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a b s t r a c t

Studies have reported significant reductions in air pollutant levels due to the COVID-19 outbreak
worldwide global lockdowns. Nevertheless, all of the reports are limited compared to data from the same
period over the past few years, providing mainly an overview of past events, with no future predictions.
Lockdown level can be directly related to the number of new COVID-19 cases, air pollution, and economic
restriction. As lockdown status varies considerably across the globe, there is a window for mega-cities to
determine the optimum lockdown flexibility. To that end, firstly, we employed four different Artificial
Neural Networks (ANN) to examine the compatibility to the original levels of CO, O3, NO2, NO, PM2.5, and
PM10, for S~ao Paulo City, the current Pandemic epicenter in South America. After checking compatibility,
we simulated four hypothetical scenarios: 10%, 30%, 70%, and 90% lockdown to predict air pollution
levels. To our knowledge, ANN have not been applied to air pollution prediction by lockdown level. Using
a limited database, the Multilayer Perceptron neural network has proven to be robust (with Mean Ab-
solute Percentage Error ~ 30%), with acceptable predictive power to estimate air pollution changes. We
illustrate that air pollutant levels can effectively be controlled and predicted when flexible lockdown
measures are implemented. The models will be a useful tool for governments to manage the delicate
balance among lockdown, number of COVID-19 cases, and air pollution.

© 2020 Elsevier Ltd. All rights reserved.
Artificial Neural Networks showed to be robust predictive tools
to estimate the best equilibrium among COVID-19 cases, lockdown
percentage, and air pollutants level.
1. Introduction

The World Health Organization (WHO) stated that South
e by Prof. Pavlos Kassomenos.

r, yaratadano@gmail.com
America is the new epicenter of the coronavirus pandemic (CNBC,
2020), and Brazil, one of the countries with the highest incidence
of new cases and the second highest total number of cases in the
world. A study done by scientists from Imperial College, London,
showed that Brazil had the highest rate of transmission (R0 of 2.81)
among the 48 countries they investigated (The Lancet, 2020). To
date (September 3, 2020), 6.6% of Brazil’s total cases (3,997,865)
were recorded in S~ao Paulo city (262,570). This number constitutes
more than 30% of the cases reported in S~ao Paulo state (826,331).
On September the 3rd the number of deaths in S~ao Paulo city was
11,554 (4.4% of confirmed cases of COVID-19 led to death), higher
than the global (3.3%) (SEADE, 2020).
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Due to the rapid person-to-person transmission of COVID-19,
S~ao Paulo state government ordered lockdown on March 24,
2020, closing all (Secondary schools, Universities, Shopping Malls
and, other commercial entities) but essential services (Nakada and
Urban, 2020). As expected, beyond the efficiency to suppress the R0
(Wilder-Smith and Freedman, 2020), these actions led to the
scaling down in traffic, industrial and trade activities, and conse-
quent reduction in air pollution levels, therefore improving air
quality as a whole (Dutheil et al., 2020).

In response to the exponential increase in infection rates of the
virus worldwide, local and national governments relaxed envi-
ronmental legislation. For instance, the US EPA allowed industries
and other facilities autonomy to decide and report if they meet the
legislated requirements (Wu et al., 2020). Similarly, the Brazilian
government has largely negated enforcement of environmental
legislation during the coronavirus outbreak (The Guardian, 2020),
which resulted in additional industrial air pollution emission, as
well as, an increase in deforestation in the Amazon (de Oliveira
et al., 2020). The danger is that reduced enforcement will
continue past virus’s peak to stimulate the economy and therefore
put the population at risk.

Various scientists reported decreased air pollutant levels,
comparing pre- and post COVID-19 air pollution levels using
different methods and scales (Chauhan and Singh 2020; Dantas
et al., 2020; Le et al., 2020; Li et al., 2020; Muhammad et al.,
2020; Nakada and Urban, 2020; Sharma et al., 2020; Shehzad
et al., 2020; Tobías et al., 2020). However, the available air pollu-
tion studies related to the COVID-19 situation are based on satellite
images, air quality modeling and generally comparing lockdown
period data with monthly means over the past few years. World-
wide, most studies reported in the literature indicated reductions
in NOx and PM2.5 levels and an increase in O3 concentration during
lockdown (Nakada and Urban, 2020; Sharma et al., 2020; Sicard
et al., 2020; Siciliano et al., 2020; Tobías et al., 2020). The
following are a few examples of studies using these approaches.

Many researchers worldwide reported a reduction in NO2 con-
centration levels (Chauhan and Singh, 2020; Muhammad et al.,
2020; Zambrano-Monserrate et al., 2020). Zambrano-Monserrate
et al. (2020) reported reductions in China, USA, Italy, and Spain,
when Copernicus Atmosphere Monitoring Service data for PM2.5
and NO2 were compared to the previous three years. Rodríguez-
Urrego and Rodríguez-Urrego (2020) studied PM2.5 profiles of the
50 most polluted countries and reported an average reduction of
12% worldwide. They used the World Air Quality Index platform to
obtain data and compared it to the previous 2 years.

Closer to home, Dantas et al. (2020) and Nakada and Urban
(2020) compared various air pollutants (including CO, O3, NO2,
NO, PM2.5, PM10, and SO2) over different time scales (one year to
five-year trend) in Rio de Janeiro and S~ao Paulo, respectively. In
both cases, local data were used. Both studies indicated a reduction
of all pollutants investigated, except for ozone, which increased.

These approaches (using satellite images, air quality modeling
and generally comparing lockdown period data with monthly
means over the past few years) are limited as it provides mainly an
overview of past events, with no future predictions.

