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Abstract: The microflora of Korean soy sauce (gangjang) play an important role in maintaining its
quality and safety. Hence, it is important to study the microflora and the possible approaches to
improve their composition. In this study, the effect of adding coriander during soy sauce fermentation
on the microflora and biogenic amines was evaluated using metagenomics and 1H NMR analyses,
respectively. The β-diversity showed a clear distinction between the microbiota of the coriander and
control groups. Microbial composition analysis revealed noticeable shifts, as Firmicutes abundance
was significantly higher in the coriander group (91.77%) than that in the control (38.78%). The dominant
bacterial family in the coriander group was the Bacillaceae (57.94%), while Halomonadaceae was
dominant in the control group (49.77%). At the species level, Chromohalobacter beijerinckii dominated
the microbial community in the control group (49.54%), but not (4.43%) in the coriander group.
Moreover, there was a negative correlation between the Bacillaceae and several other bacterial
families, including Halomonadaceae, which indicated a possible antagonism and partly explained
the reduction in Chromohalobacter abundance in the coriander group. The levels of the biogenic
amines histamine, putrescine, and tyramine, which are considered potential health risk factors, were
significantly lower in the coriander soy sauce than those in the control sauce. The results of this study
suggest that the addition of coriander during Korean soy sauce fermentation is beneficial, as coriander
significantly reduces the levels of biogenic amines and the bacteria that produce them.
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1. Introduction

Soy sauce is the most popular fermented soybean product, owing to its distinct intense umami
taste; it is mainly used as a flavoring condiment worldwide [1]. In East Asia, each country has its
unique soy sauce, which slightly differs based on the traditional method of preparation and the
ingredients used [2]. In Korea, traditional fermented soy sauce (gangjang) is prepared from soybean
blocks (meju), which are fermented by leveraging the fungal and bacterial populations naturally
occurring in the raw materials. The dry, moldy blocks are then soaked in brine solution (~20% salt) for
a second long-term fermentation that produces a solid component, doenjang, and a liquid component,
gangjang [3]. An array of aromatic and flavoring compounds, as well as several bioactive compounds,
have been detected in soy sauce [4]. Previous reports have indicated the potential health benefits of
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soy sauce, including a preventive effect on thrombus formation, as well as antioxidant, antitumor,
antimicrobial activities [5–8].

The quality and properties of fermented soy sauce depend—for the most part—on the microbial
composition during fermentation. As this fermentation is conducted under non-sterile conditions and
relies on the spontaneous growth of bacteria and fungi, it is not surprising that there are huge variations
in the composition of fermented soy sauce microbiota. Variations in the microbial composition of soy
sauce may result in the following: (1) differences in the organoleptic properties and (2) the possible
generation of undesirable metabolites, such as biogenic amines or toxins [9,10]. Biogenic amines are
low-molecular weight organic compounds that are found in fermented foods; they are generated
as a result of amino acid decarboxylation or the amination and transamination of aldehydes and
ketones by specific microbes [11,12]. The consumption of large amounts of biogenic amines can result
in physiological and toxicological effects that may lead to poisoning; hence, the content of biogenic
amines in fermented foods should be minimized [12]. Therefore, it is of great importance to study the
microbial composition and factors that affect and shape the microbial profile of traditional soy sauce.

There are a few reports on the microbial composition of fermented soy sauce. In general, the brine
fermentation step restricts the growth of several undesirable microbes and creates more favorable
conditions for the growth of halophilic lactic acid microbes, which dominate in soy sauce and are
mainly responsible for the flavor [10]. 16S rRNA sequence analysis has been used to study the microbial
composition of Korean soy sauce; it has revealed Halanaerobium, Tetragenococcus, Staphylococcus,
and Bacillus spp. to be the dominant microbes [9]. Recently, culture-independent techniques utilizing
advanced high-throughput sequencing have been used for microbial community profiling of several
fermented foods [13,14]. However, only a limited number of studies have used such an advanced
approach to study the microbial composition of traditional Korean soy sauce [15,16]. A recent study
showed that halotolerant and halophilic microbes are mainly responsible for soy sauce fermentation,
and that they are derived from the sea salt added before the brine fermentation step, whereas the
non-halophilic microbes derived from meju are abundant during the early fermentation stages [15].

