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Objective: To investigate the clinical utility of deep convolutional neural network (DCNN) tract 

classification as a new imaging tool in the preoperative evaluation of children with focal epilepsy 

(FE).

Methods: A DCNN tract classification deeply learned spatial trajectories of DWI white matter 

pathways linking electrical stimulation mapping (ESM) findings from 89 children with FE, and 

then automatically identified white matter pathways associated with eloquent functions (i.e., 

primary motor, language, and vision). Clinical utility was examined by 1) measuring the nearest 

distance between DCNN-determined pathways and ESM, 2) evaluating the effectiveness of 

DCNN-determined pathways to optimize surgical margins via Kalman filter analysis, and 3) 

evaluating how accurately changes in DCNN-determined language pathway volume can predict 

changes in language ability via canonical correlation analysis.

Results: DCNN tract classification outperformed other existing methods, achieving an excellent 

accuracy of 98% while non-invasively detecting eloquent areas within the spatial resolution of 

ESM (i.e., 1cm). The Kalman filter analysis found that the preservation of brain areas within a 

surgical margin determined by DCNN tract classification predicted lack of postoperative deficit 

with a high accuracy of 92%. Postoperative change of DCNN-determined language pathway 

volume showed a significant correlation with postoperative changes in language ability (R=0.7, 

p<0.001).

Conclusion: Our findings demonstrate that postoperative functional deficits substantially differ 

according to the extent of resected white matter, and that DCNN tract classification may offer key 

translational information by identifying these pathways in pediatric epilepsy surgery.

Significance: DCNN tract classification may be an effective tool to improve surgical outcome of 

children with FE.

Index Terms—

Deep Convolutional Neural Network; Diffusion Tractography; Eloquent Function; Electrical 
Stimulation Mapping; Epilepsy

I. Introduction

To treat children with disabling focal epilepsy, surgical resection of epileptogenic brain 

tissue including the seizure onset zone (SOZ) is considered an evidence-based option for 

seizure control when pharmaceutical therapy is not effective. Such procedures necessarily 

disturb brain tissue, and therefore strive to avoid or strictly minimize disturbance of brain 

areas supporting eloquent functions (e.g., primary motor, language, and vision processing) 

[1]. Prior to surgical resection, preoperative evaluation of these patients should localize 

eloquent areas as accurately as possible in order to optimize a resection margin (i.e., the 

boundary between SOZ and eloquent areas) which maximizes the chance of postoperative 

preservation of individual eloquent functions [2], [3], [4]. Approximately 30–40% of 

children with focal epilepsy have drug-resistant seizures that cannot be controlled with 

antiepileptic medications, and are therefore considered candidates for surgery who must 

carefully undergo this critical preoperative evaluation.
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The gold standard for delineating eloquent cortex in clinical epilepsy populations is 

electrical stimulation mapping (ESM), a surgically invasive methodology that outperforms 

state-of-the-art noninvasive function-localizing techniques such as fMRI. ESM localizes the 

areas essential for performing a given task, whereas fMRI can localize those involved in a 

task. ESM is not dependent on ill-posed neurovascular coupling mechanisms, which often 

provide insufficient sensitivity for fMRI to localize independent regional activation during 

relevant functional tasks [5]. For example, fMRI is useful for localizing entire areas involved 

in a given language task, but fMRI-based cortical activation per se does not specify the 

underlying function like ESM can [6]. However, the disadvantages of ESM are not 

negligible, since this invasive approach inherently carries a risk of stimulation-induced 

seizures [7]. Moreover, ESM often lacks sufficient sensitivity to identify eloquent areas in 

more complicated cases, like developing children [8]. Importantly, current ESM procedures 

cannot provide any quantitative information to predict the degree of functionality in 

individual eloquent areas. Thus, there is altogether a great need for other complementary 

assessment modalities to improve the preoperative evaluation of pediatric epilepsy. The 

present study presumes that functional maps systematically incorporating DWI tractography 

and ESM data using deep learning processes can provide effective and comprehensive 

information to localize eloquent areas, even in children where ESM and fMRI may not have 

an optimal diagnostic capability [9], [10], [11].

Recent developments in deep learning methodology facilitate solutions to complex 

neuroimaging pattern recognition problems, even when data sets are greatly diverse in shape 

and spatial trajectory. For instance, deep learning networks have been utilized to classify 

DWI tracts of interest and remove superficial tracts from whole brain tractography [8], [12], 

[13], [14]. Lam et al.[12] trained a network to distinguish 53 language tract classes in 

children under 2 years of age using two layers with geometric features such as tract 

curvature, torsion, and distance from landmark points, achieving a high classification 

accuracy up to 98.8%. However, their ground truth (i.e., true class membership for 

individual tracts) was manually segmented by an expert without considering specific 

functionality, and consequently the accuracy of their model might be limited when applied to 

patient populations, whose eloquent areas may be variably displaced by different disease 

etiologies and compensatory neural plasticity. Wasserthal et al. [13] also applied deep 

learning techniques to classify DWI tractography, and proposed a novel 2D encoder-decoder 

fully convolutional neural network that directly segments white matter tracts in fields of 

fiber orientation distribution function peaks. They had trained a network to distinguish 72 

anatomically well-described tracts and verified that their model showed a significant 

improvement of tract classification compared with other conventional methods. Yet, their 

performance has not been validated by comparing their ground truth data at the level of 

individual subjects (e.g., ESM and clinical outcome). In contrast, our previous studies using 

Bayesian tract classification methods to automatically identify eloquent white matter 

pathways [15] achieved clinically promising accuracy to detect ESM-determined eloquent 

areas, predicted postoperative outcomes in eloquent functions, and optimized surgical 

margins balancing maximal benefit (seizure freedom) and minimal risk (functional deficit) 

