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Abstract

Loss of ovarian function in women is associated with sleep disturbances and cognitive decline, 

which suggest a key role for estrogens and/or progestins in modulating these symptoms. The 

effects of ovarian hormones on sleep and cognitive processes have been studied in separate 

research fields that seldom intersect. However, sleep has a considerable impact on cognitive 

function. Given the tight connections between sleep and cognition, ovarian hormones may 

influence selective aspects of cognition indirectly, via the modulation of sleep. In support of this 

hypothesis, a growing body of evidence indicates that the development of sleep disorders 

following menopause contributes to accelerated cognitive decline and dementia in older women. 

This paper draws from both the animal and human literature to present an integrated view of the 

effects of ovarian hormones on sleep and cognition across the adult female lifespan.
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Introduction

Several lines of research indicate that ovarian hormones, including estrogens (E) and 

progesterone (P), affect brain structure, cognition, and behavior in females across the 

lifespan. Most studies focus on cognitive and behavioral changes that occur following the 

menopausal transition, when levels of E and P gradually decline. Interestingly, this period is 

accompanied by sleep disruptions, hot flashes (HFs), mood changes, cognitive decline and 

increased risk of dementia, suggesting that the loss of circulating ovarian hormones is a key 

contributor to these symptoms. However, the hypothesis that ovarian hormones have a causal 
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role in these symptoms has most often been examined in distinct lines of research focusing 

on a single domain (e.g. ovarian hormones and cognition) with little cross-talk among 

research fields. In this paper, we argue that a more integrated approach incorporating 

multiple behavioral outcomes may provide a better understanding of the effects on ovarian 

hormones on behavior. This review focuses on two of these domains, sleep and cognition. 

We first show that both sleep (reviewed in section 1) and selective cognitive abilities 

(reviewed in section 2) are independently sensitive to ovarian hormones in females. Further, 

we discuss a growing body of evidence demonstrating tight connections between sleep and 

several cognitive domains, including attention, executive function, and spatial memory 

(reviewed in section 3). Since the literature on sleep and cognition is particularly vast, we 

discuss specific studies on abilities shown to be sensitive to both ovarian hormones and sleep 

in adult females. In synthesizing these findings (Section 4), we suggest that ovarian 

hormones may play an important role in regulating the impact of sleep on cognitive function 

in females. Although limited data are currently available to support this hypothesis, as most 

of the studies on the interplay between sleep and cognition were conducted in mixed-sex 

samples where biological sex was not taken into consideration, or in male-only samples, we 

believe that it is an important area for future research with potential for therapeutic 

intervention.

1. Sleep is sensitive to ovarian hormones

1.1 Overview of sleep

Sleep is a behavior observed in most organisms, and in contrast to wakefulness, involves 

reduced responsiveness to external stimuli (Campbell & Tobler, 1984; Hendricks et al., 

2000). Two regulatory mechanisms influence the sleep-wake cycle; biological clocks (i.e. 

circadian rhythms), which synchronize the timing of sleep over an ~24 hr cycle, and 

homeostatic drive, or the need for sleep, which increases proportionally with the time spent 

awake (Borbély, 1982). Changes in cortical activity that occurs during the sleep/wake cycle 

can be monitored using electroencephalography (EEG) and used to quantify the different 

vigilance states. These states include 1) wake, characterized by high frequency, low 

amplitude EEGs, 2) rapid-eye movement (REM), with EEGs that are similar to wake (high 

frequency/ low amplitude), and 3) non-rapid eye movement (NREM), which is further 

divided into three stages (N1-N3). The deepest stage, N3, is also known as slow-wave sleep 
(SWS), which involves low frequency, high amplitude EEGs (i.e. delta waves). The sleep-

wake cycle typically progresses from wake, to the lightest stage of NREM (N1), then to 

deeper stages (N2-N3) before transitioning to REM. In adult humans, each cycle takes 

approximately 90 min, with a total of 3–5/night (Armitage & Hoffmann, 2001). Sleep can 

become disrupted by frequent awakenings (i.e. fragmented sleep), extended periods of 

arousals, and diminished SWS (Guilleminault et al., 1988).

1.1 Sleep quality and sleep architecture in women

Excellent reviews describing the role of ovarian hormones on sleep are available (Lord et al., 

2014; Moline et al., 2004; Mong et al., 2011, 2016; Polo-Kantola, 2011), and we only 

briefly discuss this topic here. Sex differences have been reported in both subjective and 

objective sleep measures. Women are 1.3–1.8 times more likely to report sleep problems 
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than men (Polo-Kantola, 2011), including more disrupted and insufficient sleep (Groeger et 

al., 2004; Lindberg et al., 1997; Middelkoop et al., 1996; Reyner et al., 1995; Zhang & 

Wing, 2006), poorer sleep quality, as well as difficulty falling and staying asleep (Lindberg 

et al., 1997; Zhang & Wing, 2006). Although these data suggest that sleep quality is poorer 

in women than men, studies using objective polysomnographic (PSG) recordings do not 

corroborate these findings. Indeed, compared to men, women across a wide range of ages 

sleep for longer (Bixler et al., 2009; Ohayon, Carskadon, Guilleminault, & Vitiello, 2004; 

Polo-Kantola et al., 2016; Tonetti, Fabbri, & Natale, 2008; Ursin, Bjorvatn, & Holsten, 

2005), have a shorter sleep onset latency, spend less time transitioning between wakefulness 

and sleep (Goel et al., 2005), and have more SWS and slow-wave activity (SWA; delta, 

~0.5– 4 Hz) during sleep (Bixler et al., 2009; Carrier, Land, Buysse, Kupfer, & Monk, 2001; 

Dijk et al., 1989; Ehlers & Kupfer, 1997; Latta et al., 2005; Mourtazaev et al., 1995). In 

addition, the decline in SWS that occurs with age (Mander et al., 2016) has been reported to 

be attenuated in women compared to men (Ehlers & Kupfer, 1997; but see Carrier et al., 

2001). Two other studies show that objective sleep is more resistant to sleep disruptions in 

young women than in young men. Vgontas et al (2004) found that changes in inflammation 

markers and maximum cortisol values during restricted sleep were greater in men than in 

women. In addition, objective sleep measures (sleep efficiency and percentage of N1) were 

less affected by night blood draws in women than in men in another study (Blixter et al., 

2009). Overall, these findings suggest that women’s objective sleep is better and more 

resistant to disturbances than men’s. However, a few studies observe more SWA in women 

following sleep deprivation (SD; Armitage & Hoffmann, 2001; Manber et al., 1999), 

suggesting a greater accumulation of sleep debt in women than in men (Webb, 1982).

Given that many aspects of objective sleep quality appear superior in women, additional 

factors must contribute to the subjective experience of sleep quality. One potential factor is 

circadian timing, which is also influenced by sex (for a review, see Bailey & Silver, 2014). 

While women go to bed earlier, and wake up earlier than men (Adan & Natale, 2002; 

Roenneberg et al., 2007; Tonetti et al., 2008), there is some evidence that their circadian 

period is shorter than men’s (Cain et al., 2010; Duffy et al., 2011), and that their sleep timing 

occurs later than their circadian timing. For instance, Cain and colleagues (2010) compared 

both sleep timing and circadian timing in men and women matched on age and habitual 

wake time. Circadian timing was estimated based on diurnal fluctuations in core body 

temperature and endogenous melatonin levels. The authors observed that sleep timing was 

equivalent across sex, but that the circadian timing was earlier in women, suggesting that 

sleep may be occurring at a later biological time in women. This might explain the 

discrepancy between subjective and objective sleep measures in women, as well as greater 

susceptibility to insomnia in women than in men (Zhang & Wing, 2006). However, other 

factors affect subjective sleep measures including depressed mood (Toffol et al., 2014), 

which is also more common in women (e.g., Altemus et al, 2014). Therefore, more research 

is necessary to fully understand why women report more sleep problems than men.

Reproductive hormones have been shown to modulate women’s sleep across adulthood. Not 

only do sleep problems including insomnia emerge at puberty when levels of these 

hormones increase (Zhang & Wing, 2006), increases in sleep complaints typically coincide 

with periods involving large fluctuations of ovarian hormones, including puberty, pregnancy, 
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and the menopausal transition (as reviewed by Mong et al., 2016). There is also evidence for 

sleep changes across the menstrual cycle. In general, sleep appears to be poorest during the 

mid-to-late luteal phase, when ovarian hormones begin to decline (as reviewed by Baker & 

Driver, 2007; Lord et al., 2014; Moline et al., 2003). Compared to the follicular phase, the 

luteal phase is associated with increased reports of nighttime awakenings and arousal during 

sleep and decreased SWS (De Zambotti et al., 2015b). In addition, sleep spindles, which are 

short bursts of activity, are more frequent, longer in duration and occur in higher EEG 

spectral frequency (14– 17 Hz) during the luteal than the follicular phase (Baker, Kahan et 

al., 2007; de Zambotti et al., 2015b; Driver et al., 1996). Differences in objective sleep 

measures are also observed in women taking oral contraceptives as indicated by increased 

N2, REM, and reduced SWS relative to naturally cycling women (Baker et al., 2001a,b; 

Burdick, Hoffman, and Armitage, 2002). However, other studies either find limited (e.g. 

Romans et al., 2015) or no differences (Baker & Colrain, 2010) for sleep changes across the 

menstrual cycle.

The menopausal transition, which is characterized by erratic fluctuations in reproductive 

hormone levels followed by an eventual decline (Harlow et al, 2012) is associated with poor 

sleep. Forty to 60% of perimenopausal women report sleep disturbances and insomnia 

(Baker et al. 2015; Joffe et al., 2010; Moline et al., 2004; Polo-Kantola 2011). The 

menopausal transition is also associated with increased frequency of self-reported problems, 

such as falling and staying asleep (Kravitz et al., 2008), and reduced total sleep time 

(Lampio, Saaresranta, Polo, & Polo-Kantola, 2013). Levels of follicular stimulating 

hormone may play a role in sleep quality, as they are positively related to waking after sleep 

onset, number of awakenings, and arousals in perimenopausal women without sleep 

complaints (De Zambotti et al., 2015a). This association is independent of age, body mass 

index and HFs. However, studies using PSG recordings do not consistently report 

objectively measured sleep disruptions in menopausal women. For example, Young and 

colleagues (2003a) observed lower sleep satisfaction in peri- and post-menopausal women 

compared to pre-menopausal women, but demonstrated better sleep architecture, as 

indicated by better sleep efficiency (% time in bed actually asleep), more SWS, and less N2. 

Similarly, other studies either report better sleep patterns in postmenopausal women (e.g. 

Sharkey et al., 2003), or no disruptions in PSG recordings in peri- and postmenopausal 

women (Shaver et al., 1988). One possibility is that objectively-measured sleep disruptions 

during menopause are related to the occurrence of vasomotor symptoms, including HFs. Hot 

flashes are characterized by an intense sensation of heat, followed by sweating and skin 

vasodilation (De Zambotti et al., 2014; Freedman, 2014). Menopausal women with insomnia 

are more likely to have HFs, and the presence of HFs predicts the number of PSG-

awakenings (Baker et al., 2015). De Zambotti and colleagues (2014) reported that 

menopausal women with insomnia exhibit an average of 3.5 HFs per night, with the majority 

(64%) resulting in awakenings that lasted about 16 min. The time women spent awake 

following a HF is negatively associated with sleep efficiency (time spent in sleep over time 

spent in bed), and positively associated with waking after sleep onset. These findings are 

consistent with previous reports (e.g. Kravitz et al., 2008), including one demonstrating an 

association between severe HFs and chronic insomnia in peri and postmenopausal women 
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(Ohayon, 2006). There is also evidence that the menopausal transition is associated with an 

increased risk of developing sleep-disordered breathing (Young et al., 2003b).