Herbs and spices are well-known food additives (with potential health benefits) that preserve food
and exhibit antioxidant activity by virtue of their high phenolic contents [17,18]. Coriander (Coriandrum
sativum L.) is a member of the Umbelliferae family; this annual, herbaceous plant has culinary and
medicinal uses [19]. Coriander leaves and seeds are rich sources of antioxidants, and contain volatile
compounds that have been reported to inhibit the growth of a range of microorganisms [20,21].
Therefore, we hypothesized that the incorporation of coriander during soy sauce production via
fermentation would have a significant impact on the microbial composition, possibly leading to a
reduction in the levels of harmful metabolites. The objective of this study was to evaluate the effect
of adding coriander during the fermentation of Korean soy sauce on the microbial composition and
biogenic amine contents using high-throughput metagenomic sequencing and proton nuclear magnetic
resonance spectroscopy (1H NMR), respectively.

2. Materials and Methods

2.1. Preparation of Soy Sauce Samples

Soy sauce samples were prepared using the traditional two-stage Korean method [3]. Briefly, dry
cooked soybean blocks (meju) were firstly fermented using naturally occurring bacteria and fungi.
The prepared fermented moldy meju blocks (~2 kg, Gigang County, Korea) were then soaked in
6 L of 20% (w/v) solar salt solution (Shinan, Korea) in porcelain containers. Pure charcoal (3 pieces;
3 cm × 3 cm × 10 cm) and dried red pepper (5 pieces) purchased from the local market (Gigang County)
were added to the mixture. In the treatment samples, 200 g of fresh coriander was added to the mixture
after trimming the roots. The mixture was then fermented for 45 days under sunlight; the lid of the
pot was open by day and closed by night. The solid component, fermented soy paste (doenjang), was
separated from the liquid component, soy sauce (gangjang); this was followed by boiling for 10 min.
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The soy sauce samples were then stored at 4 ◦C until they were used for metagenomic sequencing
and analysis.

2.2. DNA Extraction, Sequencing, and Metagenomic Analysis

The collected soy sauce samples were first centrifuged for 15 min at 10,000× g and the obtained
pellet was washed with sterile distilled water to remove excess water and salts. A part of the obtained
pellet (250 mg) was used for metagenomic DNA extraction using a PowerSoil® DNA Isolation Kit
(MO BIO Laboratories, Carlsbad, CA, USA), based on the manufacturer’s protocol. The obtained DNA
was checked for quality and concentration using agarose gel electrophoresis and a NanoDrop2000
spectrophotometer (Thermo Fisher Scientific, Wilmington, NC, USA). Qualified samples were stored
in Tris-EDTA buffer at −20 ◦C until further analysis.

The hypervariable regions, V3 and V4, of the 16S rRNA gene were used for the metagenomic
analysis of the obtained DNA samples. The conditions of PCR amplification and sequencing, which were
performed in an Illumina® MiSeq® platform at Macrogen (Seoul, South Korea), were based on the
protocol provided along with the Herculase II fusion DNA polymerase Nextera XT Index Kit V2.
The following primer pair was used:

(F), 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′;
(R), 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′.
The paired-end reads obtained from sequencing were merged using the fast length adjustment

of short reads (FLASH; http://ccb.jhu.edu/software/FLASH/) [22]. The Illumina adaptors and the
short and low-quality reads were trimmed, and the raw sequences were purified using the Scythe
(v0.994) (https://github.com/vsbuffalo/scythe) and Sickle programs (https://github.com/najoshi/sickle).
Following purification, clustering and annotation were performed using the CD-HIT-OTU-MiSeq and
UCLUST algorithms, and qualified sequences were organized into respective operational taxonomic
units (OTUs) at a cut off value of 97%, using the Greengenes database [23–25]. Analysis of the
microbiota of soy sauce samples—including diversity statistics and taxonomic assignments of the
obtained OTUs from the phylum to the species level—was performed using the Quantitative Insights
into Microbial Ecology version 2 (QIIME2) pipeline [26]. The obtained sequences were deposited as a
sequence read archive in the National Center for Biotechnology Information database (Bethesda, MD,
USA) under the BioProject ID PRJNA640944.