[16]. However, it was also found that the classification of streamline tracts from DWI 

collected under clinical time constraints, having incomplete intravoxel information to 
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resolve the crossing fiber problem, became highly susceptible to spurious tracts (i.e., false 

positive tracts including wiggly tracked or broken fibers). This type I error inevitably 

increases cases of ambiguous mismatch between white matter pathway terminals and ESM-

determined eloquent areas, especially near the cortical mantle. To reduce this false positive 

classification, our recent studies have proposed a deep convolutional neural network 

(DCNN) to classify only true positive DWI tracts into functionally important white matter 

pathways connecting ESM-determined eloquent areas [8], [17]. Our working hypothesis is 

that, rather than first building a tract atlas based on priori information and then feeding the 

input into a statistical model, we can instead utilize DCNN to provide an end-to-end learning 

framework which integrates ESM-driven DWI tractography (i.e., electro-physiologically 

validated tract classes associated with individual eloquent functions) with an artificial 

intelligence approach (i.e., directly mining the heterogeneous trajectories of white matter 

tract classes associated with individual eloquent functions).

Via intensive in-vivo comparisons with current gold standard ESM data, the goal of this 

study is to investigate whether the DCNN tract classification [8] can further improve current 

preoperative evaluation for children with focal epilepsy by 1) providing accurate localization 

of ESM-determined eloquent areas at a large cohort (n=89), 2) providing an optimal 

resection margin achieving minimal functional deficits and maximal seizure freedom via 

Kalman filter analysis, and 3) predicting expressive and receptive language ability via 

canonical correlation analysis (CCA).

Our primary hypothesis is that DCNN tract classification is capable of non-invasively 

identifying the spatial trajectories of eloquent white matter pathways in preoperative DWI. 

We will specifically test the hypothesis that 1) the preservation of individual DCNN tract 

class within the resection margin determined by Kalman filter is associated with avoidance 

of unnecessary resection of functionally important tissues. We will also test the hypothesis 

that 2) postoperative volumetric change in DCNN-determined language pathway is a 

valuable biomarker for predicting postoperative change in specific language function. These 

hypotheses will be systematically assessed in a large cohort of children with varied epilepsy 

etiologies to demonstrate the utility of the proposed DCNN tract classification in 

preoperative surgical planning.

To our knowledge, we are the first to translate the advanced DCNN technique to clinical 

DWI tractography, where currently available approaches are suboptimal for controlling false 

positives, by systematically demonstrating that DCNN tract classification can detect both 

categorical and quantitative ground truth data (i.e., ESM-determined eloquent areas and 

neuropsychology-determined language scores) in children with focal epilepsy. Ultimately, 

such an analysis could help candidates for epilepsy surgery achieve seizure control while 

minimizing the risk of postoperative functional deficits.

II. Methods

A. Study Subjects

The present study recruited 128 children with focal epilepsy (age: 10.57±5.13 years, 66 

boys). Inclusion criteria required that patients: (1) underwent two-stage epilepsy surgery 
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involving extraoperative intracranial EEG recording and ESM via subdural grid and strip 

electrodes at Children’s Hospital of Michigan (Detroit, Michigan) between 2007 and 2018; 

(2) had no massive brain malformations (such as large perisylvian polymicrogyria or 

hemimegalencephaly), and (3) exhibited no hemiplegia, aphasia, or hemianopsia on 

examination prior to surgery.

Among 128 children, 89 children (age: 9.95±5.41 years, 45 boys) had DWI scans available, 

obtained as part of their preoperative evaluation. To investigate whether the proposed DCNN 

tract classification can accurately detect ESM-determined eloquent areas and optimize 

resection margins via Kalman filter, all preoperative scans (n = 89) were randomly assigned 

into one of three cohorts: a training set (n = 40) to implement the DCNN tract classification 

via deep learning of ESM-driven DWI tractography, a testing set (n = 16) to confirm the 

convergence of the DCNN tract classification implemented in the training set, and a 

validation set (n = 33) to reproduce the accuracy of the DCNN tract classification in an 

independent cohort.

To investigate how effectively and comprehensively the proposed DCNN tract classification 

predicts the likelihood of seizure freedom (benefit) or functional deficit (risk) after surgery, 

we studied 40 children (age: 9.0±4.9 years, 18 boys) who underwent both pre- and post-

operative DWI scans. The presence or absence of subacute and newly developed 

postoperative functional deficits was determined clinically by a pediatric neurologist, as well 

as by physical, occupational, and speech therapists, between two to three weeks following 

resective surgery. All clinical team members were blinded to the results of the imaging data 

analysis. Postoperative deficits were categorized as (1) face motor deficit, (2) hand motor 

deficit, (3) foot motor deficit, (4) dysphasia, and/or (5) visual-field deficits. Postoperative 

seizure outcome was evaluated using International League Against Epilepsy (ILAE) 

classification every 6 months, either at clinical visit or by phone interview [18], and was 

ultimately determined at least 1 year after surgery. The following clinical outcomes were 

observed after surgery: seizure freedom (n = 24, 60%), recurrent seizures (n = 16, 40%), 

face motor deficit (n = 7, 17.5%), hand motor deficit (n = 6, 15%), foot motor deficit (n = 6, 

15%), dysphasia (n = 6, 15%), and visual field deficit (n = 13, 33%).

Finally, to investigate whether the proposed DCNN tract classification can predict language 

abilities of individual children from pre- and postoperative DWI data, we studied 21 children 

(age: 12.42±3.41 years, 10 boys) who underwent both pre- and postoperative DWI scans as 

well as neuropsychological language assessments measuring expressive and receptive 

language functions with either the CELF-Preschool (CELF-P) for children aged 2–5 years or 

the CELF-4 for children aged six years and above [19]. CELF assessments yielded 

expressive and receptive language subscores that, in a healthy population, standardize to a 

mean of 100 and standard deviation of 15. Subscores in our population varied from 

84±24/80±24 and 84±26/78±22 in preoperative expressive/receptive and post-operative 

expressive/receptive language ability, respectively.