Artificial Neural Networks (ANN), on the other hand, is a
nonlinear methodology capable of mapping a set of inputs into an
output, which is important to support decisions regarding pre-
ventive measures. This approach has been used in air pollution
epidemiological studies (Araujo et al., 2020; Kachba et al., 2020;
Kassomenos et al., 2011; Tadano et al., 2016; Polezer et al., 2018). In
Araujo et al. (2020) and Kassomenos et al. (2011), the ANN showed
a better performance than linear approaches as Generalized Linear
Models. Kassomenos et al. (2011) also concluded that ANN is amore
2

flexible and adaptive mathematical approach.
In this context, as lockdown status varies considerably across

the globe, there is a window of opportunity for mega-cities to
determine the optimum level of lockdown to ensure effective
management of transmission rates, air quality, and a healthy
economy. To our knowledge, ANN have not been applied to air
pollution prediction by lockdown level.

To that end, we used four Artificial Neural Networks (ANN)
(Extreme Learning Machine e ELM; Echo State Network e ESN;
Multilayer perceptroneMLP and Radial Basis Function Networkse
RBF) to estimate the influence that newly reported COVID-19 cases
and lockdown level may have on the local air pollution (CO, O3,
NO2, NO, PM2.5, and PM10 levels) in S~ao Paulo city. After checking
compatibility, we simulated four hypothetical partial lockdown
scenarios (10, 30, 70, and 90%) to investigate the relationship be-
tween reduced activities and air quality.

In the light of evidence that poor air quality may exacerbate
COVID-19 symptoms (Wu et al., 2020), and potentially lead to
higher mortality rates, the ANN showed to be a useful predictive
tool for governments. Using this approach, resumption of industrial
and other activities can bemanaged to ensure a sustainable balance
among economic health, air quality, and transmission rate.
2. Materials and methods

The data of S~ao Paulo city was selected to examine the robust-
ness of our approach. S~ao Paulo is the most populous city of Latin
America, with around 12.25 million inhabitants (IBGE, 2020), the
main hotspot of COVID-19 in Brazil, and one of the most polluted
cities in Latin America. The inputs were: daily number of COVID-19
cases, partial lockdown level, and meteorological variables; the
outputs were the daily concentration of each air pollutant (CO
[ppm], O3 [mg/m3], NO2 [mg/m3], NO [mg/m3], PM2.5 [mg/m3], and
PM10 [mg/m3]).

Data on the daily number of newly reported COVID-19 cases and
lockdown percentages was collected from March 17, 2020 to May
13, 2020 from the Statistical Portal of S~ao Paulo State (SEADE, 2020).
The Intelligence Monitoring System of S~ao Paulo has an agreement
with mobile phone companies to track people’s movement. This
georeferenced anonymised information is available on the SEADE
website and has been used in this study.

Meteorological variables were extracted from the Environ-
mental Company of S~ao Paulo State database (CETESB). These
included: relative humidity e RH [%]; maximum temperatureeMT
[oC]; atmospheric pressure e AP [hPA]; wind speedeWS [m/s] and
global solar radiationeGSR [W/m2]) (CETESB, 2020).

The data on target pollutant levels of CO [ppm], O3 [mg/m3], NO2
[mg/m3], NO [mg/m3], PM2.5 [mg/m3], and PM10 [mg/m3] concentra-
tions were selected from January 01, 2020 to May 13, 2020 (134
samples). As a matter of comparison and to improve the ANN
performance, we included the data for a period with zero COVID-19
cases and no lockdown (data from January 01, 2020 to March 16,
2020).

Daily concentrations were extracted from the CETESB. More
than sixty-six percent of the hourly averages were similar to the
daily average. The data were ratified by the CETESB, who follows
the quality assurance/quality control (QA/QC) procedure approved
by the State Council of Environment (CONSEMA) of the State of S~ao
Paulo. Beta radiation is used for PM10 and PM2.5 measurements,
chemiluminescence for NO2 and NO, non-dispersive infrared for
CO, and ultraviolet analysis for O3 (CETESB, 2020).

Data from four CETESB air quality monitoring stations (AQMS)
were used due to their locations (Fig. 1). The largest data sets could
be obtained from D. Pedro II station (blue spot - located in a high



Fig. 1. Locations of the air quality monitoring stations in S~ao Paulo. The satellite map is from Google Maps (Map data©2020 Google; https://www.google.com/maps/place/Brazil/);
the satellite is from Google Earth Pro (Map data©2020 Google; www.google.com/maps/@-23.6815315,-46.8754814,10z). The maps were edited with Microsoft Power Point (version
16.28e19081202). Note: AQMS: Air Quality Monitoring Station; Tietê: ring road; D. Pedro II: downtown; *Tietê station has no O3 data and was replaced by data from USP-Ipen
station.
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demographic density area) and Tietê station (red spot located near
a busy ring road). D. Pedro II station is located downtown e high
demographic density area; influenced mainly by a light-duty fleet,
and Tietê station is near a ring road, characterizedmainly by heavy-
duty emissions.

Table 1 shows that even at these two stations, some data is
lacking. PM2.5 data from D. Pedro II station had several gaps in the
data set for consecutive days, and these were replaced by data from
Mooca station (yellow spot) (CETESB, 2020), as the linear correla-
tion of the data with those from D. Pedro II station is 0.95. For
missing data from non-consecutive days, the previous day’s values
were used. Tietê station had no ozone data, and it was supple-
mented by data from a nearby location USP-Ipen station (green
spot).

2.1. Artificial Neural Networks

The four ANN used in this study are described below (further
details in Araujo et al. (2020)).

2.1.1. Multilayer Perceptron overview
The Multilayer Perceptron (MLP) is a neural model able to map

any nonlinear, continuous, limited, and differentiable functionwith
arbitrary precision, which confers a characteristic of a universal
approximator (Haykin, 2008). The basic structure of an ANN is the
Table 1
Number of days with no data for each studied AQMS.

