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Abstract

We present a dynamic vascular tumor model combining a multiphase porous medium framework 

for avascular tumor growth in a consistent Arbitrary Lagrangian Eulerian formulation and a novel 

approach to incorporate angiogenesis. The multiphase model is based on Thermodynamically 

Constrained Averaging Theory and comprises the extracellular matrix as a porous solid phase and 

three fluid phases: (living and necrotic) tumor cells, host cells and the interstitial fluid. 

Angiogenesis is modeled by treating the neovasculature as a proper additional phase with volume 

fraction or blood vessel density. This allows us to define consistent inter-phase exchange terms 

between the neovasculature and the interstitial fluid. As a consequence, transcapillary leakage and 

lymphatic drainage can be modeled. By including these important processes we are able to 

reproduce the increased interstitial pressure in tumors which is a crucial factor in drug delivery 

and, thus, therapeutic outcome. Different coupling schemes to solve the resulting five-phase 

problem are realized and compared with respect to robustness and computational efficiency. We 

find that a fully monolithic approach is superior to both the standard partitioned and a hybrid 

monolithic-partitioned scheme for a wide range of parameters. The flexible implementation of the 

novel model makes further extensions (e.g., inclusion of additional phases and species) 

straightforward.
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1. Introduction

Cancer is an extraordinarily complex disease. Nowadays it is clear that a combined, 

interdisciplinary effort from all natural sciences is necessary to de-convolute its complexity, 

advance our understanding of the illness and promote the discovery of new cures [1, 2]. The 
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term “transport oncophysics”, recently coined in [3], describes such a “physical sciences 

lens” view of cancer as a disease of multiscale mass transport deregulation, which might 

provide a common background for physicists and doctors. Numerous mathematical models 

have been proposed to investigate the basic principles underlying cancer progression and 

predict the outcome of therapies. The comprehensive reviews [4, 5, 6, 7] classify these 

models into three major categories, namely discrete, hybrid and continuum models. Here, we 

want to focus on the latter ones, which are especially suited for larger scale systems 

governed by continuum mechanics. Hence, partial Differential equations can be formulated 

for the evolution of cancer-related variables such as cell volume fractions or oxygen 

concentrations, which are typically modeled as continuous fields [4].

Specifically, the more recent continuum multiphase models are more promising than 

previous simpler single-phase approaches. They take into account that the tumor micro-

environment consists of multiple phases, such as Different cell genotypes, interstitial fluid 

(IF) and the extracellular matrix (ECM). Consequently, a more detailed and natural 

description with at least one solid and one liquid phase [4] characterizes these approaches. In 

[4, 8] they are roughly categorized into models based on mixture theory or 

Thermodynamically Constrained Averaging Theory (TCAT) [9, 10, 11]. Mixture theory 

models [12, 13] lack a stringent connection between microscale pore mechanics and 

macroscale closure relations [9]. By contrast, TCAT offers a consistent, rigorous and flexible 

framework for a systematic development of macroscale formulations from well-known 

microscale relations. Therefore, the current work will build on the multiphase tumor growth 

model derived from TCAT and introduced in [14], which will be described briefly hereafter.

The original version of the model [14] consists of four phases, one solid phase, the ECM, 

and three fluid phases, the interstitial fluid (IF), tumor cells (TC) and healthy cells (HC). 

The ECM is a mesh-like, porous structure composed mainly of collagen and elastin fibers. In 

its voids the IF flows and cell migration takes place. The IF is a mixture of water and 

biomolecules, e.g., nutrients or waste products and permeates the entire domain. TC and HC 

are only present in the regions with cancerous and healthy tissue, respectively. Additionally, 

two species are considered, namely oxygen diffusing in the IF and necrotic tumor cells 

which are modeled as inert. Constitutive relations for tumor growth, necrosis and nutrient, 

i.e., oxygen consumption have been formulated in [14]. Subsequently, the interactions of the 

fluid phases have been investigated in [15, 16] and a deformable ECM has been introduced 

in [17]. Recently, the model has been enhanced with cell lysis and matrix deposition [18].

The models mentioned above allow to study avascular tumor growth and hence exclude a 

crucial phase in the progression of tumors, namely angiogenesis, which is the formation of 

blood vessels from a pre-existing vasculature [19]. While it also occurs in other growth 

processes, it is of fundamental importance in cancer because tumors without their own 

vascular network are usually confined to a certain size beyond which they cannot grow any 

further and will become necrotic [20, 21, 22]. Without their own (neo-)vasculature tumors 

lack nutrients and oxygen. Under these conditions tumor cells produce so-called tumor 

angiogenic factors (TAF), which diffuse and stimulate the process of angiogenesis. Hereby, 

endothelial cells (EC), which line the existing blood vessels, migrate from the pre-existing 

vasculature towards the tumor [23]. The EC proliferate, sprout and finally form a new 
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vascular network supplying the tumor with oxygen and other nutrients. However, this tumor 

vasculature is structurally and functionally abnormal since tumor vessels are tortuous, 

dilated and have uneven diameter leading to chaotic blood flow inside the tumor [20, 24, 

25]. In addition, the vessels have a high permeability. This leakiness has been identified as a 

reason for elevated interstitial pressure of tumors because of increased outflow from the 

vessels [26, 27]. Together with inefficient drainage due to non-functional lymph vessels, this 

will cause a pressure increase in the interstitial fluid, which might hamper or even inhibit the 

success of drug delivery [25, 26, 28]. Nowadays, it is well-established that tumor growth is 

angiogenesis-dependent [21]. Also metastasis, i.e., the spreading of cancer to distinct 

regions of the body, may occur through the neovasculature developed by angiogenesis. 

Antiangiogenic cancer therapies to prevent angiogenesis, tumor progression and the 

metastatic spread are under research [19, 22], which underlines that angiogenesis is an 

essential trait in cancer progression shared by most tumor types [29]. Hence, modeling the 

vascular stage including angiogenesis is of utmost importance since together with metastatic 

tumor growth it is the clinically relevant stage in tumor progression, which actually causes 

the patient to die [5].

Consequently, angiogenesis has also been investigated through mathematical models. Again 

three major approaches are discerned in [4, 7], that is, continuum-based or discrete ones and 

hybrid combinations of the two. On the one hand, continuum models describe blood vessel 

densities rather than full vascular networks. On the other hand, discrete models resolve 

blood vessel morphology and blood flow through line segments, continuous curves, 

interconnected lattice patterns or collections of individual endothelial cells [4]. Two very 

prominent and often re-used methods are the ones developed by [30], where a continuum 

approach has been compared to a continuum-discrete approach based on a random walk 

formulation including migration, proliferation, branching and anastomosis. While earlier 

attempts did not include a dynamic coupling between angiogenesis and tumor growth, more 

advanced vascular tumor growth models such as [31, 32, 33] have evolved.

Despite the fact that discrete angiogenesis models are very helpful in investigating the 

formation of neovasculature in small regions, they seem to be prohibitively expensive in 

terms of computational cost for large-scale or even patient-specific simulations. The 

complex morphology of the neovasculature cannot be resolved then and it is questionable if 

a discrete model provides more relevant insight than a continuum formulation in this case. 

Hence, our goal in future work is to couple the continuum model presented here with a 

corresponding 1D model accounting for the existing vasculature, see e.g. [34, 35]. In the 

context of the continuum multiphase approach discussed above, endothelial cells have been 

introduced as an additional species in the IF by [36]. However, this approach is not sufficient 

and flexible enough to resolve the complex coupling between angiogenesis and tumor 

growth. We will show below that a consistent treatment of the neovasculature as an 

additional phase instead of a species enables us to resolve the interactions between the fluid 

phases, the ECM and angiogenesis more clearly. Additionally, the physiologically observed 

interstitial pressure increase in vascular tumors can be simulated with our extension. Finally, 

further improvements such as modeling blood flow in the neovasculature are straightforward 

which was not possible with the species-based version.
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The remainder of this paper will be structured as follows: in Section 2, we will extend the 

avascular model to incorporate the neovasculature as a fifth phase. The coupling between the 

single fields will be elucidated in Section 3. In addition to the partitioned coupling utilized 

exclusively so far, a combined monolithic-partitioned as well as a fully monolithic scheme 

will be introduced. In Section 4, numerical examples will be provided to compare the 

performance of the presented solution approaches and to show that the novel five-phase-

model is capable of simulating important processes of vascular tumor growth. Results and 

possible further extensions will be summarized in Section 5.

2. The Vascular Multiphase Tumor Growth Model

Our tumor growth model has been derived with Thermodynamically Constrained Averaging 

Theory. A detailed description of this mathematically intricate and complex procedure can 

be found in [11]. Here, we just want to emphasize that it is a comprehensive approach which 

guarantees a consistent relation between microscale and larger scale or homogenized 

conservation equations.

In addition, in a general porous medium system each phase may consist of multiple species. 

For instance, the interstitial fluid is not composed solely from water but transports numerous 

biomolecules. In the TCAT tumor growth model the considered species of the IF are oxygen 

and TAF. As indicated above, angiogenesis has been introduced into the multiphase model 

before [36], where endothelial cells have been treated as an additional species in the 

interstitial liquid. However, this is incorrect since endothelial cells do not qualify as a 

species diffusing within the IF from a biological point of view. They are not transported by 

the IF flow as nutrients or TAF. Rather, they have to be modeled as a proper phase with their 

own velocity and volume fraction as already hinted in [36]. This allows us to define 

consistent inter-phase exchange terms between the neovasculature and the IF. In the 

following formulation of the novel vascular multiphase model we will adopt the notation of 

[17], where α denotes a generic phase, s the solid phase, i.e., the ECM, l the interstitial fluid, 

h the healthy cells and t the tumor cells. In addition, the (neo-)vasculature is identified with 

index v and all equations are formulated on the macroscopic level. The components of the 

multiphase model are sketched in Figure 1.

