a lot of sources of variation affecting their intrinsic radiographic 

characteristics/appearance, which may not be perceivable by visual observation but even the 

sub-visual differences affect further computational analyses. Examples of sources of 

variation include, but are not limited to imaging modalities, quality of the scans, scan 

acquisition parameters, e.g., repetition time (TR), echo time (TE), flip angle, slice thickness. 

Hence, robustness of algorithms to imaging variations and their generalizability to available 

imaging modalities are important requirements for achieving widespread application in 

clinical and research settings.

Finally, a third important requirement for the field is to have tools that are easy to deploy and 

apply, and with a low computational footprint. In methodological research studies, obtaining 

the highest performance is often the main goal, undermining other concerns such as 

complexity, running time and portability of a new method. However, if the goal is clinical 
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translation and widespread usage, methods should be designed for being used by a variety of 

users with different hardware and software requirements, as well as competency levels.

In this study, we sought to provide a tool that addresses the specific challenges of brain 

extraction on scans with brain tumors, with a particular focus on coming up with a practical 

approach that is applicable and generalizable across multiple institutions and multiple 

modalities, further facilitating collaborations. Towards this aim, we performed a 

comprehensive performance evaluation of recently established DL architectures for semantic 

segmentation. We evaluated 5 widely used DL network architectures, using multiple datasets 

and various cross-validation strategies. Evaluation data included mpMRI brain tumor scans 

acquired during standard clinical practice under varying acquisition protocols from 3 private 

institutions, as well as publicly available data from The Cancer Imaging Archive (TCIA) 

(Clark et al., 2013; Scarpace et al., 2016; Pedano et al., 2016; Bakas et al., 2017a, 2017b, 

2017c), with corresponding gold standard brain masks for all scans. DL architectures were 

trained using different combinations of input image modalities, including training on each 

single modality individually, multi-modality training and ensembles of models trained on 

single modalities. Importantly, we introduced a novel “modality-agnostic training” technique 

to enable brain extraction on new scans using any available modality, without the need to 

retrain the model. The proposed modality-agnostic training, which brings noticeable 

advantages for widespread application, obtained promising results in our comparative 

evaluations against models trained using other top-performing input modality combinations.

2. Materials and methods

2.1. Data

mpMRI scans are routinely acquired across institutions for patients with suspected brain 

tumors. Scanning protocols, i.e., scanner models, acquired modalities, and scan parameters, 

vary across institutions, as well as depending on the time of scan with respect to patient’s 

treatment history. In this study, we included four structural modalities that are commonly 

acquired at baseline pre-operative time-point: native (T1) and post-contrast T1-weighted 

(T1Gd), native T2-weighted (T2), and T2-weighted Fluid Attenuated Inversion Recovery 

(Flair) MRI scans.

We identified 3; 220 retrospective multi-institutional mpMRI scans from both private and 

public collections. The private retrospective collections included 2; 520 MRI scans from the 

hospitals of a) the University of Pennsylvania (UPenn, n = 1; 812), b) Thomas Jefferson 

University (TJU, n = 608), c) MD Anderson Cancer Center (MDA, n = 100). The public data 

are available through TCIA (Clark et al., 2013) and comprise of the scan collections of a) 

The Cancer Genome Atlas Glioblastoma (TCGA-GBM, n = 328) (Scarpace et al., 2016) and 

b) The Cancer Genome Atlas Lower Grade Glioma (TCGA-LGG, n = 372) (Pedano et al., 

2016), with their corresponding brain masks as provided through the International Brain 

Tumor Segmentation (BraTS) challenge (Menze et al., 2015; Bakas et al., 2017a, 2017b, 

2017c, 2018). Notably, the bra in masks used in the BraTS challenge were prepared 

primarily focusing on the tumor area, rather than the overall brain. Accordingly, we 

performed an additional manual inspection on the BraTS dataset and we excluded scans with 

brain masks that were missing parts of the brain. The final dataset included 3; 220 mpMRI 
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scans from 805 subjects, with the 4 structural modalities previously mentioned for each 

subject (Table 1). The ground truth brain masks of all the included scans were obtained 

through semi-automatic annotation using the ITK-SNAP (itksnap.org) software (Yushkevich 

et al., 2006; Yushkevich et al., 2019) and approved by a board-certified neuro-radiologist 

(M.B.) with more than 10 years of experience working with gliomas.

Importantly, this multi-institutional data collection was highly heterogeneous with a wide 

range of variability in scan quality, slice thickness of different modalities, scanning 

parameters, as well as pre-processing of initial scans, e.g (Table 1). Briefly, the UPenn data 

included T1 scans with high axial resolution. MDA data had similar characteristics, and 

accordingly it was used to evaluate the generalizability of other similar institutional data. All 

scans in TJU data had lower resolution compared to other datasets.