The most convincing evidence for a role of ovarian hormones in sleep comes from hormone 

therapy (HRT) studies. Postmenopausal women with HRT have a reduced latency to fall 

asleep (Moe et al., 2001; Schiff et al., 1979), and fewer nighttime awakenings (Erlik et al., 

1981; Polo-Kantola et al., 1999; Scharf et al., 1997; Thompson & Oswald, 1977) and 

wakefulness (Montplaisir et al., 2001; Thompson and Oswald, 1977). E2 given for 8 weeks 

to peri- and postmenopausal women is associated with reduced self-reported insomnia 

symptoms and improved sleep quality (Ensrud et al., 2015). In addition, Moe et al (2001) 

reported that night blood draws result in greater sleep disruption for postmenopausal women 

without HRT compared to women on HRT. However, a number of studies reported no 

benefit of HRT on sleep (Young et al. 2003; Pickett et al., 1989; Purdie et al., 1995; 

Kalleinen et al., 2008). It is possible that HRT’s beneficial effects on sleep are only observed 

in some women. For instance, HRT alleviates sleep complaints in women that experience 

HFs. Joffe and colleagues (2013) examined the impact of pharmacologically-induced 

menopause on HFs and sleep in young women (~27 years old). Administration of a 

gonatrotropin-releasing hormone agonist (GnRHa, leuprolide acetate) reduced levels of E2 

to those observed in postmenopausal women, and resulted in HFs in 69% of participants, 

with the number of HFs correlating with sleep disturbances, as measured by waking after 

sleep onset, number of awakenings, and percent time spent in N1. Other studies also support 

these findings (e.g. Kravitz et al., 2008; Polo-Kantola et al., 1998a, 1999). Further, HRT 

might improve sleep in women experiencing depressive symptoms, as was demonstrated in a 

recent study (Lampio, Saaresranta, Engblom, Polo, & Polo-Kantola, 2016). This is a 

particularly important point, given that risk for depression is 30% to three times greater 

during the menopausal transition compared to the premenopausal stage (as reviewed by 

Maki et al., 2010), and poor sleep has been shown to be a predictor of depressive symptoms 

during perimenopause (Avis et al., 2001; Freeman et al., 2004; Joffe et al., 2011).

1.3 Sleep in female animals

There is considerable evidence that sex and ovarian hormones influence sleep in rodents. 

However, while studies in humans suggest that women sleep longer than men (Bixler et al., 

2009; Ohayon et al., 2004; Tonetti et al., 2008), female rodents appear to spend less time in 

sleep states than males, including less NREM in mice (Ehlen et al., 2013; Franken et al., 

2006; Paul et al., 2006), and REM in rats (Fang and Fishbein, 1996; Yamaoka, 1980). 

Rodents also demonstrate sex differences in sleep patterns, as female rodents experience 

higher delta power (Paul et al., 2006) than males. Several studies have shown that ovarian 

hormones modulate sleep behavior in female rodents and contribute to this sex difference. 

For example, proestrous, the phase when both E2 and P are elevated, is associated with 

decreased time in both REM and SWS (Hadjimarkou et al., 2008), and increased fragmented 

sleep (Schwierin et al., 1998) during the dark phase of the light-dark cycle. Ovariectomy 

abolishes both the fluctuations in sleep behavior across the estrous cycle (Mong et al., 2016), 

and the sex difference (Koehl, Battle, & Meerlo, 2006; Paul et al., 2006). E2 replacement in 

ovariectomized (OVX) rats reduces REM (Cusmano et al., 2014; Deurveilher et al., 2013; 

Schwartz and Mong 2011, 2013) and SWS (Deurveilher et al., 2013) during the dark phase. 
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Similar results are reported in mice (Koehl, Battle, & Turek, 2003; Paul et al., 2006, 2009). 

E2 also influences recovery from SD. When using an acute total SD procedure limited to the 

first 6 hr of the light phase, increased SWA and reduced sleep fragmentation was observed 

during the subsequent 6 hr (Schwierin et al., 1998). While recovery from SD is unaffected 

by estrous phase (Schwierin et al., 1998), it is enhanced by E2. Deurveilher and colleagues 

(2009) demonstrated enhanced REM during recovery from SD in rats that received 

continuous E2 replacement. A subsequent study demonstrated that continuous E2 and P 

replacement resulted in increased duration of REM and NREM sleep episodes, and decrease 

in brief awakenings during recovery sleep (i.e. during dark phase; Deurveilher, Rusak, & 

Semba, 2011). In middle-aged OVX rats, these hormones increase NREM-associated delta 

power during recovery from SD, suggesting that ovarian hormones enhance sleep intensity 

(Deurveilher et al., 2013). While these data suggest that E2 replacement facilitates recovery 

from SD, Schwartz and Mong (2013) showed that this enhancement is restricted to sleep 

occuring during the light phase of the light-dark cycle. In that study, estradiol benzoate (EB) 

replacement enhanced REM during the light phase, when rats spent most of their time 

asleep, but suppressed REM during the dark phase. Together, these data provide strong 

evidence that estrogens modulate sleep in female rats. While much of the evidence suggests 

that sleep is reduced by E2, the direction of the effect depends on the time of day, with E2 

facilitating sleep during the light phase, when rats spend most of their time asleep, and 

increasing wakefulness during the dark phase when rats sleep less. Since rats are nocturnal 

with polyphasic sleep patterns, which differ from the consolidated sleep patterns of humans, 

research in diurnal animals may better model the effects of E2 on sleep in humans. We 

recently conducted a preliminary study (Gervais, Viechweg, et al., 2016) on the effects of E2 

on sleep patterns in the common marmoset (Callithrix jacchus), a small primate with 

consolidated sleep patterns, who spends 85% of the dark phase of the light/dark cycle in 

sleep (Hoffmann et al., 2012). We found that E2 replacement was associated with improved 

sleep quality and reduced number of arousals in two middle-aged OVX marmosets, 

suggesting that E2 enhances sleep in this diurnal primate. These preliminary results need to 

be confirmed with a larger sample size, but suggest that the female marmoset is a useful 

model for further investigating the mechanisms by which ovarian hormones may improve 

sleep in women.

2. Selective aspects of cognition are sensitive to ovarian hormones

Ovarian hormones also affect cognitive function in females across the adult lifespan. Several 

extensive reviews are already available on this topic (Frick et al., 2015; Galea et al., 2016; 

Hamson, Roes, & Galea, 2016; Maki & Henderson, 2012; Maki, 2013; Sherwin & Henry, 

2008). Our goal here is not to replicate this work but rather to emphasize main aspects of 

cognition that are both sensitive to ovarian hormones and modulated by sleep (as described 

in the next section). While several studies examine the impact of ovarian hormones loss on 

global measures of cognitive impairment (e.g. Mini Mental Status Exam), we focus on 

studies that examine specific cognitive abilities, as the impact of ovarian hormones on 

cognition is domain specific. We review findings from humans, non-human primates (NHP), 

and rodents implicating E2 in prefrontal cortex (PFC)-dependent cognition before switching 

to abilities that involve the medial temporal lobe (MTL), which includes the hippocampus 
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(HPC), perirhinal cortex (PRh), entorhinal cortex (EC), and parahippocampal cortex. For 

many abilities described below, age and reproductive stage influence the direction of results 

and efforts were made to review such findings separately when possible. A summary of the 

findings for each ability are presented in Table 1.

2.1 Attention

2.1.1 Women.—Studies in either naturally or surgically postmenopausal women report 

inconsistent effects of HRT on attention, with some observing no effect (Alhola et al., 2006; 

Gleason et al., 2015; Keenan et al., 2001; Polo-Kantola et al., 1998b; Wolf et al., 2005), 

while others report improved performance on at least one measure of attention in HRT users 

(Castonguay et al., 2015; Smith, Giordani, Lajiness-O’Neill, & Zubieta, 2001; Schmidt et 

al., 1996; Fedor-Feyberg, 1977). In premenopausal women, divided attention appears 

unaffected by menstrual phase. However, sustained attention is reduced during the luteal 

relative to the follicular phase, and is negatively correlated with P levels (Pletzer et al., 

2014).

2.1.2 Female animals.—Inconsistent effects of hormones are also seen in animal 

studies. Continuous E2 replacement was found to enhance selective attention as measured by 

the 5-choice serial reaction time test (5-CSRTT), which requires animals to identify which 

of 5 locations on a screen was briefly illuminated. E2 was beneficial in young OVX rats 

(Bohacek and Daniel, 2010) and in older rats when given immediately, but not 5 months 

following OVX (Bohacek & Daniel, 2010). Another method for indexing selective attention 

in rats (Escobar et al., 2002), is latent inhibition (LI), which occurs when pre-exposure to a 

conditioned stimulus (CS) impairs subsequent learning of the CS- unconditioned stimulus 

(US). Latent inhibition is impaired when conditioning occurs during proestrous (Quinlan et 

al., 2010) or when OVX rats are treated with continuous (17–37 pg/ml) or cyclic (implant: 

28 pg/ml, serum, and acute E2:10 mg/kg, s.c. every 4 days) E2 replacement (Almey et al., 

2013). While these results appear paradoxical, it is possible that the latent inhibition 

impairment is due to enhanced Pavlovian fear conditioning rather than impaired attention to 

the CS during pre-exposure.

A few studies have examined the effects of ovarian hormones on attention in NHPs. While 

one study in young OVX monkeys found no effect of EB replacement on a Cued Search 

task, where they had to select a target stimulus among distractors in the presence of valid or 

invalid cues (Lacreuse et al., 2009), other studies using a modified Posner task, that 

measures the ability to shift visual spatial attention, provided consistent evidence for positive 

effects of HRT, in young (Voytko, 2002), middle-aged (Voytko et al., 2009) or older OVX 

macaques (Kohama et al., 2016). Taken together, the results from human and animal studies 

indicate that the effects of ovarian hormones may depend on the type of attentional process 

being investigated.

2.2 Executive function

Executive function encompasses a wide range of processes which require the maintenance 

and manipulation of working memory (WM) and which can be conceptualized as updating, 

task switching, response inhibition, and decision making (Chudasama & Robbins, 2006). 
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Given the multifaceted aspect of executive functioning, this section reviews each ability 

separately.