2.1. Modeling of Angiogenesis

The sum of all volume fractions εα has to satisfy the relation

εs + εv + εl + εℎ + εt = 1, (1)

where the volume fraction of the (neo-)vasculature εv with respect to the total volume has 

been introduced. In the model developed here the neovasculature can be interpreted as a 

separate porous network within the ECM, where blood flow takes place. It follows an 

evolution equation for its independent volume fraction εv due to endothelial cell migration 

and angiogenesis. This volume fraction provides room for blood flow coming from the pre-

existing vasculature. However, the pre-existing vasculature and blood flow in the 

neovasculature is not explicitly modeled at the moment since the blood pressure in the 

neovasculature is assumed constant hereafter. So far, the fluid in the neovasculature, i. e. 
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blood, only exchanges mass with the IF through transcapillary transport. Appropriate 

exchange terms depending on blood and IF pressure will be defined below. Still, the present 

formulation has been chosen to allow a high degree of flexibility for future extensions. 

Especially a coupling with 1D elements [34] and the corresponding smeared approach [35], 

describing the capillary bed through capillary volumetric ratios within tissue, lies at hand.

We begin with the definition of the porosity

ε = εl + εℎ + εt, (2)

as the sum of all fluid volume fractions which allows us to get the volume fraction of the 

ECM from equation (1) as

εs = 1 − ε − εv . (3)

Correspondingly, saturations of the fluid phases can be defined as

Sα = εα

ε , α= l, ℎ, t, (4)

which have to follow the relation

∑
α

Sα= 1, α= l, ℎ, t . (5)

As in [37] an Arbitrary Lagrangian Eulerian (ALE) form with solid phase velocity

vs = ∂ds

∂t X
(6)

will be employed for the formulation of the governing equations. We refer to material 

coordinates as X, spatial coordinates as x, displacements as ds and spatial gradients as ∇. 

The skeleton or solid phase velocity vs is then equivalent to the grid velocity in an ALE 

approach. With that, a formulation of the evolution equation for the neovasculature volume 

fraction reads as

∂εv

∂t X
+ εv ∇ ⋅ vs + ∇ ⋅ (εv (vv − vs)) = 0. (7)

The relative motion of endothelial cells vv − vs with respect to the solid phase velocity is 

approximated as

εv (vv − vs) ≈ − Dv∇εv + εvεSl
χ(ωTAFl) ∇ωTAFl , (8)

which results in a standard formulation governing angiogenesis also applied in [30, 36]. 

Herein, the first term on the right hand side represents random motion of EC at sprout tips 

modeled as molecular diffusion with mass diffusivity Dv. The second term accounts for 

chemotaxis with a varying chemotactic coefficient χ(ωTAFl ) as in [30] while in [36] it has 
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been chosen to be constant. The latter one is the response of EC on TAF produced by 

hypoxic tumor cells, i.e., tumor cells which lack oxygen. Its exact form is detailed in Section 

2.6. TAF as chemical species diffuse and are advected by the IF, which creates a chemical 

gradient triggering EC migration. After degrading the venule basement membrane, EC 

migrate towards the tumor following the TAF gradient as described by the second term in 

equation (8). So far, we have excluded the haptotactic response of EC on fibronection [30], 

which would result in a similar additional term depending on the fibronectin gradient. The 

final equation for angiogenesis, that is, the evolution equation of the neovasculature volume 

fraction emerges as

∂εv

∂t X
+ εv∇ ⋅ vs − ∇ ⋅ (Dv∇εv) + ∇ ⋅ (εvεSl

χ(ωTAFl) ∇ωTAFl) = 0 (9)

when inserting (8) in (7). Equation (9) constitutes one governing equation of the five-phase 

model. The volume fraction of the neovasculature εv enters the model as an additional 

primary variable. Suitable Dirichlet boundary conditions for the neovasculature volume 

fraction can be applied at positions, where angiogenesis might occur from blood vessels. 

The coupling to this pre-existing vasculature as in [34, 35] will be a topic of further research 

while the focus of this contribution lies on the formation of the neovasculature governed by 

equation (9) and its impact on the multiphase tumor growth model.

2.2. Extensions to the Original Model Equations of the Fluid Phases

Incorporating a fifth phase into the model as described above requires several extensions to 

the original equations. However, we do not want to repeat all derivations here, the interested 

reader is referred to [17] for the original model. As opposed to the derivations there, we will 

employ an ALE formulation. The ALE equation for the balance of mass of the solid phase is 

given by

∂[ρs(1 − ε − εv)]
∂t X

+ ρs(1 − ε − εv)∇ ⋅ vs = ∑
κ ∈ Jcs

M
κ s

(10)

Herein, the sum ∑κ ∈ Jcs M
κ s

 in TCAT notation denotes a generic mass transfer term for all 

phases k with the solid phase s, which might be used to model ECM deposition, see [18]. 

Solving equation (10) for the time derivative of porosity results in

∂ε
∂t X

= (1 − ε − εv)
ρs

∂ρs

∂t X
+ (1 − ε − εv)∇ ⋅ vs − ∂εv

∂t X
−

∑κ ∈ Jcs M
κ s

ρs . (11)

For a generic fluid phase α, the balance of mass [17] reads as
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εSα

ρα
∂ρα

∂t X
+ Sα ∂ε

∂t X
+ ε∂Sα

∂t X
+ εSα ∇ ⋅ vs − ∇ ⋅ krel

α k
μα

∇pα =

∑κ ∈ Jcα M
κ α

ρα ,

(12)

where a generalized Darcy equation

εSα(vα − vs) = − krel
α k
μα

∇pα (13)

with fluid pressure pα has been employed. Again, only generic mass transfer terms for all 

phases k exchanging mass at the interfaces with the phase α have been given, which will be 

elaborated in Section 2.6. Besides, the viscosity μα, relative permeability krel
α  and the 

intrinsic permeability tensor k of the ECM have been defined, which is assumed as isotropic. 

Inserting the time derivative of porosity (11) in the previous equation and re-arranging terms 

yields

εSα

ρα
∂ρα

∂t X
+ Sα(1 − ε − εv)

ρs
∂ρs

∂t X
+ ε∂Sα

∂t X
− Sα ∂εv

∂t X
+ Sα(1 − εv)∇ ⋅ vs

− ∇ ⋅ krel
α k
μα

∇pα =
∑κ ∈ Jcα M

κ α

ρα + Sα ∑κ ∈ Jcs M
κ s

ρs .
(14)

Finally, the constitutive equations for fluid and solid phase densities

1
ρα

∂ρα

∂ρα = 1
Kα

and 1
ρs

∂ρs

∂ρs = 1
Ks

(15)

with respective bulk moduli and Kα and Ks are employed to obtain

εSα

Kα
∂ρα

∂t X
+ Sα(1 − ε − εv)

Ks
∂ρs

∂t X
+ ε∂Sα

∂t X
− Sα ∂εv

∂t X
+ Sα(1 − εv)∇ ⋅ vs

− ∇ ⋅ krel
α k
μα

∇pα =
∑κ ∈ Jcα M

κ α

ρα + Sα ∑κ ∈ Jcs M
κ s

ρs .
(16)

In the previous two equations the solid pressure ps has been employed, whose significance 

will be elucidated in Section 2.4. Comparing our formulation of the balance of mass with the 

one of the previous four-phase model [8, 17], three additional terms can be identified, 

namely, the time derivative of the mass fraction of the neovasculature scaled with the 

saturation, the additional time derivative of the solid pressure scaled with the negative 

volume fraction of the neovasculature −εv and the additional divergence of the grid velocity 

scaled with the negative volume fraction of the neovasculature −εv. These terms have been 

introduced since the modified balance of mass of the solid phase (10) incorporates the 

neovasculature volume fraction. Note also that no saturation gradient multiplied with solid 
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phase velocity vs is present in the above form as opposed to the one of [17]. This is due to 

our ALE formulation.

In previous works on the tumor growth model [8, 15, 17] the fluid equations have been 

specialized consistent with a pre-chosen set of primary variables

ψ = [ψ1, …, ψnfld] (17)

for the nfld Different fluid phases, where the primary variables ψα can be selected from 

saturations Sα, pressures pα or Differential pressures pαβ = pα − pβ. We wanted to keep our 

framework as flexible as possible, which is why we allow the user to specify the primary 

variables suited for the specific problem (as long as they are independent from one another). 

Assuming an incompressible solid phase (Ks → ∞) and re-writing equation (16) in terms of 

the chosen generic primary variables ψα yields

εSα

Kα ∑
β = 1

nfld ∂ρα

∂ψβ
∂ψβ

∂t X
+ ε ∑

β = 1

nfld ∂Sα

∂ψβ
∂ψβ

∂t X
− Sα ∂εv

∂t X
+ Sα(1 − εv)∇ ⋅ vs − ∇

⋅ krel
α k
μα

∑
β = 1

nfld ∂ρα

∂ψβ ∇ψβ =
∑κ ∈ Jcα M

κ α

ρα + Sα ∑κ ∈ Jcs M
κ s

ρs ,

(18)

where pressure and saturation derivatives have been transformed to generic primary 

variables derivatives. For instance, to obtain the reformulation of the time derivative of the 

saturation the constitutive relations for the pressure-saturation relationships have to be 

employed, see [15, 16] and Appendix A.