2.3. Quantification of Biogenic Amines Using 1H NMR Spectroscopy

Biogenic amines (i.e., histamine, putrescine, and tyramine) in the prepared Korean soy sauce were
analyzed using 1H NMR spectroscopy as per a previously described method [27]. Briefly, 1 mL—from
each 10-fold diluted supernatant—of each Korean soy sauce sample was freeze-dried and dissolved
in 600 µL of 99.9% deuterium oxide containing 2 mM trimethylsilylpropanoic acid (Sigma-Aldrich,
St. Louis, MI, USA) for standardization. The solutions were then transferred into NMR tubes, and their
1H NMR spectra were recorded using a Bruker Avance 500 MHz spectrometer (Bruker Biospin,
Rheinstetten, Germany). Histamine, putrescine, and tyramine were identified and quantified using the
profiler option in the Chenomx NMR suite program (v8.6, Chenomx Inc., Edmonton, AB, Canada).

2.4. Statistical Analysis

Statistical analysis of the bacterial microbiome was performed using QIIME2 scripts,
R (version 3.1.3), and the PAleontological STatistics software package (PAST) version 3.23 [28].
Principle coordinates analysis (PCoA) was performed based on Bray–Curtis and Euclidean distances,
for assessing the β-diversity between groups. Student’s t-test was used for statistical analysis of the
relative abundance of bacterial taxa at different taxonomic levels, and p-values < 0.05 were considered
significant. Pearson’s correlation analysis and correlogram plotting were performed using PAST.

http://ccb.jhu.edu/software/FLASH/
https://github.com/vsbuffalo/scythe
https://github.com/najoshi/sickle
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3. Results

3.1. Microbial Diversity in Soy Sauce Samples Prepared with or without Coriander

High-throughput sequencing resulted in 1,374,263 reads with an average of 229,044 reads per
sample; the total bases, read counts, GC%, Q20%, and Q30% for each sample are shown in Table S1.
Following pre-processing and clustering using CD–HIT–OTU to remove low-quality reads and
chimeras, 470,857 total reads were obtained with an average of 78,476 ± 19,598 reads per sample,
ranging from a minimum of 48,207 to a maximum of 100,810.

Rarefaction analysis on the sequences obtained from both soy sauce groups indicated satisfactory
sequencing depth, as a near plateau level was achieved at approximately 2000 reads, particularly
for the control group (Figure 1A). The number of OTUs was significantly (p < 0.05) higher in the
control soy sauce group compared to that in the coriander group (Figure 1B). There was no significant
difference between both groups with respect to Chao1 richness and Shannon alpha diversity index
(Figure 1C,D). However, the inverse Simpson index was significantly higher for the coriander soy
sauce group compared to that for the control (Figure 1E).
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Figure 1. (A) Rarefaction curves of the obtained 16S rRNA sequence reads against the assigned
operational taxonomic units (OTUs). Alpha diversity in soy sauce samples prepared by adding
coriander, compared to that in control. (B) Number of OTUs, (C) Chao1 richness index, (D) Shannon
diversity index, and (E) inverse Simpson’s index. Data represent means and standard deviations
of three replicates for each soy sauce group. *: a significant difference at p < 0.05. C = control,
T = coriander treatment.
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PCoA revealed an evident distinction between both soy sauce groups with respect to theβ-diversity,
as measured using the Bray–Curtis and Euclidean distance matrices (Figure 2A,B).
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3.2. Microbial Structure and Dominant Taxa in Coriander and Control Soy Sauce

Noticeable differences were observed upon plotting the relative abundance of microbial taxa at
different taxonomic levels on stacked bar graphs. At the phylum level, Firmicutes and Proteobacteria
were the two major groups in all the samples. Firmicutes was abundant in all the coriander soy sauce
samples, with a relative abundance average of 91.78% ± 0.03% compared to 38.03% ± 0.04% in the
control group, whereas Proteobacteria was abundant in the control group, with an abundance
average of 60.88% ± 0.04% compared to 8.12% ± 0.03% in the coriander group (Figure 3A).
The Firmicutes and Proteobacteria in both samples were mainly composed of members of the
Bacilli and Gammaproteobacteria classes, respectively (Figure 3B).