2.2.1 Updating (non-spatial) working memory

2.2.1.1 Women.: Evidence from postmenopausal women taking HRT suggests that ovarian 

hormones modulate non-spatial WM, so long as the task involves manipulating or updating 

information in WM. Estrogen replacement therapy (ERT) has no effect on simple WM tasks, 

like the Digit Span-forward test in postmenopausal women (Alhola et al., 2006; Castonguay 

et al., 2015; Duff and Hampson, 2000; Gleason et al., 2015; Keenan et al., 2001; Polo-

Kantola et al., 1998b; Schmidt et al., 1996), and inconsistent findings are reported for the 

backward subtest, with some reporting benefits (e.g. Duff and Hampson, 2000), and others 

finding no effect (Castonguay et al., 2015; Gleason et al., 2015). Beneficial effects of ERT 

are observed on more challenging non-spatial WM tasks, including the N-back test & Digit 

Ordering tests (Castonguay et al., 2015; Duff and Hampson, 2000; Keenan et al., 2001; Krug 

et al., 2006). If HRT begins later in life, the benefits are not always observed. For example, 

on the self-ordered pointing test, one study reported no benefit of HRT in older 

postmenopausal women (Janowsky, Chavez, & Orwoll, 2000), while a second study reported 

superior performance following 2 months of ERT (Baker et al., 2012). Verbal N-back 

performance is unaffected by menstrual phase, although there is evidence for differences in 

patterns of activity during the task, with reduced left hemispheric activity during the late 

follicular phase (Joseph, Swearingen, Corbly, Curry, & Kelly, 2012).

2.2.1.2 Female animals.: Complex WM tasks used with animals typically involve 

functioning of both the HPC and PFC and so any impact of hormones can reflect effects on 

either region. The delayed recognition span test (DRST, Moss, Killiany, Lai, Rosene, & 

Herndon, 1997) requires monkeys to track a new stimulus in an increasing array of serially 

presented stimuli and can be administered in a spatial (identical stimuli, see section 2.3.1) or 

non-spatial form (color, object or face stimuli). In two studies using young OVX rhesus 

monkeys, E2 replacement was ineffective in modulating object-DRST performance 

(Lacreuse & Herndon, 2003; Lacreuse et al., 2009), but impaired performance on the face 

version (Lacreuse & Herndon, 2003), consistent with an effect of E2 on the processing of 

socioemotional information (e.g., Derntl et al., 2008).

In young OVX rodents, enhanced performance on non-spatial versions of the delayed spatial 

alternation task has been observed following continuous low E2 replacement (Wide, 

Hanratty, Ting, & Galea, 2004). However, impaired performance is seen following higher 

doses in young, middle-aged and older OVX rats (Wang, et al., 2008, 2009; Wide et al., 

2004).

These studies indicate some evidence for beneficial effects of E2 on challenging non-spatial 

WM tasks in postmenopausal women and female rodents, but the effects depend on the E2 

dose (rats), and age of subjects (women).
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2.2.2. Task switching.

2.2.2.1. Women.: Task switching involves shifting attention from an initially important 

feature to another that subsequently conveys information about where to respond correctly to 

obtain a reward (Butts et al., 2013). There is accumulating evidence that ovarian hormones 

improve performance and/or modulate neural activation associated with the Wisconsin Card 

Sorting Test (WCST). A seminal study used PET to examine brain activation patterns 

(regional cerebral blood flow) associated with WCST performance in premenopausal 

women treated with a GnRHa and add-back of E or P. While no change in performance was 

observed, the normal dorsolateral PFC (DLPFC) activation was suppressed with GnRHa 

treatment and restored following E or P administration (Berman et al., 1997). Similarly, a 

recent study using fMRI demonstrated increased activity of the DLPFC during task 

switching in early postmenopausal women taking cyclic HRT. In addition, higher activity 

was associated with better performance (Girard et al., 2017). Another study in 

postmenopausal women (~60 years old), found that ERT was associated with an increased 

number of categories completed on the WCST (Schmidt et al., 1996) and HRT use improved 

performance on the number-letter task (Castonguay et al., 2015). Yet, at least one study in an 

elderly sample reported no benefit of 3 weeks ERT on set shifting (e.g. Duka et al., 2000).

2.2.2.2. Female animals.: E2 has beneficial effects on WCST-like performance in aged 

female macaques when treatment occurs soon after OVX. E2 with or without P given 

immediately following OVX improves performance in macaques (~20 years old; Voytko et 

al., 2009), but no benefit is observed 9 years after OVX (Lacreuse, Chhabra, Hall, & 

Herndon, 2004). Benefits are also seen on set shifting in female rats (Lipatova et al., 2016). 

However, E2 does not improve all aspects of task switching, as it has been shown to impair 

reversal learning in middle-aged marmosets (Lacreuse et al., 2014), and aged OVX rats 

(Gibbs et al., 2011). These studies demonstrate task-specific benefits of P or E2 on WCST 

and set-shifting in women and in animals, so long as treatment occurs soon after hormone 

loss. Overall, studies in women indicate positive effects of P or E2 on task switching, but 

animal studies have been sparse and inconsistent.

2.2.3 Response inhibition.

2.2.3.1 Women.: This ability can be measured by tasks that require inhibiting a prepotent 

response, such as the Stroop test, the Go/No-Go task or the Stop-Signal task. Improved 

performance on the Stroop test was observed in postmenopausal women given acute ERT 

(Krug et al., 2006). However, other studies do not report an effect (Alhola et al., 2006; Baker 

et al., 2012; Castonguay et al., 2015; Duka et al., 2000; Polo-Kantola et al., 1998b; Wolf et 

al., 2005). In the Go/No-Go task, subjects must produce a response for one stimulus type 

and inhibit responding for other stimuli, whereas in the Stop-Signal task they must inhibit 

responding following the appearance of a Stop signal after the response is already initiated. 

Impaired response inhibition was observed during the follicular phase in premenopausal 

women on both the Stop-Signal and Go/No-Go tasks (Colzato et al., 2010; Reimers et al., 

2014), with higher E2 levels predicting poorer response inhibition (Colzato et al., 2010).

2.2.3.2 Female animals.: The effect of E2 replacement in female rodents suggests that age 

modulates the impact of E2 on response inhibition. Using the differential reinforcement of 
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low rates of responding (DRL) task, which requires withholding a response for a specified 

duration, Wang and colleagues (2008, 2011) reported deficits in young and middle-aged 

OVX rats taking E2 replacement. E2 had no effect in older rats (Wang et al., 2011). One 

study in baboons reported a female advantage but no effect of menstrual phase on the Stop-

Signal task (Lacreuse, Gullstrand, & Fagot, 2016). Overall, there is little evidence for a 

benefit of HRT on response inhibition in menopausal women or older female rats. High E2 

appears detrimental to response inhibition in both premenopausal women and young female 

rats.

2.2.4 Decision making.—There is also limited evidence that ovarian hormones 

modulate decision making in humans. The delayed discounting task, which assesses the 

ability to forego an immediate small reward for a larger delayed reward, is sensitive to the 

menstrual cycle: the tendency to prefer smaller immediate rewards drops from menses (low 

E2) to the follicular phase (high E2). The change in preference was negatively correlated 

with E2 levels, suggesting that higher E2 levels are associated with a decreased bias for 

immediate reward (Smith, Sierra, Oppler, & Boettiger, 2014). Delayed discounting 

performance in rats is also enhanced by higher E2 levels (Uban et al., 2012). These benefits 

of high E2 levels on decision making appear task specific, as no effect is seen in young or 

postmenopausal women on the Iowa Gambling task, in which participants must select the 

advantageous deck in a set of 4 decks with different pay-offs (Reavis & Overman, 2001). 

Additional studies are needed to draw firm conclusions about the effects of E2 on decision 

making.

2.3. Spatial memory

2.3.1 Spatial working memory.

2.3.1.1. Women.: There is convincing evidence that ovarian hormones are important for 

spatial memory, including spatial WM in many species. Although spatial WM involves both 

PFC and HPC function, the effects are often attributed to local effects of E2 on HPC 

function (Frick et al., 2015; Hamson et al., 2016). Elevated E2 levels are associated with 

better performance on a spatial WM task in premenopausal women (Hampson and Morley, 

2013). HRT use is associated with improved spatial WM performance in one study of 

postmenopausal women (age: 45–65 years old; Duff & Hampson, 2000), but not in another 

study of older hysterectomized women (mean age 71; Schiff, Bulpitt, Wesnes, & Rajkumar, 

2005).

2.3.1.2. Female animals.: Data from NHPs generally demonstrate beneficial effects of 

ovarian hormones on spatial WM, but point to a clear effect of age. Although young female 

macaques show decrements in spatial-DRST performance during the periovulatory period of 

the cycle (high E2; Lacreuse, Verreault, & Herndon, 2001), E2 replacement has no effect in 

young OVX monkeys (Lacreuse & Herndon, 2003; Lacreuse et al., 2009). Delayed 

Response (DR) performance is also unaffected by OVX (up to 24 month post-surgery; 

Voytko, 2000), and E2 replacement in young monkeys (Voytko, 2000; Hao et al., 2007). 

Opposing effects are observed in older macaques. One of the first observations that 

endocrine status modulated cognitive performance in older macaques was that peri/

postmenopausal females were impaired on the DR relative to age-matched premenopausal 
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females (Roberts et al, 1997). Performance also correlated with estrogen metabolite levels, 

providing more direct support for the role of estrogens in this memory task. Later studies 

confirmed that HRT benefits DR (Rapp et al., 2003; Kohama et al, 2016), and spatial-DRST 

performance in older OVX macaques (Lacreuse et al., 2002). Conflicting results are reported 

in some studies, however, with either no effect of HRT in middle-aged macaques (Voytko, 

Higgs, & Murray, 2008), impairments following E2 replacement in OVX marmosets 

(Lacreuse et al., 2014) or enhanced performance in long-term OVX compared to age-

matched intact females (~12 years; Lacreuse, Herndon, & Moss, 2000).

There is strong evidence for the beneficial effects of E2 on spatial WM in rodents, and 

unlike NHPs, this effect is independent of age. Enhanced spatial WM in young rats is 

observed during proestrous on the win-stay version of the radial-arm maze (RAM) task 

(Pompili et al., 2010). Spatial WM of young rats is also improved following E2 replacement 

in a number of studies using the delayed matching-to-position (DMP) task (Gibbs, 2007; 

Sandstrom & Williams, 2001; Velázquez-Zamora et al., 2012), the win-stay version of the 

RAM at a low dose (Holmes et al., 2002) or the win-shift version of the RAM following 

retention delays between 3–5 hr (Luine et al., 1998; but see Galea et al., 2001). In addition, 

Intra-cranial infusions of E2 into the medial PFC or dorsal HPC enhances win-shift 

performance in OVX rats (Sinopoli et al., 2006). In middle- and older-aged rats (12 & 17-

month old), continuous E2 replacement given immediately, but not 5 months post OVX is 

associated with better performance on the win-shift version of RAM test with a 2.5 hr 

retention delay (Daniel et al., 2006). Other studies using cyclic administration of E2 alone, 

or combined with P report comparable results on the delayed spatial alternation, and 

D(N)MP tasks (Gibbs, 2000; Markowska & Savonenko, 2002). Thus, there is strong 

evidence that E2 enhances spatial WM in both humans, rodents, and older NHPs.