2.3. Species Transport

Chemical species disperse in specific phases, where they are advected and diffused. From 

TCAT, the balance of mass of a species i with mass fraction ωiα in phase α emerges as

ραεSα ∂ωiα

∂t X
+ ραεSα(vα − vs) ⋅ ∇ωiα + ∇ ⋅ (ραεSαωiαuiα) = ∑

κ ∈ Jcα
M

iκ iα

+ εαriα − ωiα ∑
κ ∈ Jcα

M
κ α

.
(19)

Herein, uiα denotes the diffusive velocity of species i. On the right hand side of the equation 

three distinct mass transfer terms can be discerned: the first one represents transfer of mass 

of species i in all phases k to the considered species i in phase α and the second one 

indicates an intra-phase reaction term. The last term is obtained from employing the product 

rule in the balance of species mass, see e.g. [14]. The relative mass flux in the convective 

term is again approximated with the generalized Darcy equation (13) and for the diffusive 

flux Fick’s law with effective diffusivity Deff
iα  is employed [14], which results in the final 

mass balance formulation for species transport
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ραεSα ∂ωiα

∂t X
− ρα krel

α k
μα

∇pα ⋅ ωiα − ∇ ⋅ (ραεSαDeff
iα ∇ωiα) = ∑

κ ∈ Jcα
M

iκ iα

+ εαriα − ωiα ∑
κ ∈ Jcα

M
κ α

.
(20)

The respective mass transfer terms will be detailed in Section 2.6.

2.4. Solid Phase

In porous media the stress tensor σ acting on the solid phase is commonly defined using the 

effective stress principle as

σeff
s = σtots + psI (21)

where σeff
s  and σtots  denote the effective and total stress, respectively. Furthermore, I is the 

identity matrix and ps the aforementioned solid pressure. The solid pressure is the combined 

pressure of all phases acting on the solid phase. Usually, it is obtained as a weighted sum of 

the fluid pressures with their respective saturation [38]. A suitable definition of the solid 

pressure including the neovasculature phase is

ps = ε
ε + εv ∑

β = 1

nfld
Sαpα + εv

ε + εv pblood . (22)

The weighted sum of fluid pressures and saturations is the definition of the solid pressure in 

the previous versions of the model. If no neovasculature exists, the original definition is 

recovered. If it is present, also the neovasculature with blood pressure pblood must enter the 

formulation, which is why the additional term and the additional pre-factors have been 

introduced. However, blood flow has not yet been included into the model. Therefore, we 

will assume a constant blood pressure for now. As mentioned before, we plan to enhance the 

model by also considering blood flow in the future.

Pulled-back into the material configuration and using the second Piola-Kirchhoff stresses S 
equation (21) can alternatively be written as

Seff
s = Stot

s + JF −1 ⋅ F −T ps (23)

using the deformation gradient

F = I + ∂ds

∂X (24)

and its determinant J. The displacements ds are the primary variable of the solid phase. In 

the absence of body and dynamic forces the balance of momentum of the solid phase in 

material configuration is then given by
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∇0 ⋅ (F ⋅ Seff
s − F ⋅ JF −1 ⋅ F −T ps) = 0 (25)

with the material divergence operator ∇0.

2.5. Summary of the Coupled System

The multiphase model has been implemented in our code in a very general way such that a 

coupled system with an arbitrary number of fluid phases nfld and species nspec can be 

defined. The governing equations of such a system are summarized here:

∇0 ⋅ (F ⋅ Seff
s − F ⋅ JF −1 ⋅ F −T ps) = 0 in Ω0 × [t0, tE] (26)

∂εv

∂t X
+ εv∇ ⋅ vs − ∇ ⋅ (Dv∇εv) + ∇ ⋅ (εvεSl

χ(ωTAFl) ∇ωTAFl) = 0 in
Ωt × [t0, tE]

(27)

for α ∈ [1, …, nfld − 1]:

εSα

Kα ∑
β = 1

nfld ∂ρα

∂ψβ
∂ψβ

∂t X
+ ε ∑

β = 1

nfld ∂Sα

∂ψβ
∂ψβ

∂t X
− Sα ∂εv

∂t X
+ Sα(1 − εv)∇ ⋅ vs − ∇

⋅ krel
α k
μα

∑
β = 1

nfld ∂ρα

∂ψβ ∇ψβ =
∑κ ∈ Jcα M

κ α

ρα + Sα ∑κ ∈ Jcs M
κ s

ρs in Ωt × [t0,

tE]

(28)

for α = nfld:

∑
γ = 1

nfld εSγ

Kγ
∑

β = 1

nfld ∂pγ

∂ψβ
∂ψβ

∂t X
− ∂εv

∂t X
+ (1 − εv)∇ ⋅ vs −

∑
γ = 1

nfld
∇ ⋅

krel
γ k
μγ

∑
β = 1

nfld ∂ργ

∂ψβ ∇ψβ = ∑
γ = 1

nfld ∑κ ∈ Jcα M
κ γ

ργ +

∑κ ∈ Jcs M
κ s

ρs in Ωt × [t0, tE]

(29)

for i ∈ [1,…, nspec]:

ραεSα ∂ωiα

∂t X
− ρα krel

α k
μα

∇pα ⋅ ∇ωiα − ∇ ⋅ (ραεSαDeff
iα ∇ωiα) = ∑

κ ∈ Jcα
M

iκ iα

+ εαriα − ωiα ∑
κ ∈ Jcα

M
κ α

in Ωt × [t0, tE]
(30)

Note that the balance of momentum of the solid phase (26) has been formulated w.r.t. the 

reference or material configuration Ω0 while all other equations are written in spatial 

configuration Ω t. Furthermore, the considered time interval is denoted with [t0, tE]. If no 
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angiogenesis occurs, the additional governing equation for angiogenesis (27) with primary 

variable εv is not evaluated and the original formulation is recovered for εv = 0. The 

equation for the last fluid phase (29) is obtained by summing up the mass balances of all 

involved fluid phases and invoking equation (5), which has also been employed in prior 

versions of the model. Three fluid phases, namely, tumor cells t, healthy cells h and the 

interstitial fluid l will be considered and three species, oxygen in the IF, necrotic tumor cells 

as a part of the tumor cells and TAF dispersed in the IF. In the numerical examples of 

Section 4 the interstitial fluid will always be the summed-up phase governed by equation 

(29). Despite that, also this choice is flexible in our framework.

2.6. Constitutive Equations

Additional constitutive relations are necessary to close the governing equations. For the sake 

of completeness, we have listed all constitutive equations which have been adopted 

unchanged in Appendix A.

A Perzyna viscoplastic model has been employed in [17, 18, 36] for the ECM remodeling. 

In this work, the focus does not lie on the ECM behavior which is why we will solely 

employ hyperelastic materials hereafter even though a Perzyna type model is available in our 

implementation. Furthermore, we adopt a total Lagrangian formulation as opposed to the 

updated Lagrangian one applied in the aforementioned papers.

In the previous implementation of the model the porosity has been updated over time using 

explicit time integration. Here, we propose an alternative approach based on the balance of 

mass of the solid phase in the material configuration

∂ρs(1 − ε − εv)
∂t X

= 0. (31)

For the sake of simplicity, no source terms in the balance of mass are considered, i.e., no 

matrix deposition. However, a corresponding mass transfer term can easily be added. 

Integration gives

J ⋅ ρs(1 − ε − εv) = ρ0
s(1 − ε0 − ε0

v) = const . (32)

with initial density ρ0
s, initial porosity ε0, initial neovasculature volume fraction ε0 and the 

Jacobian of the deformation gradient J. With the constitutive equation for the density of the 

solid phase (15) the ratio of initial and current density can be expressed in terms of the solid 

pressure and the bulk modulus, which yields

ε = 1 − εv −
1 − ε0 − ε0

v

J e− ps
Ks . (33)

In case of an incompressible solid phase the previous equation will become

ε = 1 − εv −
1 − ε0 − ε0

v

J . (34)
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In the following, we will assume an incompressible solid phase as in all previous versions of 

the model. Otherwise, the equation for the solid pressure (22) would become nonlinear and 

might have to be solved with a local Newton iteration.

For the non-constant chemotactic coefficient χ(ωTAFl )  of equation (9) we employ the same 

receptor-namely kinetic law as [30], namely

χ(ωTAFl) = χ0
ωχ0/2

TAFl

ωχ0/2
TAFl + ωTAFl . (35)

The above equation incorporates a decreasing sensitivity of endothelial cells to the TAF 

gradients if the TAF mass fraction increases. At a mass fraction of ωχ0/2
TAFl  the sensitivity is 

exactly half the value of the constant sensitivity χ0.

Finally, a summary of the constitutive equations for the mass transfer terms of equations 

(27)–(30) is given in Table 1. Here, some of the equations such as the terms for tumor 

growth M
l t

growth, necrosis εtrNt and nutrient consumption M
l t

 are listed, see [14, 15, 17] 

and Appendix A for an interpretation of the terms. Lysis and ECM deposition as introduced 

in [18] are not considered in this paper but the two additional mass transfer terms can easily 

be included.