The study was approved by the University Institutional Review Board, and written informed 

consent was obtained from the patients or guardians of patients.
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B. Data Acquisition

All subjects underwent extraoperative intracranial EEG monitoring as well as ESM as part 

of clinical management [1], [2], [20]. Subdural electrode pairs were stimulated with a pulse-

train of 5 s maximum duration, a pulse width of 0.3 ms, a frequency of 50 Hz, and an 

intensity ranging from 3 to 9 mA. Electrode sites where stimulation consistently induced 

contralateral body movement of face, hand, and foot, expressive aphasia during auditory 

naming task, expressive aphasia during visual naming task, receptive aphasia during 

auditory naming task, speech arrest, visual phosphene (lower-order visual areas), and visual 

distortion (higher-order visual areas) were defined as eloquent functions of interest. The 

procedure of ESM recording is described in detail in our previous study [21].

DWI data were acquired using a GE Signa 3T scanner (GE Healthcare, Milwaukee, WI) 

equipped with an 8-channel head coil at TR = 12500 ms, TE = 88.7 ms, FOV = 24 cm, 128 

× 128 acquisition matrix, contiguous 3 mm slice thickness, 55 isotropic gradient directions 

with b = 1000 s/mm2, and single b = 0 acquisition. T1-weighted structural images were also 

acquired using a 3D fast spoiled gradient echo sequence (FSPGR) at TR = 9.12 ms, TE = 

3.66 ms, TI = 400 ms, slice thickness = 1.2 mm, and planar resolution = 0.94 × 0.94 mm2.

C. Data Preprocessing for ESM-driven DWI Tractography

For each subject, a brain pial surface was reconstructed from a preoperative T1-weighted 

MRI image using FreeSurfer software ([22], http://surfer.nmr.mgh.harvard.edu). The 

locations of subdural electrodes were mapped onto this brain surface by referring to 

intraoperative photographs and post-implantation x-ray or CT scan [21], [23], [24]. Each 

electrode was spatially normalized to an averaged FreeSurfer pial template [25] using the 

symmetric diffeomorphic image normalization algorithm provided through the Advanced 

Normalization Tools (ANTs) package [26].

We generated 14 probabilistic maps of eloquent functions in the template space by 

overlapping ESM-determined eloquent areas across 95 subjects (excluding 33 subjects in 

validation, Fig. 1). Each probability map was smoothed at 3mm full width at half maximum 

and thresholded at a 97% confidence interval. These thresholded maps were used to define 

binary seed masks of the subsequent DWI tractography in template space, generating 14 

ESM-driven DWI tract classes, Ci=1–14: C1,2 = left, right face motor area–internal capsule, 

C3,4 = left, right hand motor area–internal capsule, C5,6 = left, right foot motor area–internal 

capsule, C7 = expressive-aphasia (auditory naming) in left hemisphere, C8 = expressive-

aphasia (visual naming) in left hemisphere, C9 = receptive aphasia in left hemisphere, C10 = 

speech arrest in left hemisphere, C11,12 = left, right visual phosphene, and C13,14 = left, right 

visual distortion. In addition, we defined C15 as an ”other” class which includes all tracts 

from whole-brain tractography not belonging to any of C1−14. All 15 classes were trained 

together in the DCNN classification in order to discriminate 14 ESM-driven DWI tract 

classes of interest from any given whole brain tractography.

To correct motion, noise, physiological artifacts, susceptibility-induced distortion, B1 field 

inhomogeneity, and eddy current-induced distortion in DWI data, the FSL eddy tool [27], 

[28], [29], [30] was used. All tractography analyses were performed using the MRtrix3 
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package (http://www.mrtrix.org/). Briefly, to generate C1−14 from each subject of the 

training set, probabilistic streamline tractography was reconstructed using 2nd order 

integration over fiber orientation distributions (iFOD2) [31] incorporating anatomically 

constrained tractography (ACT) [32] with 1000 dynamically randomized seeding points 

within the seed mask of each Ci which was inversely normalized from the template space to 

native space for each individual subject. The reconstructed streamlines of Ci were then 

spatially normalized to the template space using the ANTs package [26], followed by an 

exemplar-based clustering approach using the QuickBundles package [33] to remove noisy 

tracts from each Ci: any tract of Ci was considered a noisy false positive tract if its average 

direct-flip distance (ADFD) to its group exemplar (defined by Ci of 40 subjects in the 

training set) was greater than 5 mm. Finally, each tract of Ci was resampled into 100 

equidistant segments, and the 3D coordinates of each segment were used as an input to the 

DCNN tract classification.

D. DCNN Tract Classification using ESM-driven DWI Tractography

Fig. 2 shows the architecture of the proposed DCNN, a residual network (i.e., ResNet) with 

18 layers [8]. In conventional ResNet, skip connections are introduced by skipping one or 

more layers, which makes it possible to train much deeper networks without adding extra 

parameters or computational complexity. ResNet has been widely used in medical imaging 

applications such as image segmentation [34] and image synthesis [35], and it has achieved 

superior performance over other deep learning models, winning the 2015 ILSVRC 

competition with a 152-layer deep architecture [36]. Thus, the present study adopted ResNet 

as our backbone deep learning architecture. There are several common choices for the 

number of layers in ResNet: 18, 34, 50, or 101 [8]. Our previous study [8] tested three 

ResNets with 18, 34 and 50 layers. No significant difference was found on the classification 

accuracy. Thus, the present study chose an 18-layer ResNet for trading-off computational 

complexity. This DCNN was implemented by our group using PyTorch 0.2, and is now 

available for downloading at https://github.com/HaotianMXu/Brain-fiberclassification-

using-CNNs.