At the order level, the main difference was the dominance of the Bacillales and Oceanospiralles
in the coriander and control groups, respectively, with corresponding abundance averages of
70.71% ± 0.02% and 49.77% ± 0.08% (Figure 3C). At the family level, the coriander group was
dominated by Bacillaceae, Enterococcaceae, Staphylococcaceae, and Halomonadaceae, with average
relative abundances of 57.95% ± 0.04%, 17.94% ± 0.01%, 9.55% ± 0.01%, and 4.54% ± 0.02%,
respectively. The control group was dominated by Halomonadaceae, Enterococcaceae, Bacillaceae,
and Pseudomonadaceae, with average relative abundances of 49.77% ± 0.08%, 25.67% ± 0.03%,
7.63% ± 0.03%, and 5.51% ± 0.00%, respectively (Figure 3D). At the genus level, the coriander group
was dominated by Cerasibacillus, Virgibacillus, Tetragenococcus, Staphylococcus, and Chromohalobacter spp.,
with average relative abundances of 32.82% ± 0.03%, 16.51% ± 0.01%, 16.48% ± 0.01%, 9.54% ± 0.02%,
and 4.44% ± 0.01%, respectively. The control group was dominated by Chromohalobacter, Tetragenococcus,
Bacillus, Pseudomonas, and Pantoea spp., with average relative abundances of 49.54% ± 0.08%,
23.53% ± 0.03%, 5.73% ± 0.01%, 5.51% ± 0.00%, and 5.00% ± 0.04%, respectively (Figure 3E).
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At the species level, the coriander group was dominated by Cerasibacillus quisquiliarum,
Virgibacillus proomii, Tetragenococcus halophilus, Staphylococcus equorum, and Chromohalobacter
beijerinckii, with average relative abundances of 32.82% ± 0.03%, 16.50% ± 0.01%, 16.48% ± 0.01%,
6.52% ± 0.02%, and 4.44% ± 0.01%, respectively. The control group was dominated by C. beijerinckii,
T. halophilus, Bacillus haynesii, Pantoea vagans, and Pseudomonas weihenstephanensis, with
average relative abundances of 49.54% ± 0.08%, 23.53% ± 0.03%, 5.24% ± 0.01%, 5.00% ± 0.04%,
and 4.31% ± 0.00%, respectively (Figure 3F). The microbial taxa that existed at significant levels
(p < 0.05) in the coriander and control soy sauce groups are shown in Figure 4.

The Pearson’s correlation relationship among the microbial taxa at the family level indicated
various positive correlations; only the Bacillaceae family showed significant negative correlation
with the Halomonadaceae, Carnobacteriaceae, Enterococcaceae, Planococcaceae, Micrococcaceae,
Sanguibacteriaceae, Sphingobacteriaceae, and Tissierellaceae families (Figure 5).
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3.3. Reduction in the Biogenic Amine Content in Korean Soy Sauce upon Addition of Coriander
during Fermentation

1H NMR quantification of biogenic amines revealed that the contents of histamine, putrescine,
and tyramine were significantly (p < 0.05) lower in the Korean soy sauce samples prepared by adding
coriander during fermentation, compared to those in the control (Figure 6). The percentages of
inhibition were 48.03% ± 3.65%, 43.96% ± 3.27%, and 57.74% ± 4.89% for histamine, putrescine,
and tyramine, respectively.
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4. Discussion

Fermented food microbiota are directly associated with the quality and safety aspects of the food,
and may directly or indirectly affect human health [29]. Therefore, the ultimate objective for improving
food quality is to ensure product safety by determining the microbial composition of fermented foods
and analyzing the possibilities for deliberately manipulating the community structure [30]. In this
study, the microbiota in Korean soy sauce were investigated, and the effect of coriander on the microbial
composition and the content of biogenic amines was studied, with the intention of regulating the
fermentation conditions to improve soy sauce quality.