Additional terms have been defined to account for the coupling between angiogenesis and 

tumor growth. Specifically, the mass balance of the interstitial fluid comprises two 

supplementary terms, namely the leakage of fluid from the neo-vasculature due to abnormal 

vessel characteristics and the uptake of interstitial fluid by the lymph system. The first term 

is defined as

M
v l

leak = ρl ⋅ Lp
S
V v

⋅ peff − pl
+ ⋅ εv, (36)

employing a Starling equation with hydraulic conductivity Lp and surface-to-volume ratio 

S/V for the transcapillary flow as for example given in [28, 31]. A net outflow from the 

vessels into the interstitial fluid is generated if the effective pressure

peff = pblood − ω(πblood − πl) (37)

is higher than the fluid pressure pl. Herein, ω denotes the average osmotic reflection 

coefficient of the plasma and πblood and πl are the osmotic pressures of the plasma and the 

interstitial liquid, respectively. Macaulay brackets are employed to allow only outflow of 

liquid into the interstitium and not vice versa. Furthermore, it is assumed that the vessel 

outflow of (36) is also proportional to the volume fraction of the neovasculature εv. We 

emphasize again that the blood pressure is constant in this version of the model and blood 

flow is not explicitly modeled. This will be a topic of further research. In addition, the term 

M
l ly

drainage is employed to model the drainage of interstitial fluid through the lymph 
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system. Functioning lymph vessels remove excessive liquid as well as waste products. 

However, in many tumors this mechanism is impaired since the proliferating cancer cells 

compress or even collapse the lymph vessels [20, 27, 28]. Combined with the increased 

outflow due to the irregular and leaky blood vessels this plays a major role for interstitial 

hypertension in tumors [20, 27, 28]. We have defined the drainage of liquid as

M
l ly

drainage = ρl ⋅ Lp
S
V ly ⋅ pl − ply

+ ⋅ 1 − pt

pcoll
t

+
, (38)

which is a slightly adapted version of the lymphatic drainage term from [31]. Again, a 

Starling equation is defined for the outflow of liquid into the lymph system. Additionally, 

the tumor pressure-induced collapse of the lymph vessels is considered by the last factor of 

(38). Until the collapsing pressure pt
coll the drainage capacity of the lymph system decreases 

linearly. Above this pressure the lymph vessels have collapsed and no uptake of fluid is 

possible anymore. In the following, we will assume that the lymphatic pressure is small 

compared to the other pressures of the multiphase system, that is, ply ≈ 0. Until now, the 

lymph system is not explicitly present in the model as a proper phase, which might be a 

straightforward extension. Analogous to [31] our model can easily be extended employing a 

lymphatic density or volume fraction. It might then also be possible to model the evolution 

of the lymph vessel system with a similar equation as (9) also taking into account 

lymphangiogenesis [39].

As a simplification of the mass transfer relations for species, we will assume that fluid 

drainage through the lymph system does not influence the mass balance of the species 

dispersed in the IF, i.e., oxygen and TAF, which implies

M
il ily

− ωil ⋅ − M
l ly

drainage = 0. (39)

If interstitial liquid is drained, the corresponding species is taken up in equal measure by the 

lymph system.

An important mechanism of angiogenesis is the transport of nutrients to the tumor. In our 

case the only nutrient present is oxygen dispersed in IF and blood. The transcapillary 

exchange of this species is modeled by the term

Mtc
nv nl

= ωenvnl M
v 1

leak + ρl
S
V

Dtc
t v

⋅ ωenvnl − ωnl
+ ⋅ εv . (40)

Herein, the first summand denotes the flow of oxygen dissolved in the plasma with mass 

fraction ωenvnl  due to transcapillary leakage M
v l

leak. The second term is employed for the 

transcapillary diffusion with diffusion coefficient Dtc and blood vessel wall thickness t. 
Again, it is assumed that this term is proportional to the volume fraction of the 

neovasculature. More advanced terms for transcapillary oxygen exchange including the 

haematocrit level in blood have been employed by [32, 40]. The relation for oxygen 
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exchange may be refined once our model is capable of representing blood flow in the 

neovasculature.

Finally, the production of TAF by tumor cells under hypoxia will be detailed. We assume 

that all the TAF produced by the living tumor cells are immediately transferred into the 

interstitial liquid via

M
TAFt TAFl

≈ εtrTAFt = (1 − ωNt)εSt ⋅ γproduction
TAF ⋅ H

ωhyp
nl − ωnl 1

2 + 1
2cos π ωnl

ωhyp
nl

(41)

with an intra-phase production term εtrTAFt equivalent to [36]. By employing the Heaviside 

function H(·) it is ensured that TAF are produced by the living tumor cells at a rate of 

γproduction
TAF  production only if the nutrient mass fraction falls below the hypoxic limit ωhyp

nl . 

Currently, the uptake of TAF through endothelial cells [36] has not been included, however, 

the extension is straightforward if the results indicate that this term is necessary. Hence, all 

mass transfer relations summarized in Table 1 have been defined.

3. Numerical Solution and Computational Framework

The original tumor growth model of [8, 15, 17] with the extensions presented in the previous 

section has been re-implemented in our in-house finite element high performance computing 

platform [41]. In the following, the efficient solution of the resulting strongly coupled 

problem will be addressed.

3.1. Space and Time Discretization

The standard Galerkin procedure is employed to obtain the weak form of the governing 

equations (26)–(30) of the coupled system with nfld fluid phases and nspec chemical species. 

Subsequently, the equations are discretized in space using finite elements [42]. For that, the 

primary variables of the single fields are interpolated using shape functions. Finally, time 

discretization with the well-known one-step-theta scheme is performed. More details on 

space and time discretization can be found in [8, 15, 17, 42].

The time- and space-discrete weak form of the strong formulation (26)–(30) may then be 

written in terms of discrete nonlinear residuals R at time step n + 1 as

Rn + 1
s (dn + 1

s , ψn + 1, ϵn + 1
v ) = 0 with Rn+1

s ∈ ℝnnodes ⋅ ndim (42)

Rn + 1
v,fld (dn + 1

s , ψn + 1, ϵn + 1
v , ωn + 1) = 0 with Rn+1

v,fld ∈ ℝnnodes ⋅ (nfld + 1)
(43)

Rn + 1
spec (dn + 1

s , ψn + 1, ϵn + 1
v , ωn + 1) = 0 with Rn+1

spec ∈ ℝnnodes ⋅ nspec (44)

with nodal primary variables
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dn + 1
s ∈ ℝnnodes ⋅ ndim, ψn + 1 ∈ ℝnnodes ⋅ nfld, ϵn + 1

v ∈ ℝnnodes, ωn + 1 ∈
ℝnnodes ⋅ nspec,

(45)

which are the discrete form of solid displacements, fluid primary variables, neovasculature 

volume fraction and species mass fractions at time step n + 1, respectively. Furthermore, 

ndim represents the number of spatial dimensions and nnodes the number of nodes. In this 

notation Rs is the discrete residual of the solid (42). Rv,fld encompasses both the discrete 

residual of the equation for the neovasculature (27) as well as the equations for all fluid 

phases (28) and (29). The third residual term Rspec
n+1 denotes the discrete residual of all 

present species corresponding to (44). The coupling between these three fields can be 

resolved either through a partitioned scheme or a monolithic scheme. In the former one 

iterations between the single-field solvers have to be performed to ensure the nonlinear 

coupling. By contrast, in the latter one all three fields are solved simultaneously. Previously, 

the model could only be solved using a partitioned coupling [17]. In the following, we will 

present three solution strategies for the strongly coupled nonlinear system (42)–(44). If 

angiogenesis is not considered, the equations reduce to a simpler form without the additional 

discrete angiogenesis equation and neovasculature volume fraction. However, we want to 

focus on the more general case including angiogenesis in the following.

3.2. Partitioned Scheme

The major advantage of partitioned schemes is their flexibility since existing solvers for the 

single fields can be re-used [43] and their easy implementation compared to monolithic 

algorithms. Each of the single blocks (42)–(44) is solved individually for its primary 

variables. Then, the coupling variables are transferred between the fields. Our algorithm for 

the three-field coupled partitioned scheme is presented in Figure 2. First, the nonlinear 

problem (43) including the neovasculature equation at the partitioned step k is solved with a 

Newton scheme

∂Rfld,v

∂ψv n + 1, k

i
Δψn + 1, k

v, i + 1 = − Rn + 1, k
fld,v, i , ψn + 1, k

v, i + 1 = ψn + 1, k
v, i + Δψn + 1, k

v, i + 1 (46)

for each Newton iteration i → i + 1. Herein, a nodal primary variable vector ψv, which 

comprises both the generic nodal fluid primary variables ψ as well as the nodal neo-

vasculature primary variable εv has been defined as

ψv =
ψ
εv (47)

to account for the fact that the nonlinear discrete fluid mass balance equations and the 

neovasculature evolution equation are solved simultaneously. This fluid and angiogenesis 

solution is then transferred to the structure equation after performing relaxation with 

Aitken’s Δ2 method [44, 45]. The relaxed solution is constructed as

ψn + 1, k
v = ψn + 1, k − 1

v + ωk ψn + 1, k
v − ψn + 1, k − 1

v (48)
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with Aitken relaxation parameter ωk. This parameter is defined recursively as

ωk =

− ωk − 1
ψn + 1, k

v − ψn + 1, k − 1
v T ⋅ ψn + 1, k

v − ψn + 1, k − 1
v − ψn + 1, k − 1

v − ψn + 1, k − 2
v

ψn + 1, k
v − ψn + 1, k − 1

v − ψn + 1, k − 1
v − ψn + 1, k − 2

v 2

.