2.3.2 Spatial reference memory.—Spatial reference memory in rodents has most 

often been assessed with the fixed platform condition of the watermaze, where they have to 

remember the location of the hidden platform across trials. Fixed platform watermaze 

performance is not improved by endogenous fluctuations of ovarian hormones (Berry & 

McMahan, 1997; Pompili et al., 2010; Warren & Juraska, 1997), yet systemic and intra-HPC 

infusions of E2 following OVX enhances both the acquisition and consolidation of the task 

(McLaughlin, 2008; Packard & Teather, 1997a,b), so long as the treatment is given either 

before or immediately after acquisition. Indeed, E2 replacement reduces swimming distance 

in young and middle-aged rats and E2 levels correlate with performance, but E2 has no 

effect in old OVX rats (Talboom et al., 2008). Fixed platform acquisition is also unaffected 

by long-term OVX in older rats (Markowska & Savonenko, 2002).

E2 replacement also protects performance on the novel-object-in-place preference test 

(NOIP, aka object placement test, as reviewed by Tuscher, Fortress, Kim, & Frick, 2014), 

which tests rat’s ability to detect a novel object and improves place learning in both young, 

middle-aged, and old rats (as reviewed by Korol & Pisani, 2015) by acting locally in the 

HPC (Zurkovsky et al., 2007). While a bias to use a spatial strategy when solving a maze is 

associated with proestrous in rats (Korol et al., 2004), spatial bias was associated with the 

late luteal phase, when P levels are high in a recent study in premenopausal women (Hussain 

et al., 2016).
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Elevated physiological E2 levels have no effect on reference memory errors on the RAM 

(Fader, Johnson, & Dohanich, 1999; Holmes et al., 2002; Luine et al., 1998; Pompili et al., 

2010), and long-term spatial memory (6 & 24 hr; McLaughlin et al., 2008), and but 

supraphysiological levels of E2 (10 μg/day) appear to increase the number of reference 

memory errors on the RAM (Galea et al., 2001).

2.4. Verbal memory in women

Verbal memory is also dependent on HPC function (Sherwin and Grigorova, 2011). There is 

a reliable female advantage in this ability (Maki, 2015), and modest effects of E2 are seen 

(for a review, see Maki, 2015; Sherwin, 2011). Studies examining verbal memory across the 

menstrual cycle provide inconsistent results (for a review, see Poromaa & Gingnell, 2014). 

Conflicting findings are also observed in premenopausal women who have experienced 

ovarian failure. For example, GnRHa given to premenopausal women resulted in verbal 

memory deficits in one study (Craig et al., 2008), but had no effect in others (Guerrieri et al., 

2016; Owens et al., 2002). However, perimenopausal women demonstrate impaired verbal 

memory (Greendale et al., 2009; Weber et al., 2013), as do women that experienced surgical 

menopause (Sherwin, 1988). E2 replacement given to naturally (Baker et al., 2012; 

Castonguay et al., 2015; Jacobs et al., 1998; Kampen & Sherwin, 1994; Keenan et al., 2001; 

Maki, Zonderman, & Resnick, 2001; Resnick et al., 1998) and surgically menopausal 

women (Phillips & Sherwin, 1992b) improves verbal memory performance in some, but not 

all studies (e.g. Baker et al., 2012; Gleason et al., 2015; Henderson et al., 2016). Therefore, 

while verbal memory is affected during the menopausal transition, HRT does not have 

consistent effects on this ability.

2.6 Visual recognition memory

Visual recognition memory (RM) tasks assess the ability to recognize a familiar from a 

novel object. There is some support for a modulatory role of E2 in visual recognition 

memory (RM). Premenopausal women with acute ovarian suppression (via GnRHa) are 

impaired on the delayed matching-to-sample (DMS) task (Craig et al., 2010). In a sample of 

postmenopausal women, Resnick and colleagues (1998) examined the effect of ERT on 

regional cerebral blood flow during a visual RM test. ERT users had better RM and greater 

blood flow in the right parahippocampal gyrus (including the EC, PRh, and 

parahippocampal cortex) and inferior parietal regions, left visual association, and anterior 

thalamic regions. However, not all studies report benefits of HRT use on visual RM (e.g. 

Alhola et al., 2006; Sundermann et al., 2006). In one study, enhancements in olfactory, but 

not visual, RM were observed in women with AD taking ERT (Sundermann et al., 2006).

In NHPs, limited support exists for a role of E2 in RM. In younger NHPs, DMS task 

performance is not influenced by endogenous ovarian hormones following brief retention 

delays (Kromrey, Czoty, & Nader, 2015; Lacreuse et al., 2001), although a small decrement 

in performance is observed during the periovulatory stage following a 30-s delay (Lacreuse 

et al., 2001). E2 replacement in young OVX macaques also has no effect on D(N)MS task 

performance (Lacreuse & Herndon, 2003; Lacreuse et al., 2009), and only small beneficial 

effects are found in older females (Lacreuse et al., 2002; Rapp et al., 2003; Voytko et al., 

2008).
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A larger body of evidence supporting a role of E2 in RM comes from rodent studies. Most 

studies use the novel-object preference test (NOP test; also referred to as the Novel-Object 
Recognition task, the Object Recognition Memory task, and the Spontaneous Object 
Recognition task). Visual RM is indexed by the animals’ exploration time. When rodents 

spend more time investigating novel than a previously-presented object, it is assumed that 

they recognize the familiar object. Several studies demonstrate that increased exploration of 

novel objects (i.e. novelty preference) following retention delays ranging from 5-min to 3 

days is associated with elevated levels of E2, and that OVX eliminates this novelty 

preference (as reviewed by Galea et al., 2016; Luine, 2015, Tuscher et al., 2014). This 

beneficial effect of E2 on novelty preference is robust, and is observed in naturally cycling 

animals, following acute, cyclic, and continuous E2 replacement (for a review, see Galea, 

Frick, Hampson, Sohrabji, & Choleris, 2016; Luine, 2015; Tuscher et al., 2014), and 

following intra-HPC (Boulware, Heisler, & Frick, 2013; Fernandez et al., 2008; Frick et al., 

2015; Lewis, Kerr, Orr, & Frick, 2008; Phan et al., 2012; Tuscher et al., 2016) and intra-PRh 

(Gervais et al., 2013, Gervais, Hamel et al., 2016) infusions of E2. However, novelty 

preference and DNMS tasks may measure different aspects of RM. In the same group of rats 

that demonstrated enhanced novelty preference following cyclic and intra-PRh infusion of 

E2 (Gervais et al., 2013, Gervais, Hamel et al., 2016), reduced accuracy on the DNMS task 

was observed. The vehicle-treated animals in these studies failed to demonstrate novelty 

preference, yet performed better on the DNMS task, indicating that rats can have intact RM 

and still fail to demonstrate a preference for the novel object. Thus, findings from NOP tasks 

should be interpreted with caution. Taken together, these studies indicate that the beneficial 

effects of E2 on visual RM are small or inexistent in primates, but consistently positive in 

rodents, unless when acting locally in the PRh.

2.6 Summary

Spatial memory and strategy are shown to be sensitive to E2 across species. However, these 

effects depend on task parameters (Korol & Pisani, 2015), dose (Galea et al., 2016; Hamson 

et al., 2016; Sherwin, 2011), age (Galea et al., 2016; Hao et al., 2007, Lacreuse, 2006), and 

the timing of treatment initiation (Galea et al., 2016; Hamson et al., 2016; Maki, 2013; 

Sherwin & Henry, 2008. Studies in rats demonstrate that this enhancement is likely due to 

local effects of E2 on the dorsal HPC. However, the PFC also contributes to spatial WM, and 

so the beneficial effects of E2 can result in local effects in either region. In addition to the 

strong evidence for the benefits of E2 on spatial WM, reference memory and spatial strategy, 

studies also show important morphological and physiological effects on the HPC that can 

promote these abilities, including increased volume (Lord et al., 2008), synaptogenesis, 

neurogenesis, protection after brain injury, and increased excitatory neurotransmission (as 

reviewed by Galea et al., 2016; Frick et al., 2015; McEwen & Milner, 2017).

There is also evidence that ovarian hormones modulate certain abilities dependent on the 

PFC, including complex nonspatial WM, and task switching (but not reversal learning). 

However, age, timing and type of hormone regimen, and task demands influence whether 

benefits are observed. While there are inconsistent findings regarding the impact on 

attention, it may be due to task parameters. Ovarian hormones do not appear to influence 

simple WM tasks, and only a limited number of studies have examined decision making. It 
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is currently unclear why these hormones might impact some of these abilities and not others, 

so additional studies, particularly in animals, are needed to clarify these differences. 

Emerging evidence shows the beneficial effects of E2 on the mPFC of rodents (as reviewed 

by Frick et al., 2015; Frankfurt & Luine, 2015), and PFC in NHPs (Bailey et al., 2011; Hara 

et al., 2015; Hao et al., 2006, 2007; Wang et al., 2013), consistent with the idea that E2 may 

influence some of these ability through direct effects on the PFC. E2 is also an important 

modulator of neurotransmitters such as dopamine, acetylcholine, serotonin, glutamate and 

GABA, all of which can influence PFC-dependent cognition. For instance, E2 has enhancing 

or impairing effects on non-spatial WM depending on dopamine levels (Jacobs and 

D’Esposito, 2011), and dopaminergic drugs can influence the effect of E2 on LI (Almey et 

al., 2013). Clearly, more attention is needed to understand the discrepant results reported in 

the literature.

A small number of studies show that the PRh is also impacted by E2 (Fonseca et al., 2013; 

Gervais et al., 2015). This structure, which is important for visual RM (Brown and Aggleton, 

2001), is emerging as an important early marker for AD, as neurofibrillary tangles develop 

in the PRh before moving onto the HPC (Braak & Braak, 1991), and atrophy has been 

shown to occur in preclinical AD (Wolk et al., 2017). Thus, additional focus is needed on 

extrahippocampal structures and the abilities that depend on them, particularly in the context 

of understanding E2’s role in cognitive aging.

Next, we present evidence that the cognitive abilities that are modulated by ovarian 

hormones are also impacted by sleep. Unfortunately, most of these studies were conducted 

in either mixed-sex samples where biological sex was not factored in, or in the case of 

animal studies, male-only samples. Therefore, it is currently unknown whether the impact of 

sleep on cognitive function might be sex-specific. A summary of findings is presented in 

Table 2.

3. Impact of sleep on cognitive functioning

The relation between sleep and cognition has been extensively studied in humans, as 

described in several excellent reviews (Alhola & Polo-Kantola, 2007; Killgore, 2010; 

Walker, 2008; Walker, 2009). The impact of chronic sleep loss on neural, and glial function 

in the CNS, which is described elsewhere (Zhao et al., 2017), provides potential mechanisms 

through which sleep may impact cognition. Sleep disturbances produce deficits in a wide 

range of cognitive domains including attention, executive function, and memory. This 

section provides a brief review of the literature on the impact of sleep on these specific 

cognitive domains, as they have also been shown to be sensitive to ovarian hormones. The 

goal of this section is to link the evidence that sleep impacts the same abilities that are 

enhanced by ovarian hormones. This will provide a basis for the next section, which 

discusses the few studies that have addressed whether ovarian hormones may impact 

cognition in part via effects on sleep.

First, we review data demonstrating the impact of SD on abilities that depend on the PFC 

(including WM, attention, and executive function). Unless otherwise stated, SD procedures 

below will involve acute total SD, which is the most common experimental model of sleep 
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loss (Alhola and Polo-Kantola, 2007). In the second section, we cover the importance of 

sleep in memory consolidation of abilities that dependent on structures of the MTL. 