Briefly, each tract is converted to a 100 × 3 matrix consisting of the 3D coordinates of 100 

equidistant segments and input to our DCNN. Given the jth tract, the total loss between the 

prediction and its true membership, Ci, is defined as,

Lj = LF
j + LC

j
(1)

where LF
j  and LC

j  are the focal loss and center loss, respectively (defined below). The loss Lj 

is minimized through iterative optimization via sequential feed-forward/backward 

propagation.

Here, focal loss LF
j  [37] adds a modulating term ( 1 − PCi

j γ
) to the cross-entropy loss 

−log PCi
j :
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LF
j = − 1 − PCi

j γlog PCi
j , (2)

where γ is the focusing parameter, and PCi
j  is predicted probability of the jth tract belonging 

to the class Ci. We empirically choose γ = 2, as recommended in [37], in order to focus on 

fitting data points with low prediction probability. The modulating term diminished loss for 

well/easily classified samples (i.e., high PCi
j ) and increased importance of misclassified 

samples.

Cluster-based loss, center loss LC
j  [38], is also adopted in our model to learn more 

discriminative features:

LC
j = ‖fCi

j − eCi‖2, (3)

where fCi
j  denotes the deep feature vector of the jth tract in class Ci, and eCi denotes the 

center of class Ci in the deep feature space. eCi updates itself during the mini-batch training 

of our model.

Adam [39], an adaptive learning rate approach for stochastic gradient descent, was utilized 

to minimize total loss at the learning rate of 0.0001. Drop-out rate of the initial learning rate 

and total number of epochs were 0.01 and 100, respectively. After training, the fully 

connected layer produced the output probability vector,

PCi
j = softmax w ⋅ G fj ∘ r + b , (4)

where PCi
j  is the predicted probability of the input jth tract belonging to the class Ci, w is the 

convolution filter, G(fj) is the output of max pooling layer, ∘ is the element-wise 

multiplication operator, r is the dropout mask vector of Bernoulli variables with probability 

0.5 of being set as 0, and b is the bias term. The class with the highest probability, PCi
j , is 

taken as the final prediction of the jth tract. F1 score was calculated to evaluate overall 

prediction performance.

To evaluate the accuracy of our tract classification model in an independent cohort (i.e., not 

included in either training or test sets), DWI data of a validation set (n = 33) underwent 

whole brain tractography using MRtrix3 package (http://www.mrtrix.org/) iFOD2 [31] and 

ACT [32] with 2000 dynamically randomized seeding points on the gray-matter/white-

matter interface. Each tract from whole brain tractography was spatially normalized to the 

template space using the ANTs package [26], resampled into 100 equidistant segments, and 

the 3D coordinates of these segments were classified by the trained DCNN into one of 

Ci=1–15. This study applied an experimental threshold, β of PCi
j , to control the confidence 
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level of the prediction. That is, the tracts whose values of PCi
j  were greater than β = 0.9 were 

included in final class, Ci.

E. Comparison with Other Existing Methods

Computational experiments using the same data set were carried out to compare the 

performance of the DCNN tract classification with those of the following methods: 1) DWI-

MAP [15], [40], 2) DWI-MAP+ADFD [16], [41], and 3) RecoBundles [42].

1) DWI-MAP: Based on fMRI-driven stereotactic probability maps and Bayesian 

interference, the DWI-MAP classifier identified 9 functionally-important white matter 

pathways in each hemisphere: C1
DM = face motor area to internal capsule, C2

DM = hand 

motor area to internal capsule, C3
DM = leg motor area to internal capsule, C4

DM = Broca’s 

area (BA 44/45) to Wernicke’s area (BA 22), C5
DM = premotor area (BA 6) to Broca’s area, 

C6
DM = premotor area to Wernicke’s area, C7

DM = parietal area (BA 39) to Wernicke’s area, 

C8
DM = premotor area to parietal area, and C9

DM = occipital lobe to lateral geniculate 

nucleus. The DWI-MAP classifier utilizes stereotactic probability maps of Ci
DM obtained 

from healthy children. To classify a given tract into Ci
DM, the a posteriori probability of 

belonging to a class Ci
DM was calculated by averaging the probability values of Ci

DM over 

the entire fiber trajectory, assuming an equal class prior of Bayesian inference. A given tract 

was assigned to Ci
DM having the maximum a posteriori probability.

2) DWI-MAP+ADFD: To reduce false positive tracts in our original DWI-MAP analysis, 

an additional tract clustering procedure based on ADFD using the QuickBundles algorithm 

was adopted. Briefly, the tracts in Ci
DM under the original DWI-MAP classification were 

reclassified by referring their minimum ADFDs to the class exemplars, which are 

mathematically centroid streamlines of Ci
DM in healthy controls.

3) RecoBundles: Exemplars of 14 ESM-driven DWI tract pathways, Ci=1–14 were 

created using QuickBundles at the threshold of inter-tract ADFD = 30 mm. Tract 

classification of Ci was then performed using RecoBundles at the threshold of tract-

examplar ADFD = 10 mm.

To avoid any potential biases of tract pruning, final tract classes for each methodology were 

adjusted at the same confidence level (i.e., 90%), where cumulative distribution function of 

ADFD between an individual tract and the class example was evaluated, and any tract of 

each class was included as a true positive tract only if the ADFD to its class exemplar does 

not exceed 10% of the cumulative ADFD distribution.

