Simulation that demonstrates the benefit of coded-aperture-based deconvolution. (a1)–(a5) Masked pupil functions obtained by masking the same pupil function with the full circular aperture and coded apertures under different rotation angles (0°, 45°, 90°, 135°), their associated OTFs along one spatial frequency axis, and captured images. Each coded aperture is able to shift the null regions of the OTF to different locations. (b) Comparison between the OTF of a circular-aperture-masked pupil function and the summed OTFs of the circular- and coded-aperture-masked pupil functions. Null regions in the frequency spectrum are mitigated in the summed OTF, which allows all the frequency content of the sample within the band limit to be captured with the imaging system. The OTF of an ideal pupil function is also plotted. (c1) Deconvolved image with only a circular aperture shows poor recovery with artifacts corresponding to the missing frequency contents in the OTF’s null regions. (c2) A recovered image using one coded aperture only. Reconstruction is better than (c1) but still has some artifacts. (c3) A recovered image using circular and multiple coded apertures is free of artifacts since it does not have missing frequency contents.