Whenever possible, we characterize the associated neural substrates, emphasize aging 

effects and incorporate studies in animal models (reviewed in McCoy & Strecker, 2011). It is 

important to note that animal studies examining the relationships between sleep and 

cognition are still very sparse, and particularly lacking in NHPs. The mechanisms by which 

sleep affects cognition have been reviewed in detail elsewhere (Abel et al., 2013; Tononi and 

Cerelli, 2014) and will not be emphasized here. One influential theory, the synaptic 

homeostasis hypothesis, proposes that the fundamental function of sleep is the restoration of 

synaptic and cellular homeostasis, by which the costly synaptic strengthening that is 

required during wake is normalized during sleep (Tononi and Cirelli, 2014). Synaptic 

renormalization during sleep, largely through SWA, could explain many of the benefits of 

sleep on learning and memory.

3.1 Sleep and Attention

Attention regulation is a key function of sleep. It is well known than one effect of SD is the 

inability to pay attention effectively the following day. Multiple aspects of attention are 

affected, including vigilant (sustained) attention, reaction time, divided attention and 

selective attention, but the effects on sustained attention, which are the most robust and 

reliable, are thought to account for most of the deficits.

In the psychomotor vigilance test (PVT), a classic test to measure vigilant attention, SD 

results in an overall slowing of responses, increases of errors of commission and long lapses, 

as well as unpredictable behavior (as reviewed by Lim and Dinges, 2008). Even one night of 

partial sleep restriction (PSR) results in slower responses on the PVT (Rossa et al., 2014). 

Interestingly, male rats exposed to 24h of SD (Christie et al., 2008), or 28 hr of PSR 

(Deurveilher, Bush, Rusak, Eskes, & Semba, 2015) show strikingly similar results. However, 

attention appears to recover following longer PSR (52–148 hr; Deurveilher et al., 2015). The 

attentional performance of rats is also impaired on the 5-CSRTT, as shown by longer 

response latencies and increased number of errors and omissions after 4, 7, and 10 h of SD 

(Cόrdova et al., 2006).

Studies on divided attention, the ability to perform concurrent tasks, or on selective 

attention, the ability to focus cognitive on particular targets (locations, objects, or features) 

while ignoring irrelevant distracters, have produced more mixed results. Lim and Dinges’ 

(2010) meta-analysis of 70 studies revealed that short term (< 48h) SD causes deficits in a 

wide range of cognitive tasks, but that most deficits can be attributed to impairments in 

sustained attention. Not unexpectedly, neuroimaging studies focusing on brain activation 

after acute SD show decreased brain activation in the fronto-parietal attention network (PFC 

and intraparietal sulcus) and in the salience network (insula and medial frontal cortex), as 

well as increased thalamic activation (meta-analysis of 11 neuroimaging studies Ma, Dinges, 

Basner, & Rao, 2015). With regard to aging, consistent reports indicate that the effects of SD 

on attentional tasks are actually greater in young adults than older adults (Adam et al., 2006; 

Duffy et al., 2009; Sagaspe et al., 2012) perhaps due to the effective recruitment of 

compensatory mechanisms in the aged brain (Sagaspe et al., 2012).
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3.2 Sleep and Executive Function

It remains unclear whether tasks that require higher level cognitive capacities, such as tasks 

of executive function are specifically affected by sleep disturbances or whether the deficits 

can be explained by deficits in attentional resources.

3.2.1 Non-spatial working memory (WM).—Both accuracy and response times are 

significantly affected by SD in several WM tasks (Lim and Dinges, 2010). However, there is 

evidence that the non-executive aspects of the tasks, such as simple reaction time, can 

account for most of the deficits (Tucker et al., 2010, 2011).

3.2.3 Task switching.—Some studies report profound deficits on tasks requiring mental 

flexibility and attention shifts, such as the WCST in patients with sleep disorders (as 

reviewed by Fulda and Schulz, 2003). While one night of SD does not affect WCST in a 

healthy population (Binks et al., 1999), 5 nights of PSR do (Herscovitch et al., 1980), 

suggesting that a minimum amount of sleep loss is necessary to detect effects on task 

switching. Other studies find that sleep-deprived individuals showed greater switch costs, 

indicating that sleep loss reduces the capacity to modify behavior rapidly and flexibly to 

changing demands (Heuer et al., 2004; Jennings et al., 2003). Task switching in rats, as 

measured by the attentional set shifting task, is also sensitive to sleep loss (i.e. 3 and 24 hr of 

sleep fragmentation; McCoy et al., 2007).

3.2.4 Response inhibition.—Drummond and colleagues (2006) reported impaired 

ability to withhold a prepotent response (No-Go stimuli) on a Go/No-Go task following 23, 

32 and 55 hr of SD. Interestingly, only the 55 hr test session also impaired the ability to 

respond correctly to “Go” stimuli, suggesting that inhibitory control was specifically 

impaired despite relatively intact attention. In a mixed-sex sample, 4 nights of PSR (6 hr/

night) negatively impacted the rate of false alarms on the Go/No-Go task (Demos et al., 

2016). The impact of sleep loss on response inhibition has been shown in both young and 

older people (Sagaspe et al, 2012). A cumulative effect of several nights of PSR may be 

necessary to detect an effect, as one night of PSR did not alter performance on an emotional 

version of the Go/No-Go task (Rossa et al., 2014).

Response inhibition is also disrupted by sleep loss in rats. Kamphuis and colleagues (2016) 

showed that PSR (4 hr sleep/day) for 7 days resulted in decreased behavioral control and 

increased bursts of responses on the DRL task. The importance of sleep on response 

inhibition in rats is also observed using the Go/No-go task (Borquez et al., 2014).

3.2.5 Decision making.—The impact of SD on decision making is described in detail in 

a recent review. For example, Killgore and colleagues (2006) used the Iowa gambling task to 

compare patterns of decision making at baseline and following 49 hr of SD. Under normal 

conditions, subjects learned to avoid large payoff high-risk decks in favor of decks providing 

modest but more consistent payoffs. After two nights of sleep loss, however, these same 

subjects tended to prefer riskier selections, despite the long-term losses that resulted. This 

same pattern was replicated in a second study with SD extended to 75 hr (Killgore et al., 

2007). Interestingly, administration of caffeine did not reverse the deficit, suggesting that the 
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impairments were not simply due to deficits in alertness and sustained attention. 

Performance during a gambling task was also influenced by SD in a young mixed-sex 

sample (Fraser, Conduit, & Phillips, 2013), with participants failing to reduce their bets 

when risk increased and time to respond decreased. Other studies also show detrimental 

effects of sleep loss on decision making and risk taking (e.g. Killgore, Kamimori, & Balkin, 

2011; Lei et al., 2016; Rossa et al., 2014), although some studies fail to find a difference (for 

a review, see Womack et al., 2013, Harrison & Horne, 2000). For example, 4 nights of PSR 

had no effect on performance on the Balloon Analogue Risk Task (Demos et al., 2016). 

Others argue for dissociable effects on different decision-making tasks (e.g. Womack et al., 

2013), including Libedinsky and colleagues (2013), who observed impairments on effort 

discounting, but not delay discounting in the same subjects.

3.3 Sleep and Medial Temporal Lobe-dependent Memory

Sleep impacts all aspects of long-term memory (Mander et al., 2016), including acquisition, 

consolidation, and retrieval. In humans, SWS is important for the consolidation of 

declarative memories (Peigneux, et al., 2001; Rauchs, Desgranges, Foret, & Eustache, 2005; 

Smith, 2001), which involves the HPC and other structures of the MTL (Preston and 

Eichenbaum, 2013). The consolidation process allows for initially unstable memories to be 

integrated into a network of more stable memory representations.

3.3.1 Spatial Memory—Numerous studies indicate an important role of SWS in spatial 

memory consolidation. HPC neurons that are active while rodents explore a novel 

environment are called place cells (O’Keefe and Nadel, 1978). Wilson and McNaughton 

(1994) recorded the activity of place cells in rats during acquisition of a spatial task, and 

again during subsequent sleep. The same cells that fired together during encoding tended to 

fire together during subsequent SWS, and cells that did not fire during training tended to not 

fire during SWS. This pattern of activity is consistent with the idea that HPC activity during 

SWS may be involved in spatial memory consolidation. Using cerebral blood flow 

measurements, Peigneux and colleagues (2004) demonstrated similar results in humans, in 

that hippocampal areas that were activated during a virtual route learning task were re-

activated during subsequent SWS. They also showed that this re-activation during SWS 

correlated positively with the degree of improvement on the retention test. A subsequent 

study provides further support for a role of HPC activity during SWS in spatial memory 

consolidation. Rasch and colleagues (2007) trained participants on a spatial (HPC-

dependent) and a finger sequence tapping (HPC-independent) task during simultaneous 

presentation of an odor cue as a contextual stimulus. Participants then slept in a MRI 

scanner, and functional images and sleep parameters were taken. The contextual odor or a 

control odor were presented during SWS or REM. Significant HPC activation was revealed 

during SWS when the contextual odor was presented. There was no effect during REM, nor 

during presentation of the control odor. Re-presentation of the contextual odor during SWS 

led to enhanced performance on the spatial memory, but had no effect on the finger tapping 

task. Together, these studies support the role of SWS in spatial memory consolidation.

Very few studies have examined the relationships between sleep and spatial memory in 

NHPs, but they support a beneficial effect of sleep in spatial performance. For example, 
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Haley and colleagues (2009) reported a negative association between sleep latency/wake 

bouts and performance on a spatial navigational task in older female macaques. Similar 

results were obtained by Rahman and colleagues (2013) in a study examining the impact of 

SD on spatial memory in mouse lemurs. They trained male mouse lemurs on a modified 

version of the Barnes maze, and tested them 24 hr later. Subjects received 8 hr of SD either 

before training, or immediately before testing. Only those that received SD immediately 

before testing demonstrated impaired performance. However, SD following learning may 

also disrupt spatial memory consolidation. Smith and colleagues (1998) selectively disrupted 

REM sleep in male rats following training on the win-stay version of the RAM. Rats 

received 4 hr of SD either immediately, 4 hr, or 8 hr after training. Only those that received 

SD immediately following training demonstrated impaired performance, although the 

deficits were restricted to reference memory errors. Spatial reference memory impairments 

are also observed following sleep loss in other studies (e.g. Ward et al., 2009), while spatial 

WM deficits can be seen following 5–7 days of intermittent hypoxia (Row et al., 2007). 

NOIP performance of male rodents is impacted by SD occurring soon after encoding in 

some (e.g. Inostroza et al., 2013; Ishikawa et al., 2014), but not all studies (i.e. Palchykova et 

al., 2006). Taken together, these studies demonstrate that sleep is important for spatial 

memory, with some evidence suggesting that reference memory may be more sensitive to 

sleep loss than working memory.