F. Benefit and Risk Analysis using DCNN Tract Classification

To understand how the retrospective surgical margins suggested by our tract classification 

model relate to the actual outcomes of surgical resection, we need to determine the surface 
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distance di between resected brain tissue and DCNN-determined white matter pathways Ci, 

and also determine the volumetric postoperative change ri of our DWI-generated ”eloquent” 

pathways. Since determining ri requires a postoperative DWI b0 image, this is impossible at 

the preoperative stage. To overcome this limitation, we employed Kalman filter prediction 

with Rauch-Tung-Striebel smoothing [43], which can reveal hidden relationships between 

the preoperatively unmeasurable ri and measurable di. To accomplish this we first focused on 

patients with both pre- and post-operative DWI, calculating ri as (volume of preoperative Ci 

∩ volume of resected tissue) / volume of preoperative Ci, and we then determined resection 

margin di by calculating the minimal Euclidean distance between voxels of Ci and the actual 

surgical resection boundary. In cases where Ci was resected, di was assumed to be negative 

and calculated as (−1) × the average Euclidean distance between every voxel inside the 

resected Ci.

In pre- and postoperative data, high-resolution T1-weighted images were co-registered to b0 

images using the ANTs package [26]. The same co-registration package was also utilized to 

obtain an affine transformation spatially matching postoperative T1-weighted images to 

preoperative T1-weighted images. The obtained transformation was then applied to co-

register a given patient’s post-operative b0 image to their preoperative b0 image. The 

difference image of two co-registered b0 images was thresholded to define a binary mask of 

the surgically resected brain volume. A series of morphological filtering was applied to the 

binary mask until all holes and islands greater than a single voxel were removed. Finally, the 

outer surface contour of the filtered mask was spatially transformed to the postoperative T1-

weighted image and manually corrected by two raters (M.H. and J.J.), ensuring that the final 

resection boundary included the entire surgical cavity of an individual patient.

To identify the hidden relationship between two variables, we employed a modified Kalman 

filter [15], [16] which works as follows:

x ri
j = Sx × x ri

j − 1 + Sr × ri
j + w ri

j ,
di

j = Sd × x ri
j + v ri

j ,
w N 0, Σs , x(1) N(x(1), v(1)), v N 0, Σd

(5)

where the system matrix (Sx, Sr, Sd) is iteratively updated to determine the hidden stochastic 

process between dynamics and observation [44]. Σs and Σd represent system covariance and 

observation covariance, respectively. N(μ, Σ) indicates white Gaussian noise with mean μ 

and covariance Σ. For a given jth patient, ri
j is assumed as a dynamic variable to control the 

unknown state variable x ri
j  associated with the actual surgical margin di

j. The state variable 

of the (j + 1)th patient is then formulated as a function of the state variable x ri
j  and the 

measured ri
j + 1 of the (j + 1)th patient. Finally, we defined a preservation zone of Ci 

satisfying the Kalman-defined margin di*, balancing postoperative seizure freedom and 

functional deficits at di(ri) satisfying P(deficit|di(ri)) = P(seizurefreedom|di(ri)), where 

P(deficit|di(ri)) and P(seizurefreedom|di(ri)) represent cumulative probability density 

functions of seizure freedom and functional deficit at d ≤ di(ri), respectively.
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G. Prediction of Language Ability using DCNN Tract Classification

Postoperative tract volume change for language pathway, Δi=7–10 was first defined as 

(volume of preoperative Ci - volume of postoperative Ci) / volume of preoperative Ci. The 

change of postoperative language ability, Δreceptive | expressive was defined as (preoperative 

CELF score - postoperative CELF score)/preoperative CELF score. To identify the 

relationship between Δi=7–10 and Δreceptive|expressive, canonical correlation analysis (CCA) 

[45] was performed. CCA is a method to investigate regressions between two multivariate 

random variables (X and Y), finding a linear combination of variables that maximally 

correlate. The canonical variables (u, v) are defined by the pair of linear combination vectors 

{a, b} that maximize the canonical correlation coefficient:

R = aTΣXY b
aTΣXa bTΣY b

(6)

where Σ is the covariance. The present study constructed data matrices X and Y by 

concatenating the different Δi=7–10 and Δreceptive|expressive column vectors of subjects.

III. Results

A. DCNN Tract Classification

Fig. 3 shows the convergence of DCNN tract classification. In both training and test sets, 

total loss converged to 0.002 after 34 epochs and F1 scores converged to 0.98 after 28 

epochs. As marked by white arrows in Fig. 4, the proposed DCNN tract classification 

occasionally yielded low prediction probability values, PCi
j  (Eq. 4), for a given tract. These 

false-positive tracts deviated from cortical centroids linking ESM-determined areas, and 

could be appropriately deleted from their pathways by thresholding their prediction 

probability values PCi
j  at β = 0.90. It is clear that false-positive predictions localized outside 

the ESM electrodes were significantly reduced at PCi
j < 0.90 without reducing true positives, 

suggesting that the 90% confidence interval for true positive classification (i.e., β = 0.90) 

provided sufficient specificity to delineate true positive white matter pathways.

Fig. 5 shows representative examples of the proposed DCNN tract classification Ci=1–14 

spatially well-matched to ESM-determined eloquent areas. To assess the performance of the 

our DCNN tract classification in localizing eloquent areas defined by ESM recordings, we 

calculated the Euclidean distance from cortical terminal of DCNN-defined tracts to ESM 

electrode. Our DCNN tract classification model achieved high average accuracy for the 

tracts terminating in the proximity of eloquent areas determined by ESM recordings (see 

Fig. 6): motor area (98.5% for learning set, 95.5% for validation set), language area (100%, 

96%) and visual field (98.5%, 99.5%) within range of 10 mm distance from cortical terminal 

of DCNN-tract class to ESM electrode.

Fig. 7 presents representative examples supporting the advantage of our DCNN tract 

classification, compared to more conventional cortical localization, to detect true ESM-

determined eloquent cortex: the group average atlas of individual function (e.g., 3D 
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probabilistic maps of ESM-determined eloquent areas shown in Fig. 1) spatially normalized 

from template space to native brain space can mischaracterize eloquent cortex at the 

individual level. Deep learning of coordinates over the entire tract trajectory helps overcome 

this cohort heterogeneity, detecting eloquent cortices in clinical cases where functional areas 

are often deviated from group average areas.