AQMS CO O3 NO2 NO PM10 PM2.5

Tietê* 2 0* 0 0 1 2
D. Pedro II 4 1 0 0 0 10

Note: AQMS: Air Quality Monitoring Station; Tietê: ring road; D. Pedro II: down-
town; * Tietê station has no O3 data and was replaced by data from USP-Ipen
station.
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artificial neurons, functional units responsible for processing the
information, and providing the output response (de Castro, 2007).

In an MLP, the neurons are distributed in three kinds of layers.
The input layer transmits the data to the intermediate (hidden)
layers, where the neurons perform a nonlinear transformation,
mapping the input signal to another space. Then, the signal is sent
to the output layer, inwhich the output signal is generated based on
a linear combination, in most cases. Neurons from the same layer
are disconnected, while those from disjoint layers fully exchange
information since this is a feed forward model (Siqueira and Luna,
2019).

Training a neural model means using an algorithm to determine
its free parameters or adjust the neurons’weights. The most known
way to solve this task in an MLP is to use the backpropagation al-
gorithm, a general iterative tool based on the steepest descent, a
first order unrestricted linear optimization method. In this case, the
method reduces the mean square error between the desired
response and the output of the network (Haykin, 2008). However,
in this work, we address a second-order method that presents
computational cost similar to the first: The Modified Scaled Con-
jugate Gradient (MSCG) (dos Santos and Von Zuben, 1999).

We highlight the maximum number of iterations as the stop
criterion in training. We also use the hold-out cross-validation
method to determine the topology (number of neurons in the
hidden layer) and avoid overfitting (Haykin, 2008).
2.1.2. Radial basis function
The Radial Basis Function networks (RBF) are awell-known ANN

model. Like the MLP, they are feed forward architectures, and
universal approximators, but present only two layers of neurons
(Siqueira and Luna, 2019). The first, intermediate, perform a
nonlinear input-output mapping using radial basis functions, like
the Gaussian function. The second e output layer eperforms the
model’s response, similarly to the MLP (Haykin, 2008).

The hidden neurons present two parameters: a centre ci (with

https://www.google.com/maps/place/Brazil/
http://www.google.com/maps/@-23.6815315
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the same dimension of the number of inputs), and a dispersion si

Therefore, the output of each neuron is higher to inputs that are
spatially closer to the current centre. The dispersion is responsible
for modulating the decay of the response concerning the distance
between the inputs and the centers. Usually, the Gaussian function
is addressed as RBF. A linear combinator is used to perform the
output response (Siqueira and Luna, 2019).

The training process of an RBF is performed in two steps. The
first is the adjustment of the hidden neurons (centers and disper-
sions), a task performed by the unsupervised clustering method. In
this work, we addressed the K-Medoids algorithm. Also, we
assumed that all dispersions are the same (Haykin, 2008). The
second step is the adjustment of the output neurons. A simple and
efficient tool found in the literature is the use of the
MooreePenrose inverse operator (Haykin, 2008).

2.1.3. Extreme Learning Machines
Extreme Learning Machines (ELM) are feed forward neural

models, with a single hidden layer (Huang et al., 2006, 2015). This
structure is quite similar to the classic MLP, the training process
being the main difference (Siqueira et al., 2018).

In an ELM, the intermediate neurons have weights randomly
generated, and they are not adjusted during the running time. The
insertion of new neurons in the hidden layer leads to a decrease in
the output error (Siqueira et al., 2012a).

Then, an ELM training is summarized in finding the best set of
weights of the output layer. Themainmanner to overcome this task
is to use aminimum square solution, especially theMooreePenrose
generalized inverse operation (Siqueira et al., 2018).

2.1.4. Echo State Networks
The Echo State Networks (ESN) are architectures of ANN, which

present high similarity with the ELM, regarding the structure and
training process. However, unlike the previously mentioned net-
works, this is a recurrent model since it presents feedback loops of
information. In this case, the hidden layer, named dynamic reser-
voir, has such recurrence (Jaeger, 2001, 2002).

Jaeger (2001, 2002) demonstrated that the reservoir is a
nonlinear transformation, which is influenced by the recent sam-
ples of the input signal, so that we can choose the weights in
advance if specific conditions are respected. In this work, we used
the reservoir design by (Jaeger, 2001).

As in the ELM, the training is responsible for determining the
weights of the output layer, which may be done using the
MooreePenrose generalized inverse operation, as in the ELM case
(Siqueira et al., 2018).

2.2. Computational details

The computational step involved the seven input variables
mentioned above: number of COVID-19 new cases, partial lock-
down level, maximum temperature, relative humidity, atmospheric
pressure, wind speed, and global solar radiation. The desired sig-
nals (target) were each air pollutant’s (CO, O3, NO2, NO, PM2.5, and
PM10) concentration.

We evaluated the performance considering all the inputs at the
same time; without the number of new COVID-19 cases; and
without the number of new COVID-19 cases and partial lockdown,
to analyze the robustness of the neural networks on predicting air
quality according to COVID-19 variables and using a small database.
All cases included the meteorological variables.

To perform the computational analysis, we separated the data-
set in three subsets:

� Training: from January 01 to April 23, 2020 (114 samples);
4

� Validation: April 24 to May 03, 2020 (10 samples);
� Test: May 04 to May 13, 2020 (10 samples).

The training subset is used to adjust the models, and the vali-
dation is applied to verify the overtraining and define the number
of neurons in the intermediate layer. Finally, the test subset is used
to evaluate the performance of the models. We also verified if the
use of the Z-score may bring some performance gain. It is a
mathematical treatment that transforms the series of data into
approximately stationary. Some studies have presented the
importance of using such an approach (Kachba et al., 2020; Siqueira
et al., 2018).

To apply the Z-score, the value of each sample is subtracted from
the mean and divided by the standard deviation. At the end of the
ANN execution, the process is reversed to analyze the performances
in the original domain.

The number of neurons in the hidden layer was defined by
empirical tests, varying from 3 to 100 neurons. The best number for
each case was chosen based on the lower Mean Square Error (MSE)
in the test set. The number of neurons in the hidden layer of each
neural model is in Tables A1 and A2 in Appendix A.