Examples of scans for each institution are shown in Fig. 2, showcasing the specific 

challenges of each dataset.

2.2. Pre-processing

Since the scans included in this study were heterogeneously obtained from different scanners 

and acquisition protocols, they all underwent the same pre-processing protocol to make 

image dimensions and voxel sizes uniform across studies and modalities. Specifically, all 

DICOM scans were converted to the NIfTI (Cox et al., 2004) file format and then, following 

the well-accepted2 pre-processing protocol of the BraTS challenge (Menze et al., 2015; 

Bakas et al., 2017a, 2017b, 2017c; Bakas et al., 2018), the T1Gd scan of each patient was 

rigidly registered and resampled to an isotropic resolution of 1 mm3 based on a common 

anatomical atlas, namely SRI (Rohlfing et al., 2010). The remaining scans (i.e., T1, T2, 

Flair) of each patient were then rigidly co-registered to this resampled T1Gd scan. The 

Greedy registration algorithm (Yushkevich et al., 2016) was used for all registrations. In 

order to accommodate hardware limitations two additional steps were considered. First, all 

scans were zero-padded with 3 and 2 slices on the top and bottom of the axial direction, 

ensuring that the image size on each dimension is factorized by 2, i.e., all scans converted 

from the SRI image size of 240×240×155 to 240 × 240 × 160 voxels. Subsequently, all scans 

were down-sampled to an image size of 128 × 128 × 128, converting their SRI isotropic 

voxel resolution (1:0 × 1:0 × 1:0mm3) to anisotropic (1:875× 1:875× 1:25mm3). These scans 

were finally used for training all the DL architectures. An overview of the pre-processing 

applied in this study is shown in Fig. 3.

2.3. DL network architectures

Multiple DL network architectures were tested in our comparative performance evaluation. 

Our selection was mainly motivated by their wide application on other segmentation tasks. 

The specific architectures included here comprise a) 2D U-Net (Ronneberger et al., 2015; 

Doshi et al., 2019), b) 3D U-Net (Çiçek et al., 1606; Milletari et al., 1606), c) Fully 

Convolutional Network (FCN) (Long et al., 1411), d) DeepMedic (Kamnitsas et al., 1603), 

and e) 3D U-Net with Residual connections (3D-ResU-Net) (Drozdzal et al., 1608; He et al., 

2https://cbica.github.io/CaPTk/preprocessing_brats.html.
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1512). Below, we provide a very brief overview of each architecture, with references for 

more detailed descriptions, and we describe the specific parameters and network design that 

was used in our experimental evaluations. Notably, to address hardware limitations on 

memory utilization and keep the requirements to < 12GB, we utilized Instance 

Normalization (Ulyanov et al., 1607) instead of Batch Normalization (Ioffe and Szegedy, 

1502) for training the 3D network architectures.

2.3.1. 2D U-Net—U-Net (Ronneberger et al., 2015) was originally proposed in 2015 and 

its numerous variations have been used successfully in various segmentation tasks delivering 

promising results. In this study we include a heavily involved variation of a 2D U-Net 

(Doshi et al., 2019), including residual connections and an inception module. We refer to 

this architecture as “2D-Res-Inc”. Specifically, the network architecture consists of an 

encoding path and a corresponding decoding path, as in U-Net (Ronneberger et al., 2015), 

followed by a voxel-wise, multi-class soft-max classifier to produce class probabilities for 

each voxel independently. A major modification in this implementation is the use of 

branched convolutions, adapted from the Inception-ResNet-v2 architecture (Szegedy et al., 

2017). This module ensures that each branch learns a different representation of the input 

features by learning both shallow and deeper features, and allows the subsequent layer to 

abstract features from different scales simultaneously. This property can be extremely useful 

when dealing with segmentation tasks for more complex or heterogeneous structures.

2.3.2. 3D U-Net—The 2D U-Net was extended in 3D volumetric variations in 2016 

(Çiçek et al., 1606; Milletari et al., 1606). Here we utilize a 3D U-Net (Çiçek et al., 1606) 

with a customized image input size of 128 128 × 128 × 128. Furthermore, to accommodate 

hardware limitations, we use 16 base filters, compared to the original implementation that 

included 64. The pattern for a single convolution block was given as 3D Convolution 

operation (3 × 3 × 3) followed by Leaky ReLU (LReLU) and Instance Normalization with 

running statistics during learning. Adam optimizer was used with a learning rate of 0.01 over 

25 epochs. The number of epochs was determined according to the amount of improvement 

observed. Notably, we evaluated the basic 3D-U-Net architecture in terms of the initial 

numbers of filters and their relation to the segmentation quality. Details of this analysis, 

showing the trade off between hardware requirements and performance, can be found in the 

supplementary section.