Fig. 8 presents representative examples of pre- and postoperative DCNN tract pathways Ci 

in two patients with tumor (A) and cortical dysplasia (B). This figure effectively 

demonstrates the performance of our DCNN tract classification in patients with structural 

lesions. It should be noted that even in cases with structural lesions, the proposed DCNN 

tract classification provided accurate detection of eloquent white matter pathways whose 

cortical terminals were well-matched with the corresponding ESM localizations. 

Furthermore, the proposed DCNN tract classification provided consistent localization of 

eloquent white matter pathways without depending on the size of a resected lesion. To 

finalize the classification, our DCNN method considered the entire trajectory of an 

individual tract (i.e., not spatially limited to the vicinity of a structural lesion). This process 

effectively improves classification accuracy of true positives whose trajectories were 

completely or partially interrupted by the lesions (e.g., the portion in closest proximity to 

lesion). This rationale is supported by the absence of a noteworthy decline in the overall 

classification accuracy across different subgroups, including epilepsy type, the presence of 

structural lesion visible in MRI, pathology, and volume of resected tissue (Table I). This 

outstanding reproducibility directly demonstrates that the proposed DCNN tract 

classification can be an alternative imaging tool potentially reducing the use of invasive 

ESM procedure by providing the accurate locations of intact brain pathways, also saving 

substantial time, effort, and cost of presurgical evaluation.

B. Benefit and Risk Analysis

The hidden relationships defined by Kalman filter analysis between r1−14 and d1−14 yielded 

d1 − 14* = 2.88, 6.12, 1.10, −0.18, −2.72, −1.91, 4.47, −3.53, and −3.66 mm, which ultimately 

balanced the values of P (deficit|di(ri)) and P(seizurefreedom|di(ri)) for DCNN tract 

classification as plotted on Fig. 9. To demonstrate the clinical reliability of Kalman-analysis-

defined preservation zones, we investigated cases in which the preoperative preservation 

zones were ultimately not resected, to determine whether the DCNN tract classification 

method outperforms other methods (i.e., DWI-MAP, DWI-MAP+ADFD and RecoBundles) 

in predicting the lack of a functional deficit. The actual resection margin di, when the DCNN 

tract classification proposed preservation zone of Ci is preserved or minimally resected 

within di*, achieved high average accuracy for predicting the pathway’s corresponding 

functional outcomes: 0.98 for motor deficits, 0.89 for language deficits, and 0.91 for visual 

deficits. Furthermore, our proposed method achieved higher average accuracy than 

alternative methods: compared to 0.95/0.96/0.96 for motor deficit prediction, 0.89/0.88/0.83 

for language deficit prediction, and 0.78/0.85/0.81 for visual deficit prediction, for DWI-

MAP/DWI-MAP+ADFD/RecoBundles accuracy, respectively (see Table II). These results 

suggest that our proposed method could possibly help guide surgery by identifying eloquent 

pathways that may be most important to preserve and effectively assessing the risk of 

Lee et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



postoperative deficit. In addition, the preservation zones defined by DCNN tract 

classification with Kalman filter analysis are more reliable than those of other methods.

The maximized canonical coefficient R between the canonical variables (u, v) was 

associated with the linear combination of the following: postoperative tract volume change, 

x1−4 language function pathways, Ci=7–10 and the change of neuropsychological language 

score, yreceptive and yexpressive with combination vectors {a, b},

ureceptive = − 0.003 × x1 + 0.012 × x2
− 0.006 × x3 − 0.039 × x4
vreceptive = − 0.069 × yreceptive
uexpressive = − 0.021 × x1 + 0.008 × x2
− 0.040 × x3 + 0.021 × x4
vexpressive = − 0.065 × yexpressive

(7)

C. Prediction of Language Ability

Our CCA model achieved high Rreceptive = 0.773 (p < 0.001) and Rexpressive = 0.627 (p = 

0.002). In addition, our CCA model accounted for more variance than our DWI-MAP model 

(Rreceptive = 0.438, p = 0.047 and Rexpressive = 0.648, p = 0.002), DWI-MAP+ADFD model 

(Rreceptive = 0.626, p = 0.002 and Rexpressive = 0.145, p = 0.530), and RecoBundles model 

(Rreceptive = 0.277, p = 0.225 and Rexpressive = 0.470, p = 0.032) (Fig. 10). These findings 

suggest that CCA based on DCNN-determined tracts may provide the most accurate 

prediction of language ability using non-invasive diffusion MRI tractography, and may prove 

especially useful for cases when neuropsychological language assessments are unreliable 

due to developmental or behavioral difficulties.

IV. Discussion

The present study provides three major findings supporting DCNN tract classification 

performance over other existing methods (DWI-MAP, DWI-MAP+ADFD and 

RecoBundles) to detect ESM-determined eloquent areas, optimize surgical margin balancing 

maximal benefit (seizure freedom) with minimal risk (functional deficit), and predict 

neuropsychological language ability based on the clinical DWI data. First, our DCNN tract 

classification model could accurately discriminate 14 functionally important white matter 

pathways (i.e., C1−14) at an average F1 score of 0.993, yielding DCNN-determined cortical 

terminals that are spatially well-matched to their ground truth data (i.e., eloquent areas 

determined by ESM) in both the learning set and validation set (overlap accuracy ranging 

86% to 100% within the 10 mm spatial resolution of ESM). Second, DCNN-determined 

pathways can optimize surgical margins via Kalman filter analysis, which models a state 

variable of interest (i.e., surgical margin) as a dynamic function of the postoperative volume 

change in DCNN-determined pathways, and in this way may help avoid postoperative 

functional deficits. The preservation of surgical margin determined by DCNN tract 

classification predicted the lack of postoperative deficits at the highest prediction accuracy 

of 92%, compared with DWI-MAP (90%), DWI-MAP+ADFD (90%), and RecoBundles 

(87%). Third, DCNN-determined pathways can be used to accurately predict post-surgical 

changes in language ability via CCA, where an imaging variable is defined by a linear 
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combination of DCNN-determined language pathways and correlated with 

neuropsychological language variables. Postoperative change in DCNN-determined tract 

volume showed the most significant correlation with postoperative change in language 

ability (R= 0.70), compared with DWI-MAP (R= 0.54), DWI-MAP+ADFD (R= 0.39), and 

RecoBundles (R= 0.37).