We followed the premises from the literature of adopting the
MSE as the most important error metric because this is reduced
during the training (adjustment) of the neural models (Araujo et al.,
2020; Kachba et al., 2020; Siqueira et al., 2014, 2018, 2020).

The artificial neurons in the intermediate layer of the MLP, ELM,
and ESN, use the hyperbolic tangent as an activation function. In the
RBF, the Gaussian function is used. The MLP training addressing the
Modified Scaled Conjugate Gradient (MSCG) and uses as stop cri-
terion the maximum number of 500 iterations. Also, the K-Medoids
in RBF achieved the stop criterion after 10 iterations without
modification in the position of the centroids (Figueiredo et al.,
2019).
3. Results and discussion

For simplicity, we divided this section into three parts. Firstly,
the descriptive analysis of the databases, followed by the ANN
prediction results, and lastly, the results for the hypothetical sce-
narios of 10%, 30%, 70%, and 90% of lockdown.
3.1. Descriptive analysis

The daily concentrations during the studied period, together
with the partial lockdown level, are shown in Appendix A -
Figure A1. The S~ao Paulo state government officially ordered lock-
down on March 24, 2020, however, the population started to self-
isolate voluntarily the week before (first available social isolation
data e March 17, 2020). From March 17, 2020 to May 13, 2020, the
lockdown varied between 38 and 59%, with an average of 51%.

To visualize changes in air pollution levels due to voluntary self-
isolation and/or lockdown, we compared the five-day average
before (12e16 March 2020) voluntary self-isolation with a five-day
average during self-isolation (17e21 March 2020) (Fig. 2). There is
no distinctive change in pollutant levels within experimental error,
as may be expected due to a lag in response and a low level of
reduced activities. However, comparing a five-day average during
the first lockdown period (54e56% lockdown from 24 to 28 of
March 2020) with the period before lockdown or self-isolation, we
do observe a general decrease in pollutant levels for all pollutants at
Tietê and for most at D. Pedro II as is shown in Fig. 3. As this period
would reflect the changes in the self-isolation period’s activities
with additional reduction of activities, this finding is not surprising.

From Figure A1 we observe that this trend continues until



Fig. 2. Five-day average pollutant levels before and during the voluntary self-isolation period at Tietê station (a) and D. Pedro II station (b) (CO concentration were multiplied by
100).

Fig. 3. Averages comparison between five days of official lockdownwith five days before lockdown for Tietê station (a) and D. Pedro II station (b) (CO concentration were multiplied
by 100).

Table 2
Linear correlations between lockdown and studied air pollutant concentrations for
March 17, 2020 to May 13, 2020.

CO O3* NO2 NO PM10 PM2.5

Tietê �0.45 0.15 �0.57 �0.60 �0.34 �0.38
D. Pedro II �0.14 0.11 �0.42 �0.33 �0.23 �0.26

Note: *Data from USP-Ipen station.
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around the 24th of April, after which relaxation in lockdown rules
corresponds to a steady increase in most of the pollutant levels. It
does seem as though not all the pollutants are similarly influenced
by the lockdown. The particulate matter concentration appears to
be influenced by other factors as well, and reaches much higher
values towards the end of the lockdown period discussed here than
what it was before. The ozone levels generally increased with a
lockdown percentage increase.

Using a neural network to study atmospheric ozone formation
in the Metropolitan Area of S~ao Paulo (MASP), Guardani et al.
(1999) found that temperature was the main factor affecting
ozone formation and observed higher ozone levels in regions
characterized by lower emission levels of ozone precursors. Martins
and Andrade (2008) evaluated VOC s’ potential for ozone formation
using a three-dimensional air quality model and found that ozone
in the MASP is VOC-limited, as commonly observed in urban areas
(Li et al., 2019; Siciliano et al., 2020; Tobías et al., 2020). Under these
conditions, a decrease of NOx can reduce the removal of O3 through
NOx titration and/or the effect of radical terminating reactions, and
thereby increasing O3 formation (Seinfeld and Pandis, 2016;
Sillman, 1999, 2003). Furthermore, Andrade et al. (2017), studying
the MASP, explain that decreasing NOx and CO emissions simulta-
neously contribute to higher ozone levels. This behavior is also
5

affirmed in (Gentner et al., 2009; Harley et al., 2005; Marr and
Harley, 2002; Stedman, 2004).

Table 2 presents the linear correlations between the lockdown
level (varying from 38 to 59%) and air pollutant concentrations at
Tietê and D. Pedro II stations for March 17, 2020 (first day of
available data of social isolation) to May 13, 2020. Bar ozone, all the
pollutants correlated negatively (ranging from �0.14 for CO at D.
Pedro II to �0.60 for NO at Tietê) with the lockdown.

Finally, Appendix A - Figure A2 shows the number of daily
COVID-19 newly reported cases. The first day of registered COVID-
19 cases was February 25, 2020 and an exponential increase is
observed from the beginning of April onwards.



Table 3
Average and standard deviation for each studied pollutant for the 3 subsets (Tietê Station).

Training Validation Test

Pollutant Average Standard Deviation Average Standard Deviation Average Standard Deviation

CO [ppm] 0.69 0.29 0.93 0.46 0.85 0.34
O3 [mg/m3] 70 28 98 21 74 14
NO2 [mg/m3] 68 24 86 31 88 31
NO [mg/m3] 91 69 124 89 151 84
PM2.5 [mg/m3] 13 5.5 24 12 20 9.7
PM10 [mg/m3] 22 8.2 43 19 38 19

Table 4
Average and standard deviation for each studied pollutant for the 3 subsets (D. Pedro II Station).