2.3.3. 3D U-Net with residual connections—We extended 3D U-Net, by applying 

residual connections improving the backpropagation process (Drozdzal et al., 1608; He et 

al., 1512). Our 3D-Res-U-Net implementation follows the principle of the 3D U-Net 

architecture, while further including skip connections in every convolution block, differently 

from other methods that use a 3D UNet. A schematic that illustrates these operations is 

shown in Fig. 4. Similar to 3D-U-Net above, we used Adam optimizer with a learning rate of 

0.01 over 25 epochs, and the number of epochs was determined according to the amount of 

improvement observed.

2.3.4. FCN—The FCN architecture (Long et al., 1411), which was introduced in 2017, 

captures hierarchical features, imaging patterns, and spatial information of each input image 
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with receptive fields. FCN is considered less computationally expensive than other 

architectures, due to not having an “expensive” decoding part as U-Net, and hence provides 

faster coarse segmentation of various problems (Litjens et al., 2017). Here, we apply a 3D 

FCN. Similarly to other architectures, the Adam optimizer was used with a learning rate of 

0.01 over 25 epochs. Number of epochs was determined according to the amount of 

observed improvement.

2.3.5. Deep-medic—DeepMedic (Kamnitsas et al., 1603) was originally proposed in 

2015, as the first 3D architecture, when it emerged as a winner of the ISchemic LEsion 

Segmentation (ISLES) challenge (Winzeck et al., 2018). The standard DeepMedic 

architecture, as provided in its GitHub repository3 is a 3D CNN with a depth of 11-layers, 

and a double pathway to provide sufficient context and detail in resolution. In our evaluation, 

we applied the original version of DeepMedic4 with the default parameters provided, and we 

applied a hole-filling algorithm as a post-processing step.

2.4. Experimental design

Considering the complexity of the task, i.e., the combinatorial explosion of experiments 

using multiple sites, train/test combinations, input modalities and network architectures, we 

followed a multi-step experimental design, focusing on each step on a specific objective, as 

described below.

All hyper-parameters stayed consistent throughout all the experiments. Each of the applied 

architectures needed different time for convergence, based on their individual parameters. 

Table 2 shows the time each architecture run until convergence during training on a compute 

node equipped with an NVidia P100 GPU, with 12 GB memory.

2.4.1. Comparative evaluation of DL network architectures and input data 
combinations—On this first step of our evaluations, we performed an exhaustive 

comparison of various network architectures and input image combinations. Specifically, 

models of all architectures were trained solely on data from a single institution (i.e., UPenn) 

and then inferred on datasets of multiple institutions (i.e., UPenn, TJU, and MDA). During 

the training phase, a hold-out cohort of 180 mpMRI scans from 45 UPenn subjects were 

used for internal algorithmic validation and convergence evaluation. Each method was 

trained using as input either single individual scans or combined mpMRI scans, as described 

in Section 2.5. A total of 7 input image combinations configurations were evaluated: a) four 

combinations of individual modalities (i.e., T1-T1, T1Gd-T1Gd, T2-T2, Flair-Flair), b) 

ensemble of these individual modalities based on majority voting, and c) two mpMRI 

combination, including the combination of T1 and T2 (Multi-2), as well as the combination 

of all four individual modalities (Multi-4).

In our attempt to get a more complete picture, we have also compared these DL architectures 

with BET and FreeSurfer, which can be considered two of the most widely used traditional 

approaches for brain extraction. For this comparison we only utilized the T1 scans that BET 

3https://github.com/deepmedic/deepmedic.
4v.0.7.1 [commit dbdc1f1], code.
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and FreeSurfer can utilize. Furthermore, to showcase how the disease can affects the 

performance of DL algorithms we have trained a DL model on scans from 50 healthy 

subjects (2D-Res-Inc-H) acquired for different studies and applied it in the same brain tumor 

scans we used for this step of the evaluation. The ground truth labels of the healthy brain 

scans were generated from different raters and confirmed for obvious errors by an expert 

data scientist with experience working in neuroimage analysis for more than 9 years.

2.4.2. Modality-agnostic training—On the second step, we evaluated the performance 

of a “modality-agnostic training technique”, which we developed aiming to provide a tool 

that is widely applicable to datasets with different MRI modality combinations. A similar 

concept was also recently presented by (Isensee et al., 2019), which shows the relevance of 

the proposed work. The modality-agnostic models were constructed by using different 

modalities as independent input samples during the training, such that a single model learns 

the mapping between any single image modality type and the target brain mask 

segmentation, without necessarily being informed about the type of modality provided as 

input. The modality-agnostic training was implemented and validated using architectures 

selected based on the performance evaluation of step 1.