(49)

from the two previous solutions of the partitioned loop. Aitken relaxation significantly 

improves the convergence behavior and stability of the partitioned scheme. The major 

advantage of this type of relaxation compared to the one employed in [17, 46] is that the 

governing equations do not have to be modified. Furthermore, Aitken relaxation is flexible, 

easy to implement and has only negligible computational cost, which is why it is preferred 

here. In almost all practical cases, which we investigated, convergence without relaxation 

was impossible to obtain. The new relaxed state ψv
n+1,k is transferred to the structure 

equation (42), which can in turn be solved with a Newton scheme

∂Rs

∂ds n + 1, k

i
Δdn + 1, k

s, i + 1 = − Rn + 1, k
s,i , dn + 1, k

s, i + 1 = dn + 1, k
s, i + Δdn + 1, k

s, i + 1 (50)

Finally, the solution, i.e., displacements ds
n+1,k as well as (relaxed) fluid primary variables 

and neovasculature volume fractions ψv
n+1,k are applied to (44). Again, this nonlinear 

equation is solved with a Newton scheme

∂Rspec

∂ω n + 1, k

i
Δωn + 1, k

i + 1 = − Rn + 1, k
spec,i , ωn + 1, k

i + 1 = ωn + 1, k
i + Δωn + 1, k

i + 1 (51)

for the nspec present species, i.e., equation (44) is solved simultaneously for all considered 

species. However, in the current formulation coupling terms between Different species arise 

only in the mass transfer terms summarized in Table 1. Lastly, the new species state ωn+1,k is 

fed back to the discrete angiogenesis and fluid equation (43). This loop is repeated until 

convergence has been achieved. Subsequently, the algorithm progresses to the next time 

step. We assume convergence if the relative change in the solution primary variables from 

one partitioned iteration step to the next is smaller than a pre-defined tolerance ϵpart, i.e.,

‖ψn + 1, k
v − ψn + 1, k − 1

v ‖
‖ψn + 1, k

v ‖
< ϵpart and ‖dn + 1, k

s − dn + 1, k − 1
s ‖

‖dn + 1, k
s ‖

<

ϵpart and ‖ωn + 1, k − ωn + 1, k − 1‖
‖ωn + 1, k‖ < ϵpart .

(52)

Also the single field Newton schemes need a suitable convergence criterion. Naturally, it has 

to be defined stricter than the partitioned convergence criterion of (52) such that the error in 

the single field solvers does not influence the convergence of the partitioned loop. Again, we 

check for relative increments from one Newton step to the next with a single field tolerance 

of

ϵsf = 0.01ϵpart (53)

Kremheller et al. Page 16

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, a further check

‖Rn + 1, k
fld,v ‖

nnodes ⋅ (nfld + 1) < ϵsf and
‖Rn + 1, k

spec ‖
nnodes ⋅ ndim

< ϵsf and ‖Rn + 1, k
s ‖

nnodes ⋅ nspec
<

ϵsf .
(54)

guarantees that also the residuals of the single fields have reached convergence within their 

Newton loop. Here, the RMS norm is employed to have a mesh-independent quantity.

3.3. Monolithic-partitioned Scheme

From our experience of similar porous medium systems [37, 47] along with the numerical 

examples of Section 4, most of the computational time is spent in resolving the coupling 

between the structural deformation and the fluid flow or angiogenesis, respectively. Hence, 

in a first step, the nonlinear coupling between these two fields (42)–(43) can be resolved 

monolithically while for the coupling with species transport still a partitioned scheme is 

employed. The corresponding algorithm is depicted in Figure 3a. Now, a monolithic Newton 

scheme with the tangent containing off-diagonal derivative terms typical for monolithic 

algorithms

∂Rs

∂ds
∂Rs

∂ψv

∂Rfld,v

∂ds
∂Rfld,v

∂ψv n + 1, k

i

Δds

Δψv n + 1, k

i + 1
= − Rs

Rfld,v n + 1, k

i
, ds

ψv n + 1, k

i + 1

= ds

ψv n + 1, k

i
+ Δds

Δψv n + 1, k

i + 1

(55)

is applied to simultaneously solve for the unknown nodal displacements ds
n+1 and fluid and 

neovasculature nodal primary variables ψv
n+1. These are then applied to the species 

transport equation, which is again solved by the Newton scheme (51). The species solution 

is applied on the fluid and the iteration is continued until convergence. The convergence 

check for the partitioned scheme is given by (52) as before. Relative increments and the 

residual criterion defined in (54) are employed to assess convergence of the species field and 

the monolithic Newton scheme (55) with tolerance ϵsf defined by (53).

3.4. Monolithic Scheme

Finally, the three-way coupled nonlinear system (42)–(44) can be solved with a fully 

monolithic scheme resulting in the following Newton scheme
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∂Rs

∂ds
∂Rs

∂ψv 0

∂Rfld,v

∂ds
∂Rfld,v

∂ψv
∂Rfld,v

∂ω

∂Rspec

∂ds
∂Rspec

∂ψv
∂Rspec

∂ω n + 1

i

Δds

Δψv

Δω n + 1

i + 1

= −
Rs

Rfld,v

Rspec
n + 1

i

,
ds

ψv

ω n + 1

i + 1

=
ds

ψv

ω n + 1

i

+
Δds

Δψv

Δω n + 1

i + 1

.

(56)

Compared to the monolithic tangent matrix of the fluid-structure coupling, additional off-

diagonal matrices have been added as well as the main-diagonal tangent matrix of the 

species equation. Note also the zero diagonal matrix ∂Rs
∂ω  reflecting the fact that no coupling 

terms of species quantities arise in the structure equation (42). The fully monolithic 

algorithm of Figure 3b simply requires a solution of the monolithic Newton scheme (56) for 

each time step until the desired tolerance is met. For that, residuals in RMS norm (54) as 

well as relative increments (53) are employed with the Newton loop.

3.5. Efficient Solvers for Monolithic Schemes

For each Newton step of the monolithic algorithm from Figure 3b, a linear system of 

equations with 3 × 3 block pattern shown in Figure 4 has to be solved while the monolithic-

partitioned approach requires solving the corresponding 2 × 2 sub-system. The distinct fields 

represented by their respective sparse main-and off-diagonal blocks introduce their Different 

physical characteristics and parameters into the system often leading to a bad conditioning 

of the system matrix. Hence, standard iterative linear solvers cannot be applied without 

sophisticated, problem-specific preconditioners. Efficient preconditioners are a major factor 

for improving the performance of monolithic algorithms since the linear solver time usually 

constitutes a considerable amount of the total computational time. The preconditioners 

employed in this work are based on [43], where an efficient solution framework for an 

arbitrary number of fields has been developed and applied to thermo- and fluid-structure 

interaction. We will re-use this implementation here. Recently, it has also been applied to a 

coupled model of the human lung [48]. A detailed description of these preconditioning 

techniques is beyond the scope of this contribution but the general idea behind them will be 

outlined briefly. Basically, they consist of a block Gauss-Seidel (BGS) method combined 

with an algebraic multigrid (AMG) method. Here, we will exclusively apply the first variant 

which is termed BGS(AMG) preconditioner in [43]. In an outer iteration the fields are 

decoupled with the BGS approach and in an inner AMG cycle the single fields are then 

preconditioned independently. However, a detailed scalability and parameter study for 

Different solver types as in [43, 48] is beyond the scope and extent of this paper.
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4. Numerical Examples

4.1. Performance Comparison between Monolithic and Partitioned Approaches

In this section, we will perform a concise evaluation of the performance of the solution 

schemes developed above. We have chosen the growth of a multicellular tumor spheroid 

(MTS) over 120 hours in host tissue within a deformable ECM as a representative 

benchmark. Similar cases have been studied in [15, 17]. Initial and boundary conditions are 

given in Appendix B. Our primary interest here is to assess the efficiency of the proposed 

algorithms, which is why we will not show any significant biological results. In addition, 

angiogenesis is not present. Furthermore, a simple Saint Venant-Kirchhoff material model is 

employed for the ECM. However, the results in terms of numerical performance are 

transferable to the more complicated material laws employed in [17, 18].

The parameters of the benchmark problem have been taken from [17, Table 3, 4, 5] with 

exception of the value of the Young’s modulus, which we have chosen as E = 400 Pa for the 

Saint Venant-Kirchhoff material model. The primary variables of the fluid phases are the 

pressure pl of the interstitial fluid and Differential pressures phl and pth for the healthy and 

tumor cells, respectively. A backward Euler scheme, that is, θ = 1, is employed for time 

discretization with 720 steps of Δt = 600s. The BGS(AMG) method is employed for 

preconditioning the monolithic systems (55) and (56) in combination with a GMRES 

iterative linear solver. For solving the linear systems of equations of the single fields in the 

partitioned scheme also the GMRES method with AMG preconditioners is applied. We 

employ a strict outer convergence criterion for the monolithic and partitioned schemes of 1.0 

· 10−6, which implies that the single field tolerances for convergence according to (53) are 

1.0 · 10−8. For performance comparison all simulations have been run in parallel on two 

cores of an Intel Xeon E5–2690 v4 dual socket system which has been specially configured 

to allow reliable time measurements (cluster-on-die mode and forced C0 state).