Training Validation Test

Pollutant Average Standard Deviation Average Standard Deviation Average Standard Deviation

CO [ppm] 0.30 0.15 0.62 0.40 0.50 0.36
O3 [mg/m3] 65 24 81 19 59 14
NO2 [mg/m3] 43 17 60 33 64 31
NO [mg/m3] 21 19 51 63 75 76
PM2.5 [mg/m3] 12 4.7 20 8.8 16 7.8
PM10 [mg/m3] 19 7.3 37 14 31 16
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3.2. ANN estimation analysis

Tables 3 and 4 contain the average and standard deviation for
each pollutant level obtained from the 3 subsets (training, valida-
tion, and test) at the two sites. Although the two monitoring sites
are in the same city, the descriptive statistics show significant dif-
ferences. Tietê station (near highways) has higher average con-
centrations for all pollutants in comparison to D. Pedro II station
(populated city area). The different statistical profiles of the two
sites are indicative of robust evaluation of the data, as the model
could provide a MAPE of ~30%, despite two dissimilar data sets.

Tables A1 and A2 (Appendix A) display the ANN computational
results for AQMS Tietê (ring road station) and AQMS D. Pedro II
(densely populated city area station), respectively. For this purpose,
the best (lower Mean Square Error - MSE) of 30 independent exe-
cutions were considered (de Castro, 2007; Haykin, 2008; Siqueira
et al., 2018). The shaded values indicate results with the best per-
formance (lower MSE). The MLP neural model achieved the best
results (i.e., lowest MSE) in almost all cases, except for O3 at D.
Pedro II station. The latter was best estimated using the ELM neural
model. It is an important observation, as there is no consensus
about which ANN is the best. It corroborates with the results ach-
ieved by Polezer et al. (2018) and Araujo et al. (2020), both applied
to air pollution epidemiological studies.

It is important to highlight that the best overall ANN results
were achieved when the variables “number of new COVID-19
cases” and “partial lockdown” were included (8 out of 12 cases).
The remaining 4 cases (NO2 and PM2.5 at Tietê, and NO2 and O3 at D.
Pedro II) showed the best result considering only “partial lock-
down”. In both scenarios the meteorological variables were
included.

To establish if the Z-Score application could result in perfor-
mance gain, the ANN was also performed with the Z-score (Results
shown in Tables A1 and A2). The Z-score’s use proved to be bene-
ficial in 2 cases at theMarginal Tietê station, and four cases at the D.
Pedro II site. Therefore, it can be considered in addition to
increasing the quality of the results of the ANN.

Figs. 4 and 5 represent the observed (continuous red line) and
best estimation (dashed blue line) concentration levels for CO (a),
O3 (b), NO2 (c), NO (d), PM2.5 (e), and PM10 (f) at Tietê and D. Pedro II
stations, respectively during the period 4e13 May 2020. The
6

lockdown level is indicated as shaded bars.
In general, the predicted results, using this approach, captured

the original data tendencies reasonably well, with a mean absolute
percentage error (MAPE) of 30% for almost all cases. The exceptions
were at D. Pedro II station (CO e 48% and NO - 81%) (see Tables A1
and A2 e Appendix A).

It is important to notice two distinct behaviors during the
lockdown to the test set period (see Figs. 4 and 5). When the
lockdown level remains unchanged (first 5 days), the main influ-
ence can be ascribed to the meteorological variables (Figure A3 e

shows the meteorological raw data for the test period). But after
five days in the test set, the percentage lockdown jumps from 46%
to 53% in two days. As the temperature and relative humidity were
relatively stable in the last five days, one can say that the lockdown
is the main contributor to the change in air pollutant level. Observe
that ozone concentration has a consistent relation with solar irra-
diation, with similar profiles. This behavior is in accordance with
those observed at the beginning of lockdown (March 17, 2020), as
mentioned in section 3.1. The importance of maintaining contin-
uous and consistent interventions to curb air pollution is evident
from the data displayed here. It is particularly important during
extreme air pollution events, and there is enough evidence that
lockdownmeasures will nearly instantly reduce air pollution levels.

Each ANN architecture has positive and negative points. As
discussed in Section 2.1, the ESN is a recurrent model, presenting
feedback loops of information in its hidden layer. This characteristic
may be relevant when dealing with data processing since more
information is available to form the output response. Additionally,
together with the ELM, their training processes require less
computational effort than the RBF and MLP, since there are no
iterative processes to adjust their weights because the hidden layer
is not modified. In addition, other works have presented the
capability of such models to overcome traditional, fully trained
architectures (Araujo et al., 2020; Siqueira et al., 2012a, 2014, 2018).

Despite the advantage and good results found in the literature
for ESN, ELM, and RBF (Siqueira et al., 2012b, 2018), the MLP errors
were smaller than the others. It seems clear that adjusting the
hidden weights is an important step in nonlinear mapping appli-
cations, as is presented in this investigation. In this case, there are a
set of inputs of variable nature (for example, temperature, hu-
midity, and partial lockdown), andmapping these values to another



Fig. 4. Best estimation to predict CO (a), O3 (b), NO2 (c), NO (d), PM2.5 (e), and PM10 (f) levels for Tietê station. Predictions are in dashed lines and observed levels in solid lines. The
bars are the partial lockdown.
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Fig. 5. Best estimation to predict CO (a), O3 (b), NO2 (c), NO (d), PM2.5 (e), and PM10 (f) levels for D. Pedro II station. Predictions are in dashed lines and observed levels in solid lines.
The bars are the partial lockdown.
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Fig. 6. Hypothetical scenarios considering the impact that 10% (red line), 30% (pink like), 70% (blue line), and 90% (green line) lockdown would have on CO (a), O3 (b), NO2 (c), NO
(d), PM2.5 (e), and PM10 (f) levels for AQMS Tietê. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Hypothetical scenarios considering the impact that 10% (red line), 30% (pink like), 70% (blue line), and 90% (green line) lockdown would have on CO (a), O3 (b), NO2 (c), NO
(d), PM2.5 (e), and PM10 (f) levels for AQMS D. Pedro II. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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variable is not a trivial task (Kachba et al., 2020; Polezer et al., 2018).
3.3. Hypothetical scenarios

To predict the impact that the partial lockdown has on air
quality, four hypothetical scenarios were modeled: a minimum
lockdown level (10%); possible vertical isolation (only for COVID-19
high-risk groups e over-60s and people with chronic disease, di-
abetics, among others) (30%); the considered ideal lockdown per-
centage (70%); and an extreme isolation action (90%). The results
are compared in Figs. 6 and 7, with results for AQMS Tietê D. Pedro
II, respectively. The red lines correspond to 10% lockdown, the pink
lines to 30% lockdown, the blue lines to 70% lockdown, and the
green lines to 90% lockdown. The pollutant designation (a -f) is the
same as for Figs. 4 and 5.