An earlier study using a 16S rRNA PCR-based culture-independent approach indicated that
Korean soy sauce microbiota are mainly composed of Haloanaerobium, Tetragenococcus, Staphylococcus,
and Bacillus spp. [9]. A more recent study that utilized a next-generation high-throughput
sequencing-based approach—similar to the approach used in the current study—indicated that
the halotolerant and halophilic microbes derived from the sea salt added during fermentation—such as
Tetragenococcus, Staphylococcus, and Chromohalobacter spp.—were responsible for Korean soy sauce
fermentation [15]. Tetragenococcus was found in another study to be related to production of aroma-active
and umami taste constituents such as aspartic acid, glutamic acid and alanine, indicating its important
role in the fermentation of soy sauce [31]. Consistently, the control soy sauce group in the current
study was dominated by halophilic Chromohalobacter and Tetragenococcus spp., whereas the coriander
group was dominated by Tetragenococcus spp. and spore-forming Bacillaceae such as Cerasibacillus and
Virgibacillus spp., indicating a clear shift between the soy sauce groups. Spore-forming Bacillaceae can
survive extreme environmental conditions—such as high-salt and undernutrition environments—that
may kill vegetative bacterial cells [32]. Non-halophilic microbes that survive during the second
fermentation step are mainly derived from meju, and may not play a major role in soy sauce
fermentation [15].

The significant shift in the microbial community in the coriander soy sauce group can be attributed
to the antimicrobial activity of the bioactive compounds present in coriander. Coriander has been
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shown to contain volatile compounds that may be detrimental to the growth of certain bacterial
groups [18]. The essential oils present in coriander have also been shown to exert antimicrobial activity
against Gram-negative and Gram-positive foodborne pathogenic bacteria, such as Escherichia coli,
Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus [21]. Moreover, coriander oil
shows potent antimicrobial activity against pathogenic Campylobacter jejuni [33]. In the current study,
there was a clear distinction between the microbial compositions of the soy sauce prepared using
coriander and the control, as Firmicutes was dominant in coriander soy sauce, while Proteobacteria
was dominant in the control.

The control soy sauce was dominated by C. beijerinckii with approximately 50% relative abundance,
which dramatically decreased in the coriander soy sauce to less than 5%. Chromohalobacter beijerinckii
is a psychrophilic, extremely halotolerant Gram-negative bacterium typically found in highly salted
environments such as salty beans and herrings [34]. It is known to produce biogenic amines, such as
putrescine, histamine, and tyramine, which are low-molecular weight nitrogenous microbial metabolites
originating as a result of the decarboxylation of specific amino acids and nitrogen compounds during
fermentation [12,35]. The excessive consumption of biogenic amines is associated with adverse
toxicological effects [12]. Hence, it is important to monitor the potential microbial producers of biogenic
amines in fermented foods and to manage their population.

In a previous study, simultaneous investigation of the metabolites and the bacterial community
of Korean soy sauce showed that Chromohalobacter was the dominant genus toward the end of
the fermentation, and that it closely correlated with the production of biogenic amines, including
putrescine [27]. In the current study, the changes in the microbial composition could consistently
explain the significant reduction in the levels of biogenic amines (histamine, putrescine, and tyramine)
in the coriander soy sauce samples. The presence of histamine, putrescine, and tyramine, as well as
other biogenic amines in food, is associated with health risks; owing to their potential toxicity, avoiding
their accumulation in foods is advisable [36]. Histamine poisoning is a known risk factor associated
with the consumption of histamine-rich foods and could lead to serious allergen-type reactions at high
levels [37]. The presence of other types of biogenic amines such as putrescine enhance the toxicity of
histamine [38]. In addition, acute and subacute putrescine and tyramine toxicity were confirmed in
animal model studies and their consumption in large amounts was linked to dietary-induced migraines
and hypertensive crisis [38,39]. Therefore, the significant reduction in C. beijerinckii abundance in
coriander soy sauce suggests that coriander addition during the fermentation of soy sauce is beneficial
as it controls the levels of biogenic amines.

A correlation analysis provided insights into the relationships among the detected microbes,
although several other factors—during the fermentation process—should have been considered.
The significant negative correlation between Bacillaceae and Halomonadaceae could be attributed to
possible antagonistic activity that resulted in a reduction in the relative abundance in the coriander soy
sauce group, which showed a higher relative abundance of Bacillaceae, but showed a low abundance
of potential biogenic amine producers, i.e., Chromohalobacter spp.

The results of this study suggest that adding coriander during the fermentation of Korean soy
sauce is beneficial for inhibiting the production of undesirable metabolites. In particular, the levels
of the biogenic amines, histamine, putrescine, and tyramine, and the biogenic amine–producing
bacterium C. beijerinckii were significantly lower in the coriander-supplemented Korean soy sauce
compared to those in the control. Further studies that consider other quality and safety aspects related
to the addition of coriander during soy sauce fermentation are required.
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