Figure 5 depicts the number of coupling iterations, i.e., the number of Newton steps for the 

monolithic scheme and the number of partitioned iterations for the partitioned and 

monolithic-partitioned algorithm, respectively. The schemes which resolve the coupling 

between the fluid phases and the ECM monolithically exhibit a very stable convergence 

behavior with three coupling iterations on average compared to the partitioned one, which 

needs a mean of twelve partitioned steps per time step to converge. Clearly, this behavior is 

due to the strong coupling between fluid phases and structure. Around time step 300 a 

necrotic core starts to develop, which means that an additional species, namely, necrotic 

cells are present. Therefore, the coupling between the fluid phases and the species becomes 

stronger, such that more partitioned iterations are necessary, which is why the partitioned 

and hybrid scheme show a peak for their respective number of coupling iterations. Still, the 

fully monolithic scheme converges within three Newton iterations throughout the simulation 

except for some time steps at the beginning of the simulation. Naturally, the number of 

coupling iterations is closely coupled to the CPU time per time step also shown in Figure 5. 

Evidently, the monolithic-partitioned solution procedure is less efficient in terms of 

computational time than the fully monolithic one even if the same number of coupling 

iterations is required since more linear solver calls and element evaluations are needed in 
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total. The small amplitudes in computational time are related to how often the monolithic 

system (55) has to be evaluated for each time step, which differs slightly for some steps. 

Still, both monolithic schemes are far superior than the partitioned one with a speed-up of 

approximately 4.5 and 2.9, respectively. We have also tried to induce a small compressibility 

of the fluid and solid phases of approximately 10% by reducing their bulk moduli to 10, 000 

Pa to test if a slight compressibility was beneficial to the convergence of the partitioned 

scheme but only an insignificant gain in performance could be achieved. Only for even 

smaller, yet unrealistic bulk moduli, a substantial effect was present.

We have conducted a small parameter study on the Young’s modulus of the ECM to further 

evaluate the efficiency of the distinct approaches. The performances of the Different 

schemes are shown in Figure 6. The Young’s modulus of the ECM is varied while all other 

parameters are fixed to the values of [17, Table 3, 4, 5]. A softer ECM effects a stronger 

coupling between the fluid and solid phases. Consequently, the performance of the 

partitioned scheme deteriorates considerably as shown by the average number of coupling 

iterations and the average CPU time per time step in Figures 6a and 6b. Increasing the 

stiffness of the ECM has an opposing effect leading to smaller deformations and, hence, a 

weaker coupling, which can more easily be resolved by the partitioned algorithm. By 

contrast, the performance of the monolithic and monolithic-partitioned algorithm is 

unaffected by the choice of the Young’s modulus.

For a rigid ECM, i.e., a non-moving mesh (not shown here) the fully monolithic algorithm’s 

performance compared to the partitioned coupling was still superior, albeit only by a factor 

of 1.6, which proves that resolving the coupling between solid and fluid phases is the most 

challenging part. Hence, this factor seems to be the additional performance gain for 

resolving the coupling fluid-species with a monolithic scheme. Actually, it is also the 

difference in performance between the fully monolithic scheme and the monolithic-

partitioned scheme from above for a deformable ECM.

Interestingly, the number of monolithic Newton steps decreases even marginally for a softer 

ECM. This hides the effect that the GMRES iterative linear solver with BGS(AMG) 

preconditioner needs more iterations and more computational time to resolve the stronger 

coupling between fluid and structure phases when the ECM is less stiff. In that regard, it is 

important to emphasize that for systems of larger size than considered here a suboptimal 

scaling of the employed preconditioner could slightly deteriorate the performance of the 

monolithic schemes. Even under these circumstances the partitioned algorithm with its large 

number of coupling iterations can certainly not compete with the monolithic ones.

A further study has been conducted on the intrinsic permeability of the ECM. Results are 

depicted in Figure 7. Again, all other parameters are equivalent to [17, Table 3, 4, 5] and the 

Young’s modulus is re-set to E = 400 Pa. A similar picture as in Figure 6 emerges. Lower 

permeabilities lead to a stronger coupling between fluid phases and the solid phase since 

larger pressures and pressure gradients develop in the computational domain. The lower the 

permeability of the ECM, the less efficient the partitioned scheme while both monolithic 

schemes do not show any change in performance. As before, three coupling iterations are 

needed on average per time step for a wide range of permeabilities while the computational 
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time for the iterative linear solver increases minimally due to the stronger coupling for lower 

permeabilities. The computational time of the partitioned algorithm decreases for higher 

permeabilities, however, both monolithic schemes are still faster by at least a factor of 2.5 

and 1.7, respectively.

Finally, we have investigated the influence of the time step size Δt. This is due to the fact 

that [49] found a lower limit for the ratio of time step size and element length Δt/h2 to 

guarantee convergence of a partitioned solution scheme for a consolidation problem of 

similar type. The existence of this lower limit for a given set of material parameters implies 

that the time step size cannot be reduced arbitrarily if the mesh is not refined at the same 

time [17]. With the aim of triggering this instability we have performed a study on the time 

step size while leaving the material parameters and the mesh unchanged. The results are 

depicted in Figure 8. The behavior predicted by [49] can be reproduced in this case. Below a 

time step size of Δt = 600 s the number of coupling iterations starts to increase indicating 

that the partitioned scheme becomes unstable for the given material parameters and 

discretization. Still, convergence could be achieved even for the smallest time step size 

considered in Figure 8, which is probably due to the employed Aitken relaxation. Both 

monolithic algorithms exhibit a completely Different behavior. If the time step size is 

decreased, the Newton algorithm converges in less iterations and vice versa, just as expected. 

Nevertheless, even for the largest time step of Δt = 4800 s the partitioned solution procedure 

cannot compete with the monolithic algorithms.

As expected the fully monolithic coupling is the most efficient scheme for a wide range of 

parameter sets. For both monolithic schemes the computational cost is nearly independent of 

material and simulation parameters in this relatively small yet elucidating example. In the 

context of tumor growth, where many parameters might be unknown or uncertain, such an 

efficient algorithm is especially advantageous. The scalability of the monolithic algorithms 

depends strongly on efficient preconditioners, whose performance has been evaluated in [43, 

48]. We expect that the excellent scalability is transferable to the multiphase framework as 

well. It might also be worth employing the AMG(BGS) preconditioner which is the reversed 

version of the BGS(AMG) method [43]. Theoretically, it should perform better than the 

BGS(AMG) variant for strongly coupled problem. We will continue to investigate optimal 

solvers for the monolithic system.

Despite the fact that the computational effort of the partitioned solution procedure might 

become prohibitively large for certain parameter combinations, it has proven to be 

remarkably stable in combination with Aitken relaxation. Obviously, its inferior 

performance can be attributed to the strong coupling between incompressible fluid and solid 

phases. If a rigid ECM is considered, the partitioned algorithm is still slower than the fully 

monolithic one but might be worth considering for a fast implementation of the model. It has 

to be noted, though, that we have restricted the comparison to a relatively simple example 

without considering angiogenesis. In more complex scenarios the partitioned algorithm is 

likely to perform even worse. Finally, the monolithic-partitioned algorithm could be a 

sensible compromise between computational efficiency and implementational effort for 

moving meshes. Still, the fully monolithic algorithm is the most efficient which is why we 

will employ it in the following.
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4.2. Two-dimensional Growth of a Vascular Tumor

The first numerical example including angiogenesis will be the two-dimensional growth of a 

tumor. Similar cases have been studied in [32, 36] for their continuum and hybrid approach, 

respectively. The geometry of the example including initial and boundary conditions is 

sketched in Figure 9. A circular tumor with initial radius r = 0.025 mm is growing in healthy 

tissue close to a blood vessel (sketched in red) from which angiogenesis occurs. Here, we 

have set a Dirichlet boundary condition for the neovasculature volume fraction of εv = 0.1 to 

trigger angiogenesis from the position of the assumed blood vessel. The left, bottom and 

right boundary of the domain are fixed and appropriate boundary conditions are applied to 

make use of the symmetry of the problem. Note that oxygen is not prescribed on any 

boundary of the domain but it is assumed that it is solely provided by the developing 

neovasculature via transcapillary exchange (40). A Neo-Hookean material law with material 

parameters given in Table 2 is employed for the ECM. The permeability is slightly smaller 

than in previous examples. However, the value of [15, 17, 36] (1.8 10−15 m2) has not been 

obtained from biological data but simply been estimated as this value. Possibly, it might vary 

for Different ECM and tumor types. With the lower value employed here a smaller tumor 

with a higher volume fraction of TC emerges. This allows us to illustrate the effect of 

angiogenesis on the tumor shape more clearly. The value of the Young’s modulus has been 

increased with respect to the aforementioned contributions since the overall solid pressure 

calculated with (22) is higher than in previous cases due to the lower permeability, the 

interstitial fluid pressure increase and the appearance of the blood pressure pblood in the solid 

pressure definition. The parameters for the incompressible fluid phases are summarized in 

Table 3, which are standard parameters also employed in [15, 17, 36]. As in these papers, the 

primary variables of the fluids are chosen as pl, phl and pth. Also for the three present 

species, namely oxygen, TAF and necrotic tumor cells, previously employed parameters 

have been chosen, see Table 4.

The new parameters governing angiogenesis and transcapillary and lymphatic exchange are 

given in Table 5. Most of them have been taken from the available literature while some 

have been slightly adapted. However, the primary goal of this example is to prove the 

principal applicability of our model to vascular tumor growth and to show its characteristics, 

capabilities and limitations. Among the many parameters present some will have to be 

adjusted in the future to reproduce experimental and clinical data. The diffusion coefficient 

of the neovasculature has been chosen as half the value of [30]. Furthermore, we have 

assumed that the surface-to-volume ratio (S/V)ly for lymphatic drainage is equivalent to the 

one reported for blood vessels. The hydraulic conductivity of the lymphatic system is 

estimated to be two orders of magnitude higher than the one of the neovasculature. This 

ensures a correct behavior of a functioning lymph system which drains the liquid leaking 

from the irregular neovasculature. Only if lymph vessels are destroyed through excessive 

tumor pressure (38) fluid will accumulate. The collapsing threshold pcoll
t  has been set such 

that a tumor cell saturation of St ≈ 0.3 completely inhibits lymphatic drainage. The 

chemotactic coefficient χ0 and the transcapillary diffusion coefficient over the vessel wall 

thickness Dtc/t are the key parameters for our vascular model. Three Different combinations 

of these parameters have been studied to exemplify their effect on the model. We will 
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perform more elaborate studies on these and other parameters but here the goal is only to 

show the abilities of our novel vascular model.