2.4.3. Performance effect of training on diverse data—The size and diversity of 

the training dataset are major factors affecting the performance and generalizability of DL 

models. In order to evaluate the effect of multi-site training on segmentation accuracy we 

performed additional experiments using models trained exclusively on data from a single 

institution (UPenn only) against models trained on multi-site data, i.e., UPenn, TJU, and 

MDA. For both cases, we used the large multi-institutional TCIA dataset for testing, thus 

applying the final models on a highly heterogeneous and previously unseen dataset, which 

allowed us to evaluate the generalizability of the proposed DL models.

2.5. Input data combination strategies for training

2.5.1. Training on individual modalities—Following the current literature on brain 

extraction methodologies, where T1 is solely used, we trained every architecture on T1. 

Additionally we trained models on each other available individual MRI modality, to 

compare the potential contribution of each modality beyond T1. In the remainder of this 

manuscript we refer to these models using the notation “modality-modality” to indicate that 

a single modality was used for both training and inference. For example we refer to a 3D U-

Net trained and inferred on T1, as T1-T1 3D-U-Net.

We should note that the performance of models trained on individual modalities was also 

evaluated in ensemble configurations.

2.5.2. Training on multiple mpMRI modalities—To take advantage of the richness of 

the routine mpMRI acquisitions for brain tumor patients, we also considered training 

methods on multiple modalities, instead of training on single modality individually. We 

limited these experiments to two main configurations: a) combining T1 and T2, that we refer 

to as “Multi-2”, and b) combining all 4 structural mpMRI modalities together that refer to as 

“Multi-4”. The first configuration (Multi-2) is selected as it was previously shown that T2 
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contributes to improved skull-stripping performance (Bakas et al., 2017a) and can be applied 

on cases where gadolinium is not considered, i.e., in non-tumor cases.

2.5.3. Modality-agnostic training—We propose a novel approach that provides a 

“hybrid” alternative to single-modality and multi-modality training techniques, aiming to 

optimally use multi-modal imaging data, while not necessarily requiring existence of a pre-

defined set of modalities. Specifically, in this configuration, a DL model is trained using all 

available modalities for a subject. However, in contrast to the multi-modality approach 

where the combination of all modalities from a subject is used as a single data sample, we 

feed each modality to the network as an independent data sample. This process attempts to 

contribute on forcing the network to learn the brain shape prior, instead of texture priors that 

CNNs usually learn (Geirhos et al., 1811). In this way, the model allows making an 

inference from a single modality, while being trained on multi-modal data. Importantly, 

during the inference, the model does not need to know which modality was provided as the 

input scan. The most important practical benefit of this approach is its robustness to missing 

data, i.e., it can be applied directly even if a specific modality is missing or is not usable due 

to low scan quality.

2.6. Evaluation metrics

Following the literature on semantic segmentation we use the following metrics to 

quantitatively evaluate the performance of the trained methods. We have further utilized the 

metrics of sensitivity and specificity in the supplementary material.

2.6.1. Sørensen-dice similarity coefficient—The Sørensen-Dice Similarity 

Coefficient (Dice) is commonly used to evaluate and report on the performance of semantic 

segmentation. Dice measures the extent of spatial overlap, while taking into account the 

intersection between the predicted masks (PM) and the provided ground truth (GT), hence 

handles over- and under-segmentation. Dice can be mathematically defined as:

Dice = 2 GT ∩ PM
GT + PM * 100 (1)

where it would range between 0 and 100, with 0 describing no overlap and 100 perfect 

agreement.

2.6.2. Hausdorff—While the Dice score is the most commonly used metric for 

comparing two segmentation masks, it is not sensitive to local differences, as it represents a 

global measure of overlap. For the specific problem of brain extraction, local differences 

may be very important for properly assessing the quality of the segmentation. Accordingly, 

we calculated a complementary metric, the Hausdorf f distance, which measures the 

maximum distance of a point set to the nearest point in another (Rockafellar and Wets, 

2005):

ℎ(A, B) = maxa ∈ Aminb ∈ B a − b (2)
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We specifically calculated the 95th percentile of the Hausdorf f distance between the 

contours of the two segmentation masks, a robust measure of the maximum distance 

between the segmentations.

3. Results

3.1. Comparative evaluation of network architectures with BET and FreeSurfer using T1 
image as input

Considering the general approach in the field, we first compared different architectures, as 

well as BET (Smith, 2002) and FreeSurfer (Segonne et al., 2004), two of the most widely 

used brain extraction tools, using only the T1 scan for brain extraction (T1-T1 models). Dice 

scores obtained by different methods on 3 datasets are shown in Fig. 5. The DL-based 

algorithms (regardless of the architecture) significantly outperformed BET, with a single 

exception for the UPenn dataset. We also note that FreeSurfer is superior to BET, FCN, and 

3D-UNet, but is still outperformed by the other architectures.