Over the last decades, there have been a few DWI studies reporting systematic comparisons 

of tract classifications with clinically validated ground truth data from ESM. For example, 

Berman et al. [46] reported that their manual demarcations of primary motor tracts could 

localize eloquent motor pathways within 10 mm, with an accuracy of 63% as confirmed by 

subcortical stimulation. Also, our previous study using DWI-MAP [15] reported a 

localization accuracy of 82% within 10 mm as confirmed by ESM. Compared with the 

above studies, the present study demonstrated superior performance of the DCNN tract 

classification, with improved non-invasive localization of ESM-determined eloquent 

function at an excellent accuracy of 97% for motor pathways, 98% for language pathways 

and 99% for visual pathways, within 10 mm distance. This finding suggests a high 

translational value of our DCNN tract classification model, which may save effort and time 

by guiding current ESM procedures and/or providing functional localization information in 

future cases where ESM fails to localize.

Determination of a surgical margin to preserve eloquent function varies across centers, 

ranging from 0 to 2 cm [11]. The lack of standardization when determining surgical margins 

may contribute to persistent postoperative language deficits, as seen in approximately 40% 

of 56 centers despite preservation of all ESM-identified positive sites [11]. Improvements 

towards refining surgical margins are critical but must also be considered cautiously, as 

overestimating the extent of eloquent areas or incorrectly classifying eloquent areas may 

lead to poor surgical outcomes including recurrent seizures and functional deficits after 

surgery [11]. To standardize an optimal margin across patients our previous study first 

proposed a novel DWI tractography method (DWI-MAP+ADFD) which can optimize 

resection margin via Kalman filter analysis. We reported that resections remaining within the 

analysis-generated optimized margin achieved seizure-freedom and avoided functional 

deficit with a promising accuracy of 90% [16]. However, the DWI-MAP+ADFD approach 

was inherently limited by the many false positive tracts often seen in clinically acquired 

DWI data, significantly increasing type I error near cortical mantle [16]. To overcome this 

limitation, the present study proposed DCNN tract classification which can effectively 

control false positive tracts via deep learning classification of true positive tracts confirmed 

by their ground truth data. This configuration indeed improved analysis of the same data and 

further optimized a resection margin that minimizes functional deficit and maximizes the 

likelihood of seizure freedom.

Language dysfunction may cause long-term social, professional, and psychological 

problems [47]. Thus, accurate prediction of language areas using non-invasive imaging such 

as DWI tractography [48] becomes essential. Although ESM has been regarded as the gold 

standard for identifying eloquent language areas in epilepsy surgery, it cannot reveal 

subcortical structures of the language pathway. Our previous study reported that the extent 

of preoperative white matter language pathway resection is important to estimate the 
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likelihood of postoperative language deficits [41]. However, this previous study could not 

estimate changes in language ability based on the extent of resected language-associated 

white matter pathways. The finding of our CCA analysis demonstrated that the resected 

volume of language white matter pathway determined by the DCNN tract classification may 

be an effective marker of postoperative language impairment.

Our working hypothesis is that spatial coordinates of ESM-determined true positive tracts 

from a given subject should be identical to group-level true positive tracts in the same 

template space. Under this hypothesis, the detection of true positives becomes a 

classification task, and can be accomplished by deeply learning spatial coordinates of true 

positive tracts belonging to a set of tract classes (i.e., sets of true positive tracts well-defined 

by their ground truths at group level). Our previous study [8] supported this hypothesis by 

showing that actual streamline coordinates outperformed tractography shape features such as 

curvature and torsion in training the DCNN model, providing better anatomical 

characteristics of individual tract classes in most white matter trajectories. The present study 

also found that the tractography based on group-level ESM can be feasibly learned using the 

DCNN model to demarcate ESM-determined eloquent areas at the individual level. This 

information may not be reliably detected by other methods, including DWI-MAP, DWI-

MAP+ADFD, Recobundles, or the group-level ESM probability maps themselves (see 

examples reported in Fig 7).

The higher reliability of streamline coordinates makes some intuitive sense, considering that 

malformation of cortical development (MCD) is by far the most common epileptogenic 

pathology in pediatric epilepsy surgery cohorts, accounting for up to 50% of the cases. A 

diagnosis of MCD includes a variety of pathologies, most commonly focal cortical dysplasia 

types I/II, in which MRI can detect cortical thinning/thickening, hypointense/hyperintense 

signals, abnormal gyrification, and enlargement of the lateral ventricles, which limits the 

registration accuracy of cortico-cortical mapping between patients and healthy controls. An 

additional level of complexity in MCD-related epilepsy is that about 2/3 of the cases show 

more than a single epileptogenic structure; Each of these foci can influence abnormal 

reorganization, and this significantly increases type I/II errors during atlas-based 

classification. Epileptogenic brain tumors can also affect the development of the cortical 

mantle associated with peritumoral cortical dysplasia. Thus, the proposed DCNN method 

utilizing spatial coordinates of entire white matter trajectories (beyond the vicinity of MCD-

related cortical lesions or tumors) may minimize the effect of cortical malformations on tract 

classification, where cortical-atlas-based tract clustering would likely be limited by 

malformed gyrification, especially near the cortical mantle. In contrast to parametric 

Gaussian approaches such as DWI-MAP, the proposed DCNN method makes no assumption 

regarding a priori probabilistic distribution of individual streamlines.