3.3.2 Verbal memory—Studies have addressed the impact of sleep on verbal memory. 

For example, Drummond and colleagues (2000) showed that 35 hr of SD impaired free 

recall, but not recognition relative to a rested state. While these results suggest that sleep loss 

negatively impacts recall, Lutsey and colleagues (2016) reported no association between 

objective sleep parameters (sleep fragmentation and sleep duration) on changes in 

performance on recall in individuals with obstructive sleep apnea. Positive effects of sleep 

was reported in two studies, where sleep immediately after verbal learning of word pairs 

protected memory from interference (Sheth and colleagues 2012; Ellenbogen et al., 2009). 

In addition, Maki and colleagues (2008) found that sleep duration and objective measures of 

HFs predicted performance on the delayed logical memory test, but not the California Verbal 

Learning Test, in midlife women. Another study demonstrated that SWS and not REM 

influenced word recognition judgements. A mixed-sex sample was presented with a word 

list prior to sleep dominated by either SWS, which occurs during early sleep or REM, which 

occurs during late stages of sleep. PSG recordings were measured and confirmed differences 

in SWS and REM during the early and late sleep phases. The authors demonstrated that 

SWS-dominated early sleep improved recollection-based judgements (recognition with 

episodic memory), but had no effect on familiarity-based judgements (recognition without 

episodic memory; Daurat et al., 2007). Similar effects were reported by Drosopoulos and 

colleagues (2005). One important limitation to the procedures used in these studies is that 

the time of day varied between the learning and test phases for the early and late sleep 

conditions. Nesca and Koulak (1994) demonstrated that sleep immediately following 

learning improved word recognition compared to delayed sleep. However, when the learning 

and testing phases were matched by time of day, no differences emerged, suggesting that the 

effect of sleep on performance may result from effects of circadian timing.
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3.3.3 Visual recognition Memory—There are limited studies examining the impact of 

sleep on object RM. While 4 hr of SD is insufficient to impact object recognition memory in 

male mice (Ishikawa et al., 2014), 6 hr immediately following object exploration does 

prevent novelty preference (Palchykova et al., 2006). Studies in humans (mixed-sex) also 

provides support for the idea that sleep impacts visual RM (e.g. Acheson et al., 2007; 

Mograss et al., 2009). Additional studies, particularly in NHPs are needed to further 

investigate potential effects of sleep on visual RM.

3.4 Summary

SD has detrimental effects on abilities dependent on the PFC, including sustained attention, 

task switching, and response inhibition. Decision-making is impaired by short-term SD, but 

there is some suggestion that it can recover following chronic PSR. While deficits are also 

observed on non-spatial WM tasks, they likely result from reduced sustained attention.

Memory abilities dependent on structures in the MTL are influenced by sleep. SWS appears 

to be particularly important for spatial memory consolidation. Too few studies have been 

conducted on verbal memory and visual RM to draw any firm conclusions.

A few limitations from these studies are worth noting. In most cases, an acute total SD 

procedure was used, when chronic PSR and chronic sleep fragmentation are more 

representative of sleep problems experienced by individuals with sleep complaints/disorders. 

Chronic PSR is common, affecting approximately 30% of adults in the US (Olds et al., 

2010). As such, it is crucial to correctly model these sleep patterns to strengthen our 

understanding of the impact sleep on these abilities. A second limitation is the paucity of 

animal studies, especially in NHPs. Such studies are needed to clarify the effects of sleep on 

specific cognitive abilities and identify the underlying mechanisms. A third limitation 

concerns the lack of attention paid to the biological sex of the participants. Among the 

studies reviewed above, most animal studies used exclusively males. In human studies, only 

a handful reported the biological sex of participants and even when they did, the effect of sex 

was not analyzed. As described by Hamson and colleagues (2016), there are sex differences 

in many cognitive abilities, with a male advantage emerging for many spatial abilities and a 

female advantage for many verbal abilities. These sex differences can obscure the effects of 

sleep on these abilities, making the omission of sex as a biological variable a major problem 

of these studies.

4. Ovarian hormones, sleep and cognition in females

Sleep disturbances may have a differential impact on cognitive function in men and women, 

due in part to the influence of sex hormones. However, very few studies to date have 

addressed this issue. The few reports available point to a sex difference in the impact of 

sleep on cognition. Genzel and colleagues (2012) provide evidence that sleep may enhance 

HPC-dependent memory in men, but not in women. They tested a young mixed-sex sample 

on a paired-associates test following a nap and compared performance to a group that did 

not take a nap. The women in the sample were in the menses phase of their cycle. Improved 

memory performance, and increased spindle activity during the nap was observed in men, 

but not women (Genzel et al., 2012). Studies using SD suggest that selective aspects of 
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cognition are more sensitive to sleep disturbances in young men than women. In one study 

(Binks et al., 1999), estimated IQ (as measured by a short-form of Wechsler Adult 

Intelligence Scale-Revised) following 35 hr of SD was better in young women than men 

following SD, despite men scoring higher than women in the non-SD condition. However, 

sex differences were not observed for any other ability assessed, including sustained 

attention, word fluency, and cognitive flexibility. Another study reported poorer sustained 

attention (as indicated by slower response times) in young men than women following 38 hr 

of SD (Corsi-Cabrera et al., 2003). To our knowledge, the role of sex hormones in these sex 

differences has not been objectively investigated. However, the results are consistent with a 

protective role of ovarian hormones against SD induced-cognitive dysfunction in adult 

women.

Consequently, the loss of ovarian hormones following menopause could have a greater 

impact on sleep and thereby cognition in women than in men. Unfortunately, very few data 

are available to test the validity of this hypothesis. In a recent study in participants over 65, 

Chiu, and colleagues ( 2016) reported greater impairment in global functioning (as measured 

by the Mini Mental Status Exam) in women than men but the impact of sleep on cognition 

was not greatly affected by biological sex. Among men that had cognitive impairment, 

snoring, difficulty breathing during sleep, and prolonged sleep were related to scores on the 

Mini Mental Status Exam, whereas in women, only prolonged sleep was associated with 

cognitive scores. Additional studies are needed to determine whether the relationships 

between sleep and cognition differ between men and women and whether they change with 

age.

Findings from studies examining the effects of ovarian hormones on sleep and cognition in 

women have been inconsistent. Alhola and colleagues (2005) compared postmenopausal 

(58–72 years old) HRT users to non-users on attention, visual episodic memory, and 

visuomotor performance. Rebound sleep following SD enhanced performance on all 

abilities, however HRT use did not impact the effect of sleep on performance. Similarly, 

HRT use in postmenopausal women (59–72 years old) did not influence sustained attention 

following a longer 40 hr of SD (Karakorpi et al., 2006). In contrast, a study by Saletu (2003) 

reported that HRT (E valerate alone or in combination with a progestin) for two months 

improved subjective and objective sleep quality (trend) as well as sustained attention and 

processing speed in postmenopausal women. Cognitive processing capacity and perceptual 

processing resources were also improved by the combination therapy. The studies reporting 

negative results used small sample sizes and focused on a limited set of cognitive domains. 

While sleep is important for sustained attention, which was assessed in these studies, other 

abilities including response inhibition, task switching, decision making, and spatial memory 

are also sensitive to sleep. Further research is needed to address whether ovarian hormones 

regulate the impact of sleep on these abilities.

There is a paucity of animal studies focusing on the relations between ovarian hormones, 

sleep and cognition. A recent study in female rats suggests that ovarian hormones do 

regulate the effect of SD on MTL-dependent cognition, as assessed by performance on the 

fixed-platform watermaze task. Subjects included female rats that were OVX or gonadally 

intact. One set of subjects received 72 hr of SD, whereas the rest slept normally. SD 
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impaired performance, but only in the OVX animals (Esmaeilpour et al., 2015). These 

results suggest that circulating levels of ovarian hormones may protect against the 

detrimental effects of SD on spatial memory consolidation. Despite these interesting results, 

no other study to our knowledge has addressed the impact of ovarian hormone loss on the 

association between sleep and memory in animals.

If ovarian hormones benefit sleep and protect the young female brain against the detrimental 

effects of sleep disturbances on cognition, the loss of ovarian hormones at menopause would 

be expected to have adverse consequences, first by increasing sleep disturbances and second 

by potentiating their impact on cognitive function. As reviewed in section 2, increased sleep 

disturbances are observed at menopause. In addition, accumulating evidence suggests that 

sleep dysfunction may accelerate age-related cognitive decline and potentially conversion to 

AD (Mander et al, 2016; Musiek & Holtzman, 2016).

Sleep dysfunction, characterized by reduced SWS quality, duration and increased sleep 

fragmentation, becomes more prevalent with advancing age (Ohayon et al, 2004). However, 

there are large individual differences in the type and severity of age-related sleep 

deterioration (Vitiello, 2009), which suggest the existence of underlying pathology such as 

AD in certain individuals (Mander et al, 2016). People with mild cognitive impairment or 

AD have much more severe sleep impairments than cognitively normal older adults (Hita-

Yanez et al, 2012; Prinz et al, 1982, Westerberg et al, 2012). Importantly, sleep dysfunction 

may occur in the very early stages of AD, often before the appearance of any other 

symptoms (Mander et al, 2016; Lim et al, 2013) and the magnitude of sleep disruption 

correlates with disease severity. Cerebrospinal fluid (CSF) Tau and β-amyloid (Aβ) protein 

levels can predict the degree of decreased SWS, sleep efficiency and REM sleep in AD 

patients (Liguori et al, 2012). In addition, CSF orexin levels, which promote wakefulness, 

are associated with sleep deterioration, Tau levels, and cognitive decline in AD patients 

(Liguori et al, 2014). This and parallel evidence from murine models of AD (e.g., Kang et al, 

2009, Roh et al, 2014) have led to the hypothesis that sleep dysfunction may have a causal 

role in the pathophysiology of AD (Mander, 2016; Musiek and Holtzman, 2016). 

Importantly, recent data indicate that SWS sleep increases the rate of Aβ clearance by 

twofold in the mouse brain, suggesting one mechanism by which sleep may benefit brain 

function (Xie et al, 2013).

Postmenopausal women are at greater risk for AD than men of the same age, and sex 

differences in longevity only partially explain this higher risk (Snyder et al., 2016). Further, 

surgical removal of the ovaries prior to natural menopause increases the risk of dementia (as 

reviewed by Au et al., 2016). Ovarian hormone loss during the menopausal transition has 

been hypothesized to contribute to the increased risk for AD (Janicki and Schupf, 2010). The 

data reviewed in sections 2, 3 and 4, suggest that sleep may be a key component linking 

estrogen loss to dementia risk. Whether the loss of ovarian hormones during menopause 

increases the risk of dementia in vulnerable women by specifically disrupting sleep certainly 

warrants experimental investigation. A proposed model illustrating potential pathways 

through which ovarian hormone loss may contribute to specific cognitive impairments and 

dementia is presented in Figure 1.
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Conclusion

Strong support exists for a modulatory role of ovarian hormones on sleep across species. 

Sleep problems in women emerge during puberty and fluctuate across the menstrual cycle. 

The menopausal transition is associated with decreased sleep quality and among those that 

also experience HFs or depressive symptoms, more PSG-awakenings. HRT improves sleep 

in some, but not all studies. More robust evidence comes from animal studies, where E2 

modulates both spontaneous sleep, and recovery from SD.