Furthermore, based on the results shown in Fig. 5, we can confirm with certainty that the 

presence of diffuse gliomas in MRI scans indeed affect the performance of DL models 

trained on healthy brain scans. Specifically, we note that the best performing DL model for 

brain extraction in T1 brain tumor scans (2D-Res-Inc - Fig. 5) ends up with the lowest 

performance among the DL architectures when trained on healthy brain T1 scans (2D-Res-

Inc-H - Fig. 5), with its Dice showing a decrease of at least 6% across the data from the 

multiple institutions.

3.2. Comparative evaluation of network architectures using different input data 
combinations

Plots of average Dice and Hausdorf f metrics for scans from the 3 different institutions 

obtained using each model are shown in Figs. 6–7 and S. Tables 3–4 (average Sensitivity and 

Specificity metrics are shown in Supplementary Figs. 13 and 14).

We observed that the 2D-ResInc model was consistently outperforming other models, 

although marginally, on all datasets, with the exception of the “T2-T2” and the “Ensemble 

model”. DeepMedic and 3D-Res-U-Net models obtained comparable, but slightly lower, 

performance. On the other hand, 3D-U-Net, and FCN showed lower performance, with FCN 

obtaining the lowest accuracy for most input configurations.

From all input data configurations, “T1-T1” and “Multi-4” models obtained higher 

performance, with consistent results across datasets and network architectures, although 

there are few exceptions. Single modality training using modalities other than T1 resulted in 

lower performance, while the “Ensemble” models did not improve the results beyond the 

performance of the “T1-T1” model. “Multi-4” training showed improved performance, 

obtaining the best results comparable to the “T1-T1” model.

We have further conducted a statistical analysis using Wilcoxon tests, where we compared 

the Dice of the 3D-Res-U-Net with every other architecture, across all datasets and input 

data combinations. As previously mentioned and indicated in Figs. 6–7 and S.Tables 3–4, 
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3D-ResU-Net has consistently the smallest differences in Dice when compared to Deep-

Medic, across all models. Nevertheless, 3D-ResU-Net is significantly (p < 0:041) better than 

DeepMedic in all datasets and models with the exceptions of i) the cases where 3D-ResU-

Net improvements are not significant (i.e., “T2-T2” on MDA data, and “T1-T1”, “T1Gd-

T1Gd”, “Multi-2”, and “Ensemble” on UPenn data), ii) “T1Gd-T1Gd” on MDA data where 

DeepMedic is insignificantly better, and iii) “T2-T2” and “Flair-Flair” models where 

DeepMedic shows significantly (p < 0:0035) improved performance. When comparing 3D-

ResU-Net with 2D-ResInc, we note that 3D-ResU-Net is comparable but significantly (p < 

0:033) worse than 2D-ResInc for all datasets for all models except, i) “T2-T2” where 2D-

ResInc fails dramatically and 3D-ResU-Net is significantly (p < 1:45E−05) better, and ii) 

“Flair-Flair” and “Ensemble” models, where 2D-ResInc is better than 3D-ResU-Net, but 

with insignificant differences. 3D-ResU-Net is also significantly (p < 2:56E−06) better than 

FCN for all datasets for all models, and when compared to 3D-UNet, 3D-ResU-Net is 

significantly (p < 0:0025) better for all datasets for all models, except “Multi-4” for the 

UPenn data, where still 3D-ResU-Net is better than 3D-UNet but with insignificant 

differences.

Based on the quantitative results of these experiments, we conclude that the 3D-Res-U-Net, 

DeepMedic, and 2D-ResInc are the three best performing approaches and perform 

comparably well. The statistical analysis indicated that 2D-ResInc is outperforming 3D-

ResU-Net in most cases with the exception of the “T2-T2” model where 2D-ResInc fails 

dramatically. Furthermore, between 3D-Res-U-Net and DeepMedic we note that 3D-Res-U-

Net is better in most models, with consistently the smallest differences in Dice between 

them when compared to the other architectures. Since a major goal of our analysis is also the 

practicality and footprint of the method both during training and inference, we considered 

the relatively simpler 3D-Res-U-Net and DeepMedic architectures over the 2D-ResInc for 

the follow up evaluations.

3.3. Modality-agnostic training

Comparative evaluations involved the 3D-Res-U-Net and the Deep-Medic models trained 

using the modality-agnostic technique, compared against the 3D-Res-U-Net and the 

DeepMedic using the best performing input combinations in the previous step, i.e., “T1-T1”, 

“Multi-2”, and “Multi-4” models. Similar to step 1, these models were trained on the same 

training dataset from UPenn and inference and evaluation was performed using the same 

three testing datasets. Note that the modality-agnostic model was only trained once using all 

single modalities sequentially as input. The model was then applied on each modality 

independently, and the performance was evaluated for each modality separately.