In addition, it should be noted that our fiber targets of interest (i.e., classes) are not major 

white matter fasciculi but functionally-specific white matter pathways of primary motor 

areas associated with different body parts (face/hand/leg), language areas responsible for 

different aphasias (expressive/receptive/speech arrest), and visual areas (phosphorene/spatial 

distortion), where individual pathways share similar tract shapes but differ in location. For 

instance, fiber trajectories associated with each category of somatosensory functions are 
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very similar in pattern and geometry, causing current clustering methods to erroneously 

conflate them. This study was initially motivated to overcome these limitations by proposing 

a new tract classification paradigm which can effectively discriminate subtle difference in 

tract location, with minimal feature design and selection effort, independent of cortical 

abnormality severity.

There are at least two limitations that need to be considered in the present study. First, DWI 

scans were acquired for the purpose of clinical diagnosis. Thus, our data were limited in 

scan time, the number of diffusion encoding directions, and may be measured at a relatively 

low diffusion weight (i.e., b = 1000 s/mm2). Under these conditions, we can not fully resolve 

tractography in voxels with predominant crossing, kissing, fanning, and curving fiber 

configurations, and this may ultimately lead to incorrect and ambiguous estimates of fiber 

orientation [49], [50], [51], [52], [53]. Considering these inherent challenges of DWI 

tractography, we focused on motor pathways and major pathways of language and vision, 

which are functionally confirmed by ESM and also anatomically consistent with postmortem 

human brain studies [54], [55]. Second, the present study is observational in nature, and all 

data were obtained for the routine clinical management of epilepsy surgery. Therefore, these 

are retrospective and observational results with inherent limitations to the sample size, 

availability of postoperative information, and time available for detailed functional testing 

measures. Additional prospective studies are needed to confirm the present results, studying 

larger numbers of children and a more detailed accounts of postoperative deficits, especially 

in young children.

In summary, the present study demonstrated that the DCNN tract classification method can 

be an effective tool to non-invasively localize functionally important white matter pathways 

needed to be preserved in pediatric epilepsy surgery. Clinical utility of the DCNN-

determined tract pathway was systematically validated by electrophysiologically acquired 

ground truth data. Although preliminary, our findings suggest that the DCNN-determined 

tract pathways may be used to help standardize and improve preoperative planning of 

pediatric epilepsy without relying on additional, functional data (e.g., ESM and fMRI).
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Fig. 1. 
3D probabilistic maps of 14 ESM-determined eloquent areas associated with primary motor, 

language, and visual functions in an averaged FreeSurfer pial template.
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Fig. 2. 
Schematic architecture of the deep convolutional neural network (DCNN), where each 

colored square represents a specific network layer.
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Fig. 3. 
Convergence curve of DCNN for training (blue colored curve) and test (orange colored 

curve) data sets in the top figure. The bottom figure shows the confusion matrix computed 

on the test set at 96 epochs which showed maximal F1 score (0.9880). The diagonal 

components of the matrix represent true positives. The sum of column and row for each Ci 

denote the false positives and false negatives, respectively.
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Fig. 4. 

Examples of prediction probability, PCi
j  estimated by the proposed DCNN tract 

classification. White arrows indicate false positives with low PCi
j .
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Fig. 5. 
Examples of DCNN-determined tract classes, Ci=1–14 spatially well-matched with ESM-

determined eloquent areas. Whole brain tractography data in validation set were classified 

by the proposed DCNN tract classification and the cortical terminals of the resulting Ci (i.e., 
streamline tracts presented by red-green-blue color coding) were compared with their 

ground truth, ESM-determined eloquent areas (ESM electrodes marked by red spheres).
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Fig. 6. 
Localization accuracy provided by the proposed DCNN tract classification model for 

individual eloquent functions. The accuracy was assessed for learning (i.e., training and 

testing) and validation sets at five different levels of Euclidean distance between the cortical 

terminal of individual tracts and ESM electrodes.
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Fig. 7. 
Representative cases in which the proposed DCNN tract classification could accurately 

detect ESM-determined eloquent areas that direct cortical mapping of 3D probability maps 

(Fig. 1) failed to detect.
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Fig. 8. 
Pre- and postoperative DCNN tract classification in patients with structural lesions, A. tumor 

and B. cortical dysplasia. While postoperative DCNN tracts of A showed no volume change 

in C1 and slight volume change in C9 causing normal face motor and mild language deficit 

after surgery, postoperative DCNN classes, C1,3 of B indicated significantly reduced or 

removed volumes following resection. This resection resulted in severe postoperative motor 

deficits on right face and hand motor functions.
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Fig. 9. 
Modeling the hidden relationship between resection margin, di, and the portion of Ci that is 

resected, ri. In the top right portion of each plot, orange/blue circles indicate patients with/

without postoperative deficit, respectively. Kalman filter prediction was applied to fit di as a 

function of a dynamic variable ri, resulting in di(ri) (gray dotted line). The radius of gray 

colored ellipsis indicates the covariance of the state variable x(ri), approximating the 95% 

confidence interval of di(ri). Solid orange and blue lines indicate the values of the predicted 

P(deficit|di(ri)) and P(seizurefreedom|di(ri)), where the width of the strips indicates ± 1 × 

covariance of the predicted P(deficit|di(ri)) and P(seizurefreedom|di(ri)), estimated from 

covariance of the state variable x(ri) of Kalman filter analysis.
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Fig. 10. 
Canonical correlation coefficients, Rexpressive and Rreceptive between the change of 

postoperative language ability, Δexpressive|receptive, and postoperative tract volume change, Δi 

obtained from DWI-MAP, DWI-MAP+ADFD, RecoBundles, and DCNN tract classification, 

which were determined by CCA. u and v are the linear combination of the postoperative 

tract volume change normalized by preoperative tract volume and the change of 

postoperative neuropsychological language score.
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