Ovarian hormones also modulate certain cognitive abilities in adult females, and the 

direction of effects is influenced by several factors including age, duration of hormone loss, 

hormone regimen (acute, continuous, cyclic), and task demands (Galea et al., 2016; Hamson 

et al., 2016; Korol & Pisani, 2015). Generally, elevated levels of ovarian hormones are 

beneficial for sustained attention, manipulation of WM, task switching, and spatial, verbal, 

and recognition memory. Local effects of E2 in certain brain regions may also influence 

whether performance is enhanced or impaired.

Numerous studies demonstrate that sleep impacts cognition, including sustained attention, 

task switching, response inhibition, decision making, and memory. Most of these studies 

include male-only samples or mixed-sex samples where biological sex was not considered as 

a variable. The few studies that have examined sex differences suggest that sleep has a 

greater impact on cognition in young men than in young women. These as well as rodent 

data suggest that circulating ovarian hormones may protect the female brain from the 

detrimental effects of sleep disruptions.

Such a relationship would have important implications for age-related cognitive decline and 

dementia in postmenopausal women. Indeed, sleep disturbances increase during the 

menopausal transition. In vulnerable women, sleep disruptions may exacerbate cognitive 

decline, increase inflammation and synaptic damage and eventually set in motion a cascade 

of events leading to neurodegeneration (Mander et al, 2016; Musiek and Holzman, 2016). 

Although it is now well established that HRT does not improve cognitive symptoms in 

women with AD (Henderson, 2014), it is still unclear whether HRT given decades before the 

disease onset may provide cognitive benefits later in life (Henderson, 2014). Importantly, the 

onset of sleep dysfunction may precede AD symptomology and pathology by several years. 

Sleep may therefore provide a new target for therapeutic intervention. The development of 

appropriate animal models will be crucial to determine whether interventions that restore 

sleep patterns may protect the female brain from neurodegeneration later in life and whether 

HRT may provide therapeutic benefits.

List of abbreviations

5-CSRTT 5-choice serial reaction time test

Aβ β-amyloid

AD Alzheimer’s Disease

DMP delayed matching-to-position
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DNMP delayed nonmatching-to-position

DMS delayed matching-to-sample

DNMS delayed nonmatching-to-sample

DR delayed response

DRL differential low rates of responding task

DRST delayed recognition span test

E estrogens

E2 17β-estradiol

EB estradiol benzoate

EC entorhinal cortex

EEG electroencephalography

ERT estrogen replacement therapy

FSH Follicular stimulating hormone

GnRHa gonadotropin-releasing hormone agonist

HFs hot flashes

HPC hippocampus

HRT hormone replacement therapy

MTL medial temporal lobe

N1-N3 stages 1–3 non-rapid eye movement

NHP non-human primate

NOIP novel object-in-place preference

NOP novel-object preference

NREM non-rapid eye movement

OVX ovariectomized

P progesterone

PFC prefrontal cortex

PRh perirhinal cortex

PSG polysomnogram

PSR Partial sleep restriction
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PVT Psychomotor vigilance test

RAM radial-arm maze

REM rapid eye movement

RM recognition memory

SD sleep deprivation

SWA slow-wave activity

SWS slow-wave sleep

WCST Wisconsin card sorting test

WM working memory
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Highlights

• Sleep is modulated by ovarian hormones in females across adult lifespan

• Ovarian hormones also influence certain cognitive domains

• Sleep loss impacts similar abilities, but biological sex often not considered

• Animal models are crucial for understanding the benefits of sleep on 

cognition
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Figure 1. 
Schematic model illustrating proposed effects of hormone deprivation resulting from 

menopause on sleep disruptions and selective cognitive deficits. Sleep disruptions may 

include reduced sleep quality/efficiency, or fragmented sleep, and in more severe cases, 

development of sleep disorders (i.e. insomnia or sleep disordered breathing). Since sleep is 

also known to modulate these cognitive abilities, it is proposed that loss of ovarian hormones 

can further exacerbate cognitive impairments via development of sleep disorders/fragmented 

sleep. There is some evidence that symptomatic women are more vulnerable. Extended 

periods of sleep disruptions could increase inflammation and synaptic damage leading to 

further cognitive deficits. Note: Aβ = β-amyloid; SDB = sleep-disordered breathing; WM = 

working memory.
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Table 1.

Summary of the effects of ovarian hormones on cognition

Ability Sample Characteristics Younger Older References

Attention

Humans

Premenopause F > L Pletzer et al., 2014

Postmenopause (55–65 years) HRT > no HRT Castonguay et al., 2015

Postmenopause HRT > no HRT Fedor-Feyberg, 1977;

Postmenopause (∼60 years) ERT > no ERT Schmidt et al., 1996

Postmenopause (∼65 years) HRT > no HRT Smith et al., 2001

Postmenopause (∼53 years) HRT = no HRT Gleason et al., 2015

Postmenopause (47–65 years) ERT = no ERT Polo-Kantola et al., 1998b

Postmenopause (53–72 years) HRT = no HRT Alhola et al., 2006

Postmenopause (∼53 years) HRT = no HRT Keenan et al., 2001

Postmenopause (58–75 years) HRT = no HRT Wolf et al., 2005

Animals

OVX macaques (6–11 years) OVX < intact
E2 > vehicle

Voyko 2002

OVX macaques (7–16 years) E2 = Vehicle Lacreuse et al., 2009

OVX macaques (∼20 years) E2 > No E2 Voytko et al., 2009

OVX macaques (18–25 years) E2 > No E2 Kohama et al., 2016

17-mo OVX rats E2 > No E2 Bohacek & Daniel, 2010

Intact rats Proestrous < 
Estrous/Diestrous

Quinlan et al., 2010

E2 < Vehicle Almey et al., 2013

Non-spatial working memory

Humans

Maintenance

Digit Span 
forward:

Postmenopause HRT = no HRT Alhola et al., 2006; Castonguay et 
al., 2015; Duff & Hampson, 2000; 
Gleason et al., 2015; Keenan et al., 
2001; Polo-Kantola et al., 1998b; 
Schmidt et al., 1996
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Ability Sample Characteristics Younger Older References

Manipulation/Updating

Early F = Late F Joseph et al., 2012

Postmenopause (∼56 years) HRT > no HRT Duff & Hampson, 2000

Postmenopause (55–65 years) HRT = no HRT
HRT > no HRT

Castonguay et al., 2015

Postmenopause (∼53 years) HRT = no HRT Gleason et al., 2015

Postmenopause (∼53 years) HRT > no HRT Keenan et al., 2001

Postmenopause (50–65 years) 3 days ERT > no ERT Krug et al., 2006

Postmenopause (∼69 years) HRT = no HRT Janowsky et al., 2000

Postmenopause (∼70 years) ERT > no ERT Baker et al., 2012

Animals

Object-
DRST
Face-DRST

OVX macaques (6–9 years) EE2 = no EE2
EE2 < no EE2

Lacreuse & Herndon, 2003

Object-
DRST

OVX macaques (7–16 years) EB = no EB Lacreuse et al., 2009

OVX rats Low EB > no EB
Mod-high EB < no 
EB

Wide et al., 2004

OVX rats High E2 < no E2 Wang et al., 2008

OVX rats High E2 < no E2 High E2 < no E2 Wang et al., 2009

Task switching

Humans

Premenopause GnRHa = GnRHa + 
E/P
GnRHa: ↓ DLPFC
GnRHa + E/P: ↑ 
DLPFC

Berman et al., 1997

Postmenopause (∼60 years) ERT > no ERT Schmidt et al., 1996

Postmenopause (55–65 years) HRT > no HRT Castonguay et al., 2015

Early postmenopause (∼52 
years)

↑DLPFC in HRT users; 
correlated with performance

Girard et al., 2017

Postmenopause (∼65 years) 3-mo ERT = no ERT Duka et al., 2000

Animals
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Ability Sample Characteristics Younger Older References

OVX macaques (∼20 years) HRT > no HRT Voytko et al., 2009

OVX macaques (∼24 years) EE2 = no EE2 Lacreuse et al., 2004

Young OVX rats E2 > no E2 Lipatova et al., 2016

reversal 
learning

OVX marmosets (3–5 years) High E2 < No E2 Lacreuse et al., 2014

reversal 
learning

OVX rats (21–22 mo) E2 < no E2 Gibbs et al., 2011

Response inhibition

Humans

Go/No-Go, 
Stop-Signal

Premenopause F < L Colzato et al., 2010; Reimers et 
al., 2014

Stroop 
Interference

Postmenopause (50–65 years) 3 days ERT > no ERT Krug et al., 2006

Stroop 
Interference

Postmenopause HRT = no HRT Alhola et al., 2006; Baker et al., 
2012; Castonguay et al., 2015; 
Duka et al., 2000; Polo-Kantola et 
al., 1998b; Wolf et al., 2005

Animals

Stop Signal Premenopausal baboons O = L Lacreuse et al., 2016

DRL OVX rats High E2 < no E2 Wang et al., 2008

DRL OVX rats High E2 < no E2 E2 = no E2 Wang et al., 2011

Decision making

Humans

Premenopause & postmenopause 
(∼55 years)

Menses = mid L ERT = no ERT Reavis & Overman, 2001

Premenopause F > menses Smith et al., 2014

Animals

OVX rats High EB > no EB Uban et al., 2012

Spatial Working Memory

Humans

Premenopause High E2 > Low E2
E2 correlates with 
performance

Hampson & Morley 2013

Postmenopause (∼56 years) HRT > no HRT Duff & Hampson, 2000
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Ability Sample Characteristics Younger Older References

Postmenopause (∼71 years) 3-mo ERT = no ERT Schiff et al., 2005

Animals

Premenopause O < F=L Lacreuse et al., 2001

OVX macaques (6–9 years) EE2 = no EE2 Lacreuse et al., 2003

OVX macaques (7–16 years) E2 = Vehicle Lacreuse et al., 2009

Macaques (6–10 years) OVX = intact
E2 = no E2

Voytko, 2000

Macaques (∼ 10 years) E2 = no E2 Hao et al., 2007

Macaques (20–27 years) Premenopause > peri/
postmenopause

Roberts et al., 1997

OVX macaques (∼22 years) E2 > no E2 Rapp et al., 2003

OVX macaques (18–25 years) E2 > E2/P > No E2 Kohama et al., 2016

OVX macaques (21–24 years) EE2 > no EE2 Lacreuse et al., 2002

OVX macaques (∼20 years) E2 = E2/P = no E2 Voytko et al., 2008

OVX marmosets (3–5 years) High E2 < No E2 Lacreuse et al., 2014

OVX macaques (19–27 years) Long-term OVX > intact Lacreuse et al., 2000

Intact rats Proestrous > estrous Pompili et al., 2010

OVX rats E2 > no E2 Gibbs, 2007; Holmes et al., 2002; 
Luine et al., 1998; Sandstrom & 
Williams, 2001; Velàzquez-
Zamora et al., 2012

OVX rats Win-stay: E2 = no 
E2
Win-shift: E2 < no 
E2

Galea et al., 2001

OVX rats Intra-PFC/HPC E2 
> vehicle

Sinopoli et al., 2006

12-mo old OVX rats E2 > no E2 Daniel et al., 2006

21–25-mo old OVX rats E2+P > no E2+P Gibbs, 2000

13–22-mo old OVX rats OVX < intact E2 > no E2 Markowska & Savonenko, 2002

Spatial reference memory

Animals

Intact rats Proestrous = estrous Berry & McMahan, 1997;
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Ability Sample Characteristics Younger Older References