Comparative results for different models are shown in Figs. 8–9 and S.Tables 3–4, where 

3D-Res-U-Net shows a consistent superior performance compared to DeepMedic. The 

modality-agnostic model performed comparable to “T1-T1” and “Multi-4” models on the 

UPenn dataset. However, when applied for inference on data from other institutions, i.e., 

TJU and MDA, we observed gradually inferior performance. Consistently with previous 

results, the “Ensemble” models did not improve accuracy beyond the performance of the 

independent modality-agnostic models.
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3.4. Performance effect of training on diverse data

We further investigated the effects of training on multi-site data using the combination of 

UPenn, TJU, and MDA as our training dataset. Trained “T1-T1” and the modality agnostic 

T1 (“M-A-T1”) models were then evaluated on the independent multi-institutional TCIA 

dataset (Fig. 10). We observed that training on diverse multi-institutional data (i.e., Fig. 10 - 

“UPenn + TJU + MDA”) resulted in improved performance, compared to training on data 

from a single institution (i.e., Fig. 10 - “UPenn”). Importantly, the model trained with the 

modality agnostic technique performed comparably with the “T1-T1” model using the multi-

institutional training data, suggesting the potential of this model as a widely applicable 

generic tool for segmentation of brain images with tumors.

4. Discussion

In this study, we conducted a comprehensive performance evaluation of widely-used DL 

methods for the task of brain extraction. We selected multiple recent architectures 

established in the domain of 3D semantic segmentation, while also considering low 

computational footprint and out-of-the-box implementation availability. We further 

introduced a novel modality agnostic training technique, preferable to models trained using 

individual MRI modalities, considering the benefits of its flexibility to availability of 

different input image modality combinations. The accompanying source code can be found 

at: https://github.com/CBICA/BrainMaGe.

Many automated methods have previously been developed for brain extraction (Smith, 2002; 

Segonne et al., 2004; Eskildsen et al., 2012; Doshi et al., 2013; Shattuck et al., 2001; Iglesias 

et al., 2011). In recent years, several DL-based approaches have also shown promising 

results in brain extraction (Hwang et al., 2019). Even though these methods are shown to be 

widely successful on healthy subjects, they tend to be less accurate when evaluated on brain 

MRI scans with brain tumors. Furthermore, their performance can vary significantly when 

applied to images from different sites, scanners, and imaging acquisition protocols (Iglesias 

et al., 2011). Here we evaluated specific DL architectures, considering the availability of 

their implementation and the corresponding computational footprint. We note that the 

selected 3D-Res-U--Net and DeepMedic DL methods (as well as others that are not selected 

but performing similarly, such as the 2D-ResInc) outperformed standard brain extraction 

methods, such as BET and FreeSurfer. In terms of comparing 3D-ResU-Net, DeepMedic, 

and 2D-ResInc, we think that the use of branched convolutions with varying depths in the 

ResInc module makes the 2D-ResInc perform better than the others as it allows the network 

to simultaneously learn both shallow and deep representations of the region of interest. 

However, this use of branched convolutions with varying depths makes the 2D-ResInc 

substantially slower to train and infer when compared to 3D-ResU-Net, as indicated in Table 

2. When further comparing the performance of 3D-ResU-Net with DeepMedic, it seems that 

the residual connections and the larger receptive field (including the whole 3D scan) is what 

makes the 3D-ResU-Net outperform DeepMedic. Notably, although DeepMedic is the first 

state of the art 3D CNN, its patch-based approach seems to be the reason for the resulting 

“holes” in the output predictions (primarily near the ventricles) that make it require a post-

processing step as recommended in its original publication (Kamnitsas et al., 1603). This 
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post-processing step is what then renders DeepMedic the second slowest approach following 

2D-Res-Inc, with average inference time equal to 17s per scan.

We assessed a total of 7 modality configurations, including both independent MRI scans and 

combinations of mpMRI brain tumor scans. Amongst these configurations, our results are in 

line with the existing literature on brain extraction, where the T1-weighted scan is typically 

used for brain extraction. These results indicate that utilization of the T1 modality (“T1-T1”) 

achieves the best performance also for scans with brain tumors. However, we should also 

note that ground-truth labels are generally delineated using the T1 scans, thus creating a 

potential bias. Ensemble segmentation via majority voting did not contribute in improving 

performance. The only other model showing comparable performance was the one trained 

on all 4 modalities, i.e., “Multi-4”. However, between these two alternatives, the “T1-T1” 

model would be preferred owing to the requirement of only one modality, T1, instead of 

requiring the co-existence of four modalities to train the “Multi-4” model. Poor and good 

illustrative examples are shown in supplementary figures 15–16. Poor segmentations are 

randomly chosen from the data of each institution separately, across all algorithms and after 

setting a threshold on the Dice score as Thr < 80%. Similarly, good segmentations were 

randomly chosen using a threshold on Dice score as Thr > 98%.