The domain is discretized with 240 × 120 bilinear elements in space. The time step size is Δt 
= 1800 s for the one-step-theta scheme with θ = 0.52 over 1152 time steps, i.e., the total 

simulated time is 24 days. Also the initialization procedure described in Appendix B is 

employed for this example before the start of the actual simulation.

The evolution of the living tumor cell volume fraction εLTC = εSt 1 − ωNt  for case 2 is 

depicted in Figure 10, where also the neovasculature volume fraction εv is shown via 

contour lines. After six days a round tumor emerges while the neovasculature diffuses 

slightly into the domain and provides oxygen on its right side. This actuates the tumor to 

evolve unsymmetrically towards the source of oxygen to the right after twelve days, see 

Figure 10b. A half-moon shape of living tumor cells emerges since in the region further 

away from the blood vessel necrosis sets in, see also Figure 12a. The tumor continues to 

progress towards the neovasculature over the course of the simulation (Figures 10c–10d). 

TAF are constantly produced by the hypoxic tumor cells. After twelve days the chemotactic 

response of endothelial cells to TAF starts to dominate their migration towards the tumor, 

which results in the shape of the neovasculature shown in Figures 10c–10d. Most of the 

oxygen is needed by proliferating tumor cells at the symmetry axis of the domain, hence, 

here most of the TAF are produced, see Figure 12c, which explains that the neovasculature 

grows faster in the region close to the symmetry axis. Finally, after 24 days a very well 

vascularized region with living tumor cells emerges. Qualitatively, these results seem to be 

in good agreement with the similar angiogenesis example of [32].

In addition, the necrotic cell volume (or mass) fraction after 24 days εNTC = εStωNt  is 

depicted in Figure 12a. As already mentioned before, the necrotic region develops on the left 

in the zone further away from the pre-existing blood vessel and neovasculature. The oxygen 

mass fraction ωnl  is plotted in Figure 12b. A large area with a very low oxygen 

concentration exists in the left part of the domain. During growth the tumor consumes 

almost all the oxygen there while diffusion of oxygen generated by the pre-existing blood 

vessel and beginning angiogenesis is not enough to sustain its rapid growth which causes the 

development of the aforementioned necrotic region. On the right side of the domain an 

oxygen-rich region is present due to transcapillary exchange of oxygen. Finally, the 

interstitial pressure is shown in Figure 12d. An increased pressure can be observed in the 

vascular tumor region. This is due to the leakage of fluid from the irregular neovasculature 

into the domain. Outside of the tumor region the lymphatic system drains this excessive 

fluid. However, tumor cells compress the lymph vessels limiting or completely inhibiting 

drainage. Therefore, interstitial fluid accumulates with the corresponding pressure increase. 

Thus, there is a net outflow of IF from the vascular tumor region. This increase of interstitial 

pressure has been physiologically observed and identified as critical to drug delivery to the 

tumor [26, 27, 28]. Our extensions to the model with the inclusion of angiogenesis modeled 

by the neovasculature phase and appropriate inter-phase exchange terms enable the 

simulation of this phenomenon. In the future, we will be able to evaluate the effect of the 

interstitial pressure increase on drug delivery.
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So far, only the parameter set of case 2 has been employed. Now, we want to compare the 

results with the two other cases. Results after 24 days are given in Figures 11a and 11b, 

respectively. We have chosen the parameter sets such that two distinct cases evolve. In the 

first case more oxygen is provided by the vasculature while the sensitivity of endothelial 

cells to TAF is decreased. This results in faster tumor growth compared to case 2 and 3 since 

more oxygen is available. At the same time angiogenesis occurs much slower due to the 

lower chemotactic coefficient and the overall higher oxygen concentration. For case 3 the 

exact opposite behavior can be observed. Less oxygen is present which slows down tumor 

growth. Vice versa this leads to faster angiogenesis than in case 1 and 2.

For a quantitative comparison of the three cases, the volume fractions of all entities have 

been evaluated at the symmetry axis y = 0. Volume fractions of extracellular matrix (ECM), 

interstitial fluid (IF), healthy cells (HC), living tumor cells (LTC), necrotic tumor cells 

(NTC) and neovasculature (NV) are shown in Figure 13. As already evident from the two-

dimensional plots from above, tumor growth is fastest for case 1 while the best and fastest 

vascularization is observed for case 3 due to the chosen parameters as explained before. 

However, also the largest necrotic zone develops for case 1 since the larger tumor consumes 

more oxygen which is insufficiently provided in the area further away from the tumor due to 

slow angiogenesis. For the early stages of growth blood vessels start to grow into the domain 

and displace HC, IF and to a certain extent also ECM. This is due to the appearance of the 

blood pressure in the definition of the solid pressure (22). If we had assumed a rigid ECM, 

the volume fraction of the ECM would have been unaffected by angiogenesis. The inclusion 

of the neovasculature as an additional phase with its own volume fraction allows us to model 

the interaction between porosity, ECM and NV volume fraction. With the previous species-

based approach [36] such a detailed insight would not have been possible. Later, excessive 

tumor and IF pressure increase the volume fraction of the fluid phase, i.e., the porosity ε in 

the proliferating zone. One drawback of the model formulation is that the neovasculature 

volume fraction is only mildly affected by fluid pressures. In the region with especially high 

tumor and IF pressure, for example around x = 0.2 in Figure 13k, the neovasculature volume 

fraction εv decreases slightly which is the effect of the grid velocity divergence term from 

(9) which is positive in this area. In reality, the instable blood vessels of the neovasculature 

are likely to be compressed more strongly by the tumor. In [31] this has for example been 

included by a radius adaption depending on the tumor pressure for discrete blood vessels. A 

similar approach for our continuous representation of blood vessel density can be added 

once blood flow in the (neo-)vasculature is explicitly modeled.

5. Conclusion

In this contribution we have advanced a dynamic vascular tumor growth model derived from 

Thermodynamically Constrained Averaging Theory. The model is based on multiphase flow 

through a deformable solid, the extracellular matrix. It includes important biological 

phenomena such as nutrient consumption, hypoxia and necrosis. With our continuum 

representation of the neovasculature as a proper phase with its own volume fraction or blood 

vessel density angiogenesis has been consistently incorporated. Adequate mass transfer 

terms and constitutive relations allow us to model chemotaxis, transcapillary leakage and 

lymphatic drainage. These extensions enable our model to reproduce the physiologically 
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present high interstitial pressure in tumors which has been identified as a major obstacle for 

successful drug delivery.

However, not all biological phenomena present in tumor growth have been addressed. As 

already mentioned, an explicit model of blood flow in the neovasculature is still missing. 

Relevant extensions could be blood vessel collapse due to high tumor pressure, haptotaxis 

and TAF uptake through endothelial cells. The modular structure of our code with an 

arbitrary number of species and fluid phases makes the implementation easily extendable. In 

the future, also the lymph system including lymphangiogenesis might enter it as a proper 

phase.

As most other vascular tumor growth models, our approach includes many biological and 

physical parameters. We have taken them as values reported in other contributions or close 

to them. Nevertheless, extensive validation and comparison with experimental data, which 

was beyond the scope of this paper, must be a focus of further research to enhance its 

applicability as a prognostic tool.

For that, we have investigated several coupling methods. While the model was previously 

only solved with a partitioned approach, we have presented a monolithic-partitioned and a 

fully monolithic framework. In all cases our fully monolithic scheme was superior in terms 

of robustness and computational efficiency. The strong coupling between fluid phases and 

the extracellular matrix severely limits the performance of the partitioned method while the 

one of the monolithic algorithms does not deteriorate for a wide range of parameters. We 

have achieved an average performance gain of 4.5 for the fully monolithic and 2.9 for the 

hybrid coupling compared to the partitioned one in a particular example. Further scalability 

and parameter studies for Different preconditioners such as the BGS(AMG) or the 

AMG(BGS) method are necessary to confirm these findings. The latter one might be the 

method of choice in the future to resolve the strong coupling between structure and fluid 

phases.

In future work we also plan to include a consistent coupling of the pre-existing vasculature 

represented as 1D elements with the volume fraction-based neovasculature approach 

developed here. This model would then be of hybrid and not pure continuum type anymore.
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Appendix A.: Additional Constitutive Equations and Mass Transfer Terms

For the saturation-pressure relationships Sα(pαβ) we apply the ones developed in [15, 16] for 

three-phase flow with pressure difference pαβ between each pair of fluid phases α, β. The 

relations are given as
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pℎl(Sl) = pℎ − pl = a ⋅ tan π
2 (1 − Sl)b

(A.1)

and

ptℎ(St) = pt − pℎ = aσtℎ
σℎl

⋅ tan π
2 (St)b . (A.2)

Herein, a and b are model constants and σαβ the interfacial tension between fluids α and β. 