Intact rats Watermaze: 
Proestrous < estrous
RAM: Proestrous = 
estrous

Pompili et al., 2010

Proestrous < estrous Warren & Juraska, 1997

OVX rats Watermaze: E2 > no 
E2
Y-maze: E2 = no E2

McLaughlin, 2008

E2 > no E2
Intra-HPC E2 > 
vehicle

Packard & Teather, 1997a,b

OVX rats E2 < no E2 Galea et al., 2001

OVX rats E2 = no E2 Fader et al., 1999; Holmes et al., 
2002; Luine et al., 1998;

4, 16, & 24-mo old OVX rats E2 > no E2 E2 = no E2 Talboom et al., 2008

13–22-mo old OVX rats OVX = intact
E2 = no E2

Markowska & Savonenko, 2002

Object placement/NOIP test

Animals

OVX rats E2 > no E2 As reviewed by Tuscher et al., 
2014; McLaughlin et al., 2008

Spatial strategy

Humans

Premenopause Late L > Early F/O Hussain et al., 2016

Animals

Rats Proestrous > estrous
E2 > no E2

E2 > no E2 As reviewed by Korol & Pisani, 
2015; Korol et al., 2004

OVX rats Intra-HPC E2 > 
Vehicle

Zurkovsky et al., 2007

Verbal memory

Humans

Premenopause Inconsistent reports, 
or F = L = Menses

As reviewed by Poromaa & 
Gingnell, 2014

Premenopause GnRHa < cycling Craig et al., 2008

GnRHa = cycling Guerrieri et al., 2016; Owens et 
al., 2002
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Ability Sample Characteristics Younger Older References

Age: ∼45–52 years Peri-/postmenopause/ < 
premenopause

Greendale et al., 2009; Weber et 
al., 2013

Surgically menopausal women 
(36–45 years)

BL > post-surgery Sherwin, 1988

Postmenopause HRT > no HRT Baker et al., 2012; Castonguay et 
al., 2015; Jacobs et al., 1998; 
Kampen & Sherwin, 1994; Keenan 
et al., 2001; Maki, Zonderman, & 
Resnick, 2001; Phillips & 
Sherwin, 1992b; Resnick et al., 
1998

Postmenopause HRT = no HRT Baker et al., 2012; Gleason et al., 
2015; Henderson et al., 2016

Visual recognition memory

Humans

Premenopause GnRHa < cycling Craig et al., 2010

Postmenopause (∼65–67 years) ERT > no ERT Resnick et al., 1998

Postmenopause (∼64 years) HRT = no HRT Alhola et al., 2006

Older AD patients (∼74 years) ERT = no ERT Sundermann et al., 2006

Animals

Premenopause No/brief retention 
delay: F = L
30-s retention delay: 
O < F=L

Kromrey, Czoty, & Nader, 2015; 
Lacreuse et al., 2001

OVX macaques (6–9 years) EE2 = no EE2 Lacreuse & Herndon, 2003

OVX macaques (7–16 years) E2 = Vehicle Lacreuse et al., 2009

OVX macaques (∼20–24 years) HRT > no HRT Lacreuse et al., 2002; Rapp et al., 
2003; Voytko et al., 2008

OVX rats with low E2 Intra-PRh E2 < 
vehicle

Gervais et al., 2013, 2016

Novel object preference

Rats Proestrous > estrous
E2 > no E2
Intra-HPC > vehicle
Intra-PRh > vehicle

Intra-HPC E2 = vehicle As reviewed by: Galea, Frick, 
Hampson, Sohrabji, & Choleris, 
2016; Luine, 2015; Tuscher et al., 
2014

Note: AD = Alzheimer’s Disease; DLPFC = dorsolateral prefrontal cortex; DRST = delayed recognition span test; E2 = 17β-estradiol; EB = 
estradiol benzoate; EE2 = ethinyl estradiol; ERT = estrogen replacement therapy; F = follicular phase; GnRHa = gonadotropin releasing hormone 
agonist; HPC = hippocampus; HRT = hormone replacement therapy; L = luteal; mo = month; O = Ovulatory; P = progesterone; PRh = perirhinal 
cortex; OVX = ovariectomized.
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Table 2.

Summary of the effect of sleep loss on cognition

Ability Sample Characteristics Younger Older References

Attention

Humans

Meta-analysis Deficits seen after 24–48 hr SD As reviewed by Lim & Dinges, 
2010

Mixed sex (∼20 years) 1 night PSR < no restriction Rossa et al., 2014

Young (∼22 years) & old (∼66 years) 
men

Young more impaired than older after 40 hr SD Adam et al., 2006

Young (∼21 years) & old (∼66 years) 
mixed-sex

Young more impaired than older after 24 hr 
SD

Duffy et al., 2009

Young (∼23 years) & older (∼66 
years) men

Young more impaired than older after 40 hr SD Sagaspe et al., 2012

Animals

Age & sex not indicated 24 hr SD < BL Christie et al., 2008

Male rats (∼2-mo old) 28 hr PSR < BL
58–148 hr PSR = BL

Deurveilher et al., 2015

Male rats 4–10 hr SD < no SD Córdova et al., 2006

Non-spatial working memory

Humans

Meta-analysis Deficits seen after 24–48 hr SD As reviewed by Lim & Dinges, 
2010

Mixed-sex (22–38 years) 51–54 hr SD = BL Tucker et al., 2010, 2011

Task switching

Humans

Patients with sleep-related breathing disorders < controls As reviewed by Fulda & 
Schulz, 2003

Mixed sex (∼21 years) 34–36 hr SD = controls Binks et al., 1999

Mixed sex (18–23 years) 5 days PSR < BL Herscovitch et al., 1980

Male (19–32 years) 1 night SD increases shift cost Heuer et al., 2004

Mixed sex (∼22 years) 1 night SD impairs preparatory bias Jennings et al., 2003

Animals
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Ability Sample Characteristics Younger Older References

Young male rats 3/24 hr fragmented sleep < controls McCoy et al., 2007

Response inhibition

Humans

Mixed sex (∼24 years) 23/32/55 hr SD < BL Drummond et al., 2006

Mixed sex (∼37 years) 4 nights of PSR < control Demos et al., 2016

Young (∼23 years) & older (∼66 
years) men

40 hr SD < BL for both groups equally Sagaspe et al., 2012

Mixed sex (∼20 years) 1 night PSR = no restriction Rossa et al., 2014

Animals

Male rats 7 days of PSR < BL Kamphuis et al., 2016

3-mo old male rats SD < sleep Borquez et al., 2014

Decision making

Humans

Mixed sex (∼25 years) 49/75 hr SD < BL Killgore et al., 2006, 2007

Mixed sex (∼21 years) 1 night SD < Rested Fraser et al., 2013

Mixed sex (∼25 years) 51 hr SD = BL
75 hr SD < BL

Killgore et al., 2011

Male (18–28 years) 36 hr SD < RW Lei et al., 2016

Mixed sex (∼20 years) 1 night PSR < no restriction Rossa et al., 2014

Mixed sex (∼37 years) 4 nights of PSR = control Demos et al., 2016

Review Some complex tasks: SD = control As reviewed by Harrison & 
Horne, 1980

Review Majority of studies: SD < control
5 studies: SD = control

As reviewed by Womack et al., 
2013

Mixed sex (18–30 years) ED: 1 night SD < RM
DD: 1 night SD < RM

Libedinsky et al. 2013,

Spatial memory

Humans

Male (18–30 years) HPC activity during SWS resembled 
patterns during encoding of learning task

Peigneux et al., 2004

Mixed sex (20–30 years) SWS and not REM involved in spatial 
memory consolidation

Rasch et al., 2007
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Ability Sample Characteristics Younger Older References

Animals

9-mo old male rats HPC activity during SWS resembled 
patterns during encoding of novel 
environment

Wilson & McNaughton, 1994

Female macaques (19–25 years) 4 hr PSD Perfor
manc
e 
negati
vely 
relate
d to 
sleep 
latenc
y/
wake 
bouts

Haley et al., 2009

Male mouse lemurs (2–3 years) Spatial learning: 8 hr SD = control
Spatial retrieval: 8 hr SD < control

Rahman et al., 2013

Male rats (6–7 mo old) Reference memory: 4 hr PSD 0–4 hr post-learning < 
control
Working memory: 4 hr PSD 0–4 hr post-learning = 
control

Smith et al., 1998

Male rats Reference memory: 24 hr sleep fragmentation < 
controls
Working memory: 24 hr sleep fragmentation = 
controls

Ward et al., 2009

Male rats Working memory: 5–7 days of intermittent hypoxia < 
controls

Row et al., 2007

Male rats (1–1.5 mo) 4 hr SD immediately post-learning < control
4 hr SD 4–8 hr post-learning = controls

Ishikawa et al., 2014

Male rats Sleep following encoding enhances spatial memory Inostroza et al., 2013

Male mice 6 hr SD immediately post-learning = control
6 hr SD 4–8 hr post-learning = controls

Palchykova et al., 2006

Verbal memory

Humans

21–35 years, sex not indicated Free recall: 35 hr SD < rested state
Recognition: 35 hr SD = rested state

Drummond et al., 2000

Mixed sex (∼61 years) sample with 
obstructive sleep apnea

No 
associ
ation 
betwe
en 
object
ive 
sleep 
and 
word 
recall

Lutsey et al., 2016

Mixed sex (∼23 years) Sleep immediately after learning > wake Sheth et al., 2012
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Ability Sample Characteristics Younger Older References

18–22 years. Sex unspecified Sleep immediately after learning > wake Ellenbogen et al., 2009

Female (∼53 years) Sleep 
durati
on & 
HFs 
predic
t 
delay
ed 
LM, 
but 
not 
CVL
T

Maki et al., 2008

Mixed sex sample (20–30 years) Recollection: SWS > REM
Familiarity: SWS = REM

Daurat et al., 2007

Mixed sex sample (19–28 years) Recollection: SWS > wake
Familiarity: SWS/REM = Wake

Drosopoulos et al., 2005

University students. Age & sex 
unspecified

Sleep immediately post learning = Delayed 
sleep

Nesca & Koulak, 1994

Visual recognition memory

Humans

Mixed sex (∼22 years) 1 night SD < control Mograss et al., 2009

Mixed sex (18–36 years) 1 night SD < control Acheson et al., 2007

Animals

Male rats (1–1.5 mo) 4 hr SD immediately post-learning = control
4 hr SD 4–8 hr post-learning = controls

Ishikawa et al., 2014

Male mice 6 hr SD immediately post-learning < control
6 hr SD 4–8 hr post-learning = controls

Palchykova et al., 2006

Note: BL = baseline; CVLT = California verbal learning test; DD = delay discounting; DLPFC = dorsolateral prefrontal cortex; DRST = delayed 
recognition span test; ED = effort discounting; HF = hot flash; hr = hour; LM = Logical memory; mo = month; PSD = paradoxical sleep 
deprivation; PSR = partial sleep restriction; SD = sleep deprivation; REM = rapid-eye movement; RW = rested wakefulness; SOP = self-ordered 
pointing test; SWS = slow-wave sleep.
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