We introduced an alternative novel modality-agnostic brain extraction approach, which is 

not dependent on any particular modality and may be trained on any available modality. 

There are at least two reasons why training the algorithm and running it on a limited number 

of modalities is essential in clinical applications. First, some clinical MRI brain protocols do 

not include all four modalities. For example, at our institution, the GammaKnife protocol 

consists only of T2-FLAIR and T1-Gd scans, and hence skull stripping would have to be 

performed using at most two modalities. The other reason pertains to processing speed 

during inference, where brain extraction and further analysis has to be performed real time 

(typically before neuroradiologists open those cases from their worklist). Therefore the time 

needed for pre- and post-processing is directly affecting the radiological reading, as the more 

modalities included for processing, the more time it will take to perform the final task and 

also the more error prone the complete pipeline will be. The results of models trained on 

data from a single institution and applied on data of other independent institutions (i.e,. TJU 

and MDA) yield a consistently comparable performance between the proposed modality-

agnostic approach and the “T1-T1” and “Multi-4” models. To rigorously validate the 

proposed modality-agnostic method on diverse multi-institutional data, we chose to first 

train two different models using i) data from a single institution (UPenn) and ii) multi-

institutional data (UPenn + TJU + MDA), and then infer them on multi-institutional diverse 

data from TCIA, i.e., from institutions not included in the training cohort. The results (Fig. 

10) indicate that introducing knowledge from multiple institutions improves the performance 

of the trained models. Moreover, introducing a brain shape prior through the modality 

agnostic approach can handle any modality scan improving the performance (Fig. 10) and 

increasing the applicability of the method. Thus, the benefit of not requiring a specific 

modality (for the aforementioned reasons) enables us to appraise greater preference for the 

modality-agnostic training process compared to the “T1-T1”.
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While aiming on a practical brain extraction tool, generalizable across multiple institutions 

and multiple modalities, to facilitate the current paradigm for multi-institutional 

collaborations through data sharing, the current study has three major limitations: a) did not 

use any defaced/semi-skull-stripped data, b) consideration of only pre-operative scans, and 

c) consideration of only brain glioblastomas. Specifically, our models were trained on 

images prior to any defacing, which is a common practice mandated by many institutions for 

data sharing purposes, in order to comply with privacy regulations. We therefore identified 

another independent retrospective cohort of 120 scans from Washington University in St. 

Louis (WashU) that have followed the common practice of data sharing after defacing. We 

attempted to evaluate our current models on defaced data and we noted an inferior 

performance (Figs. 11–12) when compared to the existing results. However, our modality 

agnostic approach shows promise for a potential solution that can be used as a harmonized 

pre-processing step giving rise to various paradigm shift approaches for multi-institutional 

collaborations, such as incremental learning (Li and Hoiem) and federated learning (Sheller 

et al., 1810). We think that the intrinsic shape prior is what makes the modality agnostic 

performance being more robust to missing skull. Second, the current study evaluated all 

models on pre-operative pathologies, and did not consider any post-resection tumor scans. 

Although the transition from pre-operative to post-operative scans might seem 

straightforward, there may be issues introduced due to the presence of cavities. Another 

limitation of our study is the use of subjects with only one type of pathology, i.e., 

glioblastoma. While the results on one type of pathology may not represent the entire 

spectrum of brain diseases, we hypothesize that the modality agnostic approach could be 

effective when on scans with other benign or malignant pathologies, such as traumatic brain 

injuries, intracranial infections, meningiomas, low grade gliomas, brain metastases, and 

more.

5. Conclusion

Brain extraction is a key component of computer algorithms that are poised to change the 

practice of clinical neuroradiology. It may facilitate real time automatic brain lesion 

detection and segmentation for clinical interpretation. It is therefore critical that this 

component be not only fast, but also have the flexibility to accommodate different MRI 

protocols, even with a limited number of sequences, and different hardware platforms. Our 

study demonstrates that DL brain extraction algorithms have the potential to satisfy those 

requirements.

In this study, using extensive validation protocols, we have shown that DL methods 

generally out-perform conventional brain extraction methods, such as BET, and FreeSurfer. 