The data in Fig. 6 (Tietê station) indicates that in general higher
concentrations are predicted for all pollutants at 10 (red line) and
30 (pink line) % lockdown. A different pattern is observed for May
07 and May 08, whereby the lower lockdown also predicted low
pollutant concentrations. During these two days, the meteorolog-
ical conditions changed abruptly (low temperature and solar irra-
diation, and high relative humidity - see Figure A3). This scenario
exemplifies the complex interdependency of air pollutant levels on
several variables. These findings suggest that when abrupt weather
conditions are forecasted, lockdown interventions should happen a
few days earlier. Our data corroborate with the recent publication
of Hong et al. (2019) who reported that extreme weather events
might be a crucial mechanism by which air quality is influenced.

The predicted ozone concentration at Tietê station (Fig. 6b) for
the 30% lockdown showed an unexpected behavior, presenting
higher concentrations than 70% and 90% lockdown. It may have
been a consequence of the complexity of the variables that influ-
ence air quality. Although this may be seen as a poor fit for the
model, we need to emphasize that this is one case out of twelve.

Although the same abrupt change in meteorological conditions
was observed for 7 and 8 May at the D. Pedro II station (Fig. 7), the
ANN could estimate the response more coherently than for the
Tietê station. This may be due to other factors at play, influencing
the air pollutant level at this station. Observe that the ozone pro-
files are as expected, especially for a 10% lockdown. It is important
to highlight that the ANN prediction was good as only one of the
seven inputs were changed.

We also observe that the particulatematter levels are not greatly
influenced by lockdown (as reported by Nakada and Urban, 2020),
especially the PM10 concentration. At the D. Pedro II station, the
PM2.5 levels also stay very similar regardless of the lockdown level.

We acknowledge that air pollutant levels have a complex set of
variables that determine it, and that even a powerful tool such as
ANN cannot always accurately predict the level. However, the data
presented here provides adequate evidence that ANN can be used
successfully to estimate the impact of different levels of lockdown
will have on the air quality.
4. Conclusion

Artificial Neural Networks were able to predict how changes in
the level of lockdown affected air quality in S~ao Paulo City. We have
11
shown that evenwhen using a restricted data set of pollutant levels
together with meteorological information, the ANN results showed
Mean Absolute Percentage Error (MAPE) around 30%.

The result of the ANN approach to four hypothetical scenarios of
lockdown (i.e., 10%, 30%, 70%, and 90%) showed evidence of the
complexity of the calculation problem as a consequence of the
abrupt meteorological changes.

For the first time, ANN were used as a tool to describe the
equilibrium between air pollution, COVID-19 cases, and the partial
lockdown, which can be employed in several national contexts. This
approach’s predictive power allows governmental bodies and pol-
icy makers to manage lockdown responsibly ensuring minimal
economic impact. This method will lead to improved air pollution
control measures (and potentially COVID-19 mortality) by enforc-
ing a lockdown level that will still sustain sufficient economic ac-
tivities. Furthermore, in the light of the global drive to improve air
quality and work towards zero emissions, this approach could also
be used in the future to reach emission target levels.
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APPENDIX A

Figure A1 shows the behavior of each target (air pollutant
concentration) before any modeling. A black line was included on
the first day of partial lockdown available data (March 17, 2020).
The shaded bars are the lockdown daily levels.



Fig. A1. Concentrations of CO [ppm] (a), O3 [mg/m3] (b), NO2 [mg/m3] (c), NO [mg/m3] (d), PM2.5 [mg/m3] (e), and PM10 [mg/m3] (f) according to the date.
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Fig. A1. (continued).
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Fig. A2. Number of COVID-19 new cases by day.
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Tables A1 and A2 show the ANN computational results at the
AQMS Tietê (ring road station) and AQMS D. Pedro II (downtown
station), respectively. The addressed scenarios involves the errors
based on the Mean Square Error (MSE); Mean Absolute Error
(MAE); and Mean Absolute Percentage Error (MAPE); with all
14
inputs, without the number of COVID-19 new cases (without
COVID), and also without the number of COVID-19 new cases and
the partial lockdown (without COVID and lockdown). Also, the re-
sults considering or not the use of Z-Score are presented. The shade
of gray values are the results showing the best performances (lower
MSE).