The inverses of the above equations are needed for evaluating the derivatives ∂Sα/∂ψβ w.r.t. 

generic primary variables ψβ in (28) and (29) if these are chosen as pressure differences or 

pressures. The relation for the third phase follows simply as

Sℎ(ptℎ, pℎl) = 1 − Sl(pℎl) − St(ptℎ) (A.3)

in accordance with (5). For the relative permeabilities krel
α  the power law

krel
α = (Sα)

Aα (A.4)

with Aα > 1 of [15] in accordance with the relative wettability of the fluid phases is re-used. 

The effective diffusivity Deff
nl  of oxygen in the IF is calculated with the same power 

relationship as [15, 17], namely

Deff
nl = (εSl)δ

(A.5)

and TAF have constant diffusivity as in [30, 36]. Viscosity laws of the cell types have been 

employed in [15] to model cell adherence. This law has been included in our framework, 

however, we assume constant viscosities here as in [14, 17].

Finally, we summarize the mass transfer terms taken from [15] and listed in Table 1 but not 

explicitly given in the text. The mass exchange term M
l t

growth is employed for nutrient 

uptake and consumption of water related to tumor cell growth and is defined as

M
l t

growth = γgrowth
t ωnl − ωcrit

nl

ωenvnl − ωcrit
nl

+
1 − ωNt εSt . (A.6)

Nutrient uptake is modeled through the mass transfer relation for oxygen

M
nl t

= M
nl nt

= γgrowth
nl ωnl − ωcrit

nl

ωenvnl − ωcrit
nl

+
+ γ0

nlsin π
2

ωnl

ωenvnl 1 − ωNt εSt . (A.7)

The first term represents consumption of oxygen through growth of TC and the second one 

normal metabolism of TC. Finally, necrosis is accounted for through the intra-phase term
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εtrNt = γnecrosis
t ωcrit

nl − ωnl

ωenvnl − ωcrit
nl

+
1 − ωNt εSt . (A.8)

under hypoxia or nutrient shortage. Note that this term is Different from zero if the oxygen 

mass fraction falls below the critical value ωnl
crit while (A.6) and the first summand of (A.7) 

are only active above this limit. Furthermore, ωnl
env is the average mass fraction of oxygen 

in tissue and γ denotes mass transfer rates, see also Tables 3 and 4.

Appendix B.: Details on the Setup of the Benchmark Problem

Figure B.14: 
Geometry, initial and boundary conditions of the 3D benchmark problem (not to scale)

Figure B.14 depicts geometry, initial and boundary conditions of the benchmark example 

used throughout Section 4.1. For symmetry reasons only a 9° × 9° segment of the spherical 

3D geometry with radius 0.4 mm is considered with appropriate boundary conditions on its 

side faces. There is an inner region with radius r = 0.03 mm with an initial tumor cell 

saturation of St = 0.5 and a larger outer region where it is zero. 250 linear 3D elements are 

employed in radial direction resulting in a system consisting of in total 9, 632 degrees of 

freedom (structure, fluid and species). Before the actual simulation with 720 time steps is 

started, pressures are linearly increased from pl, pt, ph = 0 in 10 steps until the desired 

saturations in the sub-domains as shown in Figure B.14 are reached. This is necessary since 

otherwise the combined solid pressure ps would act immediately at t = 0. We found that this 

caused an unstable behavior at the beginning of the simulation such that without this 

initialization procedure sometimes no convergence was achieved in the first time step. 

During the initialization the structure deforms slightly such that also the porosity increases 

from the initial value ε0 to a value of ε ≈ 0.8 depending on material parameters.
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Figure 1: 
Components of the multiphase model
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Figure 2: 
Algorithm for one time step of partitioned scheme
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Figure 3: 
Algorithms for one time step of hybrid and monolithic coupling
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Figure 4: 
Typical sparsity pattern of monolithic system (56)
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Figure 5: 
Number of coupling iterations and calculation time per time step

Kremheller et al. Page 35

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Performance of coupling schemes depending on Young’s modulus
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Figure 7: 
Performance of coupling schemes depending on permeability
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Figure 8: 
Performance of coupling schemes depending on time step size Δt
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Figure 9: 
Geometry, initial and boundary conditions of the 2D angiogenesis example (not to scale)
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Figure 10: 
Evolution of living tumor cells and neovasculature (contour lines) for case 2
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Figure 11: 
Evolution of living tumor cells and neovasculature (contour lines) for cases 1 and 3
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Figure 12: 
Results of necrotic cells, oxygen, TAF and interstitial pressure for case 2 at t = 24d
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Figure 13: 
Volume fractions of components at symmetry axis y = 0
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Table 1:

Mass transfer terms for vascular tumor growth

Entity Symbol Term

Extracellular 
matrix ∑κ ∈ Jcs M

κ s
= 0

Healthy 
cells ∑κ ∈ Jcℎ M

κ ℎ
= 0

Tumor cells ∑κ ∈ Jcl M
κ t

= M
l t

growth

Interstitial 
fluid ∑κ ∈ Jcl M

κ l
= M

l t
growth + M

v l
leak − M

l ly
drainage

Necrotic 
tumor cells ∑κ ∈ Jct M

Nκ Nt
+ εtrNt − ωNt ∑κ ∈ Jct M

κ t
= εtrNt − ωNt M

l t
growth

Oxygen ∑κ ∈ Jcl M
nκ nl

+ εlrnl − ωnl ∑κ ∈ Jcl M
κ l = 

M
nl t

+ Mtc
nv nl

− ωnl M
v l

leak − M
l t

growth

Tumor 
angiogenic 
factors

∑κ ∈ Jcl M
TAFκ TAFl

+ εlrTAFl − ωTAFl ∑κ ∈ Jcl M
κ l = 

M
TAFt TAFl

− ωTAFl M
v l

leak − M
l t

growth
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Table 2:

Parameters for the ECM of the 2D angiogenesis example

Quantity Symbol Value Unit

Density [15] ρs 1000 kg/m3

Intrinsic permeability of the ECM (see comment in text) k 1 · 10−15 m2

Poisson’s ratio [15] v 0.4 –

Young’s modulus (see comment in text) E 800 Pa
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Table 3:

Parameters for the fluid phases of the 2D angiogenesis example

Quantity Symbol Value Unit

Density of the fluid phases [15] ρl, ρh, ρt 1000 kg/m3

HC-IF interfacial tension [15] σhl 72 mN/m

TC-HC interfacial tension [15] σth 36 mN/m

TC-IF interfacial tension [15] σtl 108 mN/m

Coefficient a in saturation-pressure relationship [15] a 590 Pa

Coefficient b in saturation-pressure relationship [15] b 1 –

Dynamic viscosity of IF [15] μl 0.01 Pa/s

Dynamic viscosity of HC and TC [15] μh, μt 20 Pa/s

Exponent in the relative permeability law for IF [15] Al 4 –

Exponent in the relative permeability law for HC and TC [15] Ah, At 2 –

Initial porosity in the domain [15] ε0 0.8 –

Growth coefficient of tumor cells [17] γgrowth
t 4 · 10−2 kg/(m3s)
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Table 4:

Parameters for the species of the 2D angiogenesis example

Quantity Symbol Value Unit

Diffusion coefficient of oxygen in IF [15] D0
nl 3.2 · 10−9 m2/s

Coefficient δ for nonlinear diffusion law of oxygen in IF [15] δ 2 —

Diffusion coefficient of TAF in IF [36] DTAFl 3.5 · 10−4 m2/s

Diffusion coefficient of NTC in TC [14] DNt 0 m2/s

Normal mass fraction of oxygen in tissue [17] ωenvnl 4.2 · 10−6 —

Critical mass fraction of oxygen [17] ωcrit
nl 1.0 · 10−6 —

Limit mass fraction of oxygen for hypoxia [36] ωhyp
nl 4.0 · 10−6 —

Necrosis coefficient [17] γnecrosis
t 1 · 10−2 kg/(m3s)

Consumption related to growth [17] γgrowth
nl 2 · 10−4 kg/(m3s)

Consumption related to normal metabolism [17] γ0
nl 3 · 10−4 kg/(m3s)

Production rate of TAF under hypoxia [36] γproduction
TAF 1 · 10−3 kg/(m3s)
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Table 5:

Parameters for angiogenesis, transcapillary and lymphatic exchange

Quantity Symbol Value Unit

Diffusion coefficient of neovasculature or EC (half the value of [30]) Dv 5 · 10−15 m2/s

Chemotactic coefficient (see comment in text) χ0 case 1: 5 · 10−3

case 2: 1 · 10−2

case 3: 2 · 10−2

m2/s
m2/s
m2/s

Constant for receptor-kinetic law (35) [30] ωχ0/2
TAFl 1 · 10−10 –

Blood pressure in capillaries [27, 31] pblood 2660 Pa

Osmotic pressure difference [31] ω(πblood – πl) 1333 Pa

Hydraulic conductivity for transcapillary flow [31, 50] Lp,v 2.1 · 10−11 m/(Pas)

Surface-to-volume ratio for transcapillary flow [50] (S/V)v 2 · 104 m−1

Hydraulic conductivity for lymphatic drainage (see comment in text) Lp,ly 1 · 10−9 m/(Pas)

Surface-to-volume ratio for lymphatic drainage (same as (S/V)v) (S/V)ly 2 · 104 m−1

Threshold for lymphatic vessel collapse (see comment in text) pcoll
t 500 Pa

Transcapillary diffusion coefficient over wall thickness (see comment in text) Dtc/t case 1: 2 · 10−5

case 2: 1 · 10−5

case 3: 5 · 10−6

m/s
m/s
m/s
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