Though accuracy is important, practical constraints dictate that the importance of the trained 

model’s generalizability. Towards this end we introduced a modality-agnostic training 

method rather than one that needs a specific set or combination of modalities, which forces 

the model to learn the spatial relationships between the structures in the brain and its shape, 

as opposed to texture, and thereby overriding the need for a particular modality. In addition, 

we have also proved that such a model will have comparable (and in most cases better) 

accuracy to other DL methods while keeping minimal computational and logistical 
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requirements. Finally, we have publicly released the accompanying source code at: https://

github.com/CBICA/BrainMaGe.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example 2D tri-planar sections of mpMRI brain tumor scans after using the brain extraction 

tool (BET) (Smith, 2002) and followed by manual revisions.
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Fig. 2. 
Example 2D tri-planar sections of T1Gd MRI scans from UPenn, MDA, and TJU datasets, 

respectively in each row, illustrating the high variability between datasets. Note the lower 

resolution of the TJU scans emphasizing the resampling interpolation.
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Fig. 3. 
Overview of the complete framework applied in this study leading to results for further 

analyses.
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Fig. 4. 
Residual Connection in Encoder/Decoder block for our 3D-Res-U-Net implementation.
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Fig. 5. 
Quantitative evaluation of various DL network architectures compared with BET and 

FreeSurfer, using the T1 MRI brain tumor scans.
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Fig. 6. 
Quantitative (average Dice) evaluation of various DL network architectures. From top to 

bottom rows we see results on the data from (a) UPenn, (b) TJU, and (c) MDA. The 

evaluated models in this figure include training on individual modalities and their ensemble 

using majority voting, as well as multi-modality training.
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Fig. 7. 
Quantitative (average Hausdorf f) evaluation of various DL network architectures. From top 

to bottom rows we see results on the data from (a) UPenn, (b) TJU, and (c) MDA. The 

evaluated models in this figure include training on individual modalities and their ensemble 

using majority voting, as well as multi-modality training.
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Fig. 8. 
Evaluation results (Dice) for the selected 3D-Res-U-Net and DeepMedic on the Modality-

Agnostic training process. Results also include training on the best results of Fig. 6 for 

comparison purposes.
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Fig. 9. 
Evaluation results (Hausdorf f95) for the selected 3D-Res-U-Net and DeepMedic on the 

Modality-Agnostic training process. Results also include training on the best results of Fig. 7 

for comparison purposes.
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Fig. 10. 
Mean Dice of model inference on publicly-available multi-institutional data from TCIA. 

Diverse data contribute to performance improvements. “M-A” training process performs 

comparably with “T1-T1”.
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Fig. 11. 
Quantitative (average Dice and Hausdorf f) evaluation of the various DL network 

architectures tested on unseen defaced data from an independent institution (WashU). The 

evaluated models in this figure include training on individual modalities of the UPenn 

dataset and their ensemble using majority voting, as well as multi-modality training.
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Fig. 12. 
Evaluation results of the selected 3D-Res-U-Net on the Modality-Agnostic training process 

tested on unseen defaced data from an independent institution (WashU). Average Dice and 

Hausdorf f95 metrics are shown in the left and right columns, respectively. Results also 

include the “T1-T1” and the “Multi-4” models for comparison purposes.
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Fig. 13. 
Quantitative (average Sensitivity) evaluation of various DL network architectures. From top 

to bottom rows we see results on the data from (a) UPenn, (b) TJU, and (c) MDA. The 

evaluated models in this figure include training on individual modalities and their ensemble 

using majority voting, as well as multi-modality training.
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Fig. 14. 
Quantitative (average Specificity) evaluation of various DL network architectures. From top 

to bottom rows we see results on the data from (a) UPenn, (b) TJU, and (c) MDA. The 

evaluated models in this figure include training on individual modalities and their ensemble 

using majority voting, as well as multi-modality training.
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Fig. 15. 
Qualitative Poor Segmentation examples, randomly chosen from each institutions, across all 

algorithms and after setting a ThrDice < 80%.)
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Fig. 16. 
Qualitative Good Segmentation examples, randomly chosen from each institutions, across 

all algorithms and after setting a ThrDice > 98%.)
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Table 1

Summary of data included in our comparative evaluations.

Dataset # Subjects. # mpMRI Scans

UPenn 453 1,812

TJU 152 608

MDA 25 100

TCGA-GBM 82 328

TCGA-LGG 93 372

Total 805 3220
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Table 2

Time to converge during training. The reported time is in hours and in parenthesis is the number of epochs that 

each model was trained for before application for inference.

DeepMedic 3D-U-Net 3D-Res-U-Net 2D-ResInc FCN

T1-T1 18 (35) 6 (25) 6 (25) 150.5 (96) 3 (25)

T2-T2 26 (35) 6 (25) 6 (25) 71.5 (38) 3 (25)

T1Gd-T1Gd 24 (35) 6 (25) 6 (25) 151.7 (100) 3 (25)

Flair-Flair 18 (35) 6 (25) 6 (25) 147.7 (94) 3 (25)

Multi-2 36 (35) 8 (25) 8 (25) 157.3 (91) 4 (25)

Multi-4 45 (35) 8 (25) 8 (25) 113.6 (56) 4 (25)

M-A 62 (45) 25 (25) 25 (25) 321.8 (54) 17 (25)
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