Table A1
Computational results for Tietê Station

CO PM10 PM2.5

NN MSE MAE MAPE NN MSE MAE MAPE NN MSE MAE MAPE

Without Z-Score All Inputs ELM 3 0.082 0.241 27.336 55 302.983 14.792 41.053 40 118.040 9.379 68.917
ESN 3 0.104 0.275 35.007 10 226.953 12.543 36.529 70 84.089 8.198 60.844
MLP 5 0.056 0.189 21.054 35 125.516 89.970 22.795 7 58.597 6.129 32.043
RBF 90 0.107 0.290 41.937 90 361.600 17.400 71.145 7 116.624 8.700 82.812

Without COVID ELM 3 0.074 0.229 29.136 25 363.393 16.372 47.747 25 121.795 9.633 71.572
ESN 3 0.068 0.227 29.313 17 355.852 16.807 55.639 17 73.759 7.760 54.564
MLP 7 0.054 0.189 20.939 3 228.692 12.619 32.008 5 54.020 5.728 25.911
RBF 90 0.107 0.290 41.912 90 361.758 17.414 71.173 90 116.684 8.708 82.843

Without COVID and Lockdown ELM 15 0.196 0.355 41.284 20 441.157 18.462 59.690 80 142.555 10.548 76.858
ESN 5 0.072 0.216 24.928 30 447.592 19.187 62.825 60 124.008 9.233 68.624
MLP 5 0.106 0.248 24.881 5 274.828 12.145 29.001 50 73.181 5.655 22.787
RBF 90 0.107 0.291 42.002 90 361.429 17.544 71.302 90 116.337 8.720 82.882

With Z-Score All Inputs ELM 20 0.139 0.334 37.919 50 332.813 16.294 55.894 45 98.053 8.778 59.417
ESN 3 0.090 0.243 27.409 20 274.429 13.738 54.822 35 110.166 8.710 67.406
MLP 5 0.039 0.135 16.132 50 172.991 11.027 30.508 3 56.984 6.054 32.115
RBF 50 0.107 0.290 41.937 90 361.600 17.400 71.145 3 116.628 8.705 82.814

Without COVID ELM 3 0.084 0.242 26.932 35 472.051 19.277 65.402 30 118.146 9.505 69.580
ESN 3 0.091 0.250 27.321 45 361.426 17.398 61.243 25 113.501 8.461 71.963
MLP 5 0.072 0.214 23.736 3 229.299 12.624 32.513 5 43.484 5.494 23.216
RBF 90 0.106 0.290 41.855 90 361.762 17.414 71.173 10 115.453 8.930 82.345

Without COVID and Lockdown ELM 55 0.226 0.389 45.342 25 445.110 18.727 58.367 35 140.325 9.701 72.964
ESN 3 0.095 0.267 31.366 60 326.904 16.261 51.552 8 88.244 8.180 51.650
MLP 5 0.096 0.237 24.660 5 268.293 12.734 30.227 12 69.210 5.750 24.045
RBF 90 0.109 0.292 42.106 60 364.251 17.591 71.336 70 116.452 8.750 82.979

NO2 NO O3

NN MSE MAE MAPE NN MSE MAE MAPE NN MSE MAE MAPE
Without Z-Score All Inputs ELM 3 570.143 18.949 26.896 5 5078.089 59.080 50.701 3 152.666 9.651 14.731

ESN 3 523.303 17.204 27.192 12 15628.355 107.259 111.761 3 175.935 8.487 14.828
MLP 70 608.078 19.198 19.419 70 3433.167 42.272 27.680 3 99.301 8.259 11.462
RBF 5 886.859 25.285 36.021 5 8659.767 76.705 156.927 3 302.236 11.996 20.629

Without COVID ELM 3 510.554 19.691 24.813 3 49881.516 137.964 1172.231 3 276.657 13.781 18.821
ESN 3 627.172 21.815 32.491 3 78881.981 219.920 827.994 15 586.099 20.913 30.830
MLP 55 353.000 16.116 18.310 25 9192.320 42.764 66.788 70 123.546 8.233 13.090
RBF 7 867.116 24.994 35.427 3 111554.876 285.136 2637.350 80 301.881 11.907 20.519

Without COVID and Lockdown ELM 3 749.904 24.518 33.485 3 6961.111 72.554 73.985 3 131.299 9.394 12.071
ESN 15 1861.376 36.211 58.479 45 25439.828 123.837 229.898 3 269.781 13.052 16.959
MLP 3 851.311 25.370 26.479 50 4811.999 53.290 37.489 90 101.570 6.857 11.121
RBF 90 898.970 25.540 36.594 3 9205.445 81.435 160.595 90 301.796 11.914 20.527

With Z-Score All Inputs ELM 3 487.354 18.486 21.649 3 6057.239 63.555 91.520 3 136.731 9.546 15.309
ESN 3 495.247 17.895 26.537 8 13938.590 98.401 127.912 7 238.876 13.117 18.446
MLP 40 582.091 18.977 18.885 80 4080.494 49.610 28.741 17 113.758 8.885 12.352
RBF 10 889.713 25.358 36.396 3 8805.067 77.825 158.019 3 302.235 11.985 20.620

Without COVID ELM 3 474.979 15.936 20.734 3 60013.692 214.782 1084.430 8 264.538 13.597 18.703
ESN 3 842.937 25.159 36.858 3 80788.855 203.875 1247.237 5 241.888 14.196 18.513
MLP 45 533.281 16.090 15.524 3 7461.860 40.342 65.189 90 127.865 9.106 14.463
RBF 12 804.605 24.276 35.628 3 109705.490 283.427 2652.255 90 302.142 11.933 20.552

Without COVID and Lockdown ELM 3 695.472 18.534 27.748 3 5391.007 57.438 58.166 3 131.299 9.394 12.071
ESN 60 1887.730 36.051 58.700 40 25912.029 124.420 240.393 3 347.065 15.199 19.339
MLP 5 763.582 23.187 22.621 80 4334.745 49.248 33.712 90 134.022 8.179 12.276
RBF 90 898.803 25.535 36.590 90 9225.294 78.847 160.696 90 300.184 11.808 20.385

NN: Number of neurons; MSE: Mean Square Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error; *With COVID means including the number of COVID-19 new cases and the partial lockdown.
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Table A2
Computational results for D. Pedro II Station

CO PM10 PM2.5

NN MSE MAE MAPE NN MSE MAE MAPE NN MSE MAE MAPE

Without Z-Score All Inputs ELM 5 0.145 0.274 46.448 3 201.221 11.965 49.041 3 51.303 5.935 39.177
ESN 3 0.236 0.446 175.795 3 71.156 7.847 32.640 3 57.354 6.088 69.635
MLP 3 0.133 0.257 45.423 5 62.832 6.936 28.881 3 18.305 3.323 19.678
RBF 3 0.206 0.420 175.738 90 232.000 13.800 67.802 90 61.650 6.700 71.874

Without COVID ELM 3 0.088 0.220 60.253 3 167.635 10.469 34.639 3 67.776 6.738 42.641
ESN 12 0.303 0.467 206.963 15 417.394 17.723 93.584 5 88.044 8.547 79.455
MLP 45 0.101 0.242 42.666 15 73.638 7.079 26.922 60 18.683 3.579 23.942
RBF 3 0.204 0.419 174.983 90 232.206 13.805 67.810 90 61.697 6.702 71.883

Without COVID and Lockdown ELM 3 0.119 0.251 59.499 3 378.428 15.714 44.049 3 66.176 6.592 41.157
ESN 7 0.313 0.478 185.849 3 252.998 13.814 68.271 3 82.455 7.507 75.413
MLP 45 0.111 0.276 55.548 40 79.912 8.113 33.120 40 27.414 4.675 25.319
RBF 5 0.198 0.414 172.176 94 232.421 13.810 67.819 90 61.713 6.703 71.886

With Z-Score All Inputs ELM 3 0.096 0.227 39.350 3 127.320 9.337 33.624 3 33.077 5.200 48.258
ESN 7 0.340 0.511 201.290 3 218.389 12.568 60.732 3 54.302 6.176 67.292
MLP 3 0.069 0.200 48.480 80 76.843 7.220 24.859 3 15.806 3.582 28.000
RBF 5 0.205 0.420 175.627 90 232.000 13.800 67.802 60 61.650 6.700 71.874

Without COVID ELM 5 0.123 0.268 67.011 3 101.629 8.641 35.393 3 54.781 6.227 42.818
ESN 20 0.392 0.543 239.621 3 294.932 14.778 73.650 3 88.592 7.841 62.774
MLP 25 0.117 0.240 48.976 10 100.519 7.814 30.358 80 18.872 3.395 22.804
RBF 3 0.203 0.419 174.831 90 232.206 13.805 67.810 90 61.697 6.702 71.883

Without COVID and Lockdown ELM 3 0.106 0.281 47.589 3 280.543 13.438 54.251 3 42.747 5.443 38.441
ESN 15 0.390 0.550 239.796 3 325.950 14.608 66.276 5 120.188 8.986 96.500
MLP 12 0.101 0.269 53.239 80 79.421 8.156 33.803 12 26.396 4.350 28.352

RBF 3 0.199 0.416 171.079 90 232.429 13.810 67.820 90 61.713 6.703 71.886

NO2 NO O3

NN MSE MAE MAPE NN MSE MAE MAPE NN MSE MAE MAPE

Without Z-Score All Inputs ELM 5 785.090 20.353 30.175 10 4839.146 50.450 153.333 7 467.375 15.322 34.491
ESN 5 907.308 24.263 40.671 10 4772.463 58.378 373.840 3 353.385 15.163 32.252
MLP 70 557.778 17.589 23.740 50 2657.192 38.072 81.015 7 138.893 9.422 16.985
RBF 5 854.313 25.362 51.069 5 5416.426 68.009 486.657 17 454.931 17.020 36.846

Without COVID ELM 3 445.282 17.293 23.027 7 4340.598 57.558 348.301 5 63.055 5.997 12.454
ESN 3 822.075 25.260 52.416 3 5996.855 71.571 445.188 3 260.122 12.669 26.255
MLP 35 464.065 17.072 21.113 8 3924.373 45.396 86.404 45 120.824 9.143 16.909
RBF 5 854.784 25.517 51.092 5 5461.894 68.337 488.802 3 391.845 15.011 33.241

Without COVID and Lockdown ELM 7 1064.275 27.726 57.589 3 3991.357 54.068 113.379 3 137.191 9.229 17.298
ESN 10 1555.614 31.140 75.076 15 8592.139 80.821 675.729 40 1214.000 29.877 59.143
MLP 40 295.496 14.269 22.207 12 4320.338 48.815 91.635 3 206.566 12.420 21.391
RBF 90 868.487 25.612 51.959 90 5472.401 68.400 490.933 3 358.350 12.872 29.566

With Z-Score All Inputs ELM 3 663.132 16.812 19.980 7 4307.805 50.687 159.321 3 115.769 9.348 18.562
ESN 3 1070.911 26.303 35.021 30 5849.480 67.123 420.655 3 489.524 18.494 37.389
MLP 60 493.319 18.015 23.994 35 3274.156 46.066 84.661 40 86.199 7.354 13.290
RBF 7 864.579 25.509 51.690 3 5402.146 67.809 477.883 20 456.534 17.058 36.916

Without COVID ELM 5 394.529 16.522 29.060 5 3768.178 54.428 120.683 3 43.501 5.673 10.074
ESN 3 902.434 26.099 51.690 3 5501.005 68.838 471.550 3 260.471 11.801 25.214
MLP 20 228.207 12.518 20.777 7 3911.060 47.170 76.890 5 89.321 7.703 14.095
RBF 12 859.824 25.425 52.147 3 5401.730 67.974 478.234 3 391.500 14.998 33.216

Without COVID and Lockdown ELM 3 782.711 24.452 39.246 3 5041.661 61.826 202.719 3 107.910 7.838 16.488
ESN 40 1871.582 36.537 83.638 12 8067.633 80.195 594.801 3 389.735 14.920 28.355
MLP 55 346.735 16.076 26.940 7 4490.207 51.747 87.543 3 161.224 10.402 19.405
RBF 90 868.484 25.612 51.959 40 5471.100 68.391 490.941 5 369.729 13.681 31.046

NN: Number of neurons; MSE: Mean Square Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error; *With COVID means including the variables number of COVID-19 new cases and the partial lockdown.
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Fig. A3. Meteorological variables raw data for the test set.
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