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Abstract

Imputation and inference (or analysis) models that cannot be true simultaneously are frequently 

used in practice when missing outcomes are present. In these situations, the conclusions can be 

misleading depending on how “different” the implicit inference model, induced by the imputation 

model, is from the inference model actually used. We introduce model-based compatibility (MBC) 

and compare two MBC approaches to a non-MBC approach and explore the inferential validity of 

the latter in a simple case. In addition, we evaluate more complex cases through a series of 

simulation studies. Overall, we recommend caution when making inferences using a non-MBC 

analysis and point out when the inferential “cost” is the largest.
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1 INTRODUCTION

Incomplete data is a common phenomenon in clinical trials. When missing outcomes are 

present, multiple imputation is a common approach.1–3 Multiple imputation was introduced 

by Rubin4,5 and recently reviewed in several papers.6,7 Missing at random (MAR) is a 

common assumption for multiple imputation. MAR holds when the missingness is 

independent of the unobserved data, given the observed data. To make a MAR assumption 

more reasonable, additional information (such as auxiliary covariates V, which are not of 

interest for the primary research question but may help predict missingness and impute the 

missing response) are often included in model construction.8,9 An imputation model 

incorporating both the auxiliary covariates V and covariates of interest X is constructed as 

well as an inference (or analysis) model that only contains covariates of interest X. The 

concern with such a setup is whether the imputation and outcome model can hold 

simultaneously.10 In a probability model–based framework, we formally define such 
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compatibility here, discuss several ways to ensure that it holds, and examine implications in 

simple and more complex examples when it does not hold.

Section 2 specifies the assumed missing data mechanism (MDM), defines our notion of 

compatibility, and describes a class of models to ensure compatibility holds. Several classes 

of models are carefully explored in a simple longitudinal example in Section 3. In Section 4, 

we compare the performance of the models in more complex settings through a series of 

simulation studies. Section 5 provides recommendations, and Section 6 concludes with a 

brief discussion.

2 GENERAL FRAMEWORK AND MODEL-BASED COMPATIBILITY

In this section, we formally define auxiliary variable MAR (A-MAR) and model-based 

compatibility (MBC) and introduce a class of models, which guarantees the latter.

2.1 Definition of A-MAR

We introduce some notation to define the MDM. Define the complete longitudinal response 

as y and the complete data as (y, r, x, v), where r indicates which components of y are 

observed. The observed data is (yobs, r, x, v), and the missing data is ymis, where y = (yobs, 

ymis). Ignorable missingness with auxiliary covariates is satisfied if the following two 

conditions hold: (1) the MDM is A-MAR, ie, p(r|y, v, x; ϕ) = p(r|yobs, v, x; ϕ); (2) full data 

parameters can be decomposed into three parts as ω = (α, ϕ, θ): ϕ indexes the MDM p(r|y, 

v, x; ϕ), α indexes full data response model conditional on both auxiliary covariates and 

primary covariates of interest g(y|x, v; α), and θ indexes the marginal distribution of 

auxiliary covariates p(v|x; θ), where (α, θ) and ϕ are distinct. In what follows, we assume 

that A-MAR holds given the included v’s. Under A-MAR, the imputation model will be 

specified as g(y|x, v; α). The key for A-MAR is that the imputation model does not depend 

on r but does depend on v.

2.2 MBC in the presence of auxiliary covariates

Given an imputation model

G = g(y ∣ x, v; α) ∣ α ∈ A ,

let

P = p(y ∣ x; α, h) ∣ p(y ∣ x; α, h) = ∫ g(y ∣ x, v; α)ℎ(v ∣ x)dv, α ∈ A, h ∈ ℋ ,

where ℋ is the collection of all the distributions for V|X such that the integral is finite. 

Suppose that the inferential model for Y|X to be used is

ℱ = f(y ∣ x; β) ∣ β ∈ B .

Daniels and Luo Page 2

Stat Med. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Compatibility of the imputation model to the inferential model can be defined as, for any 

given β* ∈ B, there exist α* ∈ A and ℎ* ∈ ℋ such that

f y ∣ x; β* = p y ∣ x; α*, ℎ*

for all y, x; we call this model-based compatibility (MBC). This MBC for a well-defined 

functional of the distribution of y|x (MBC-F), such as the mean,

m(β, x) = ∫ yf(y ∣ x; β)dy

and

M(α, ℎ, x) = ∫ yp(y ∣ x; α, ℎ)dy,

may be defined as, for any given β* ∈ B, there exist α* ∈ A and ℎ* ∈ ℋ such that

m β*, x = M α*, ℎ*, x ,

for all x. This is weaker than MBC and implied by it. However, MBC and MBC-F are 

equivalent in certain cases. For example, when the functional is the mean (most common 

choice) and (1) normal regression models are used for both the the inference and imputation 

models and (2) for multivariate binary data using the models in Section 3. In what follows, 

we will focus development on the functional being the mean.

There are at least two ways to ensure MBC-F (in what follows, we will suppress parameters 

for clarity). First, specifying g(y|x, v) with a constraint that preserves the form of the 

functional (eg, the marginal mean, E[Y|x]); we call this constraint compatible (CC) and give 

a simple example in Section 3. Second, specifying g(y|x, v) in a saturated way for the 

functional. In particular, there are enough parameters in the imputation model such that the 

functional for the imputation model does not contradict the same function from the inference 

model; we call this saturation compatible (SC) and provide a simple example in Section 3.

We point out a few features of each. CC directly specifies a model for h(v|x), p(v|x; θ) while 

SC does not. CC implicitly treats the distribution of auxiliary covariates as more of a 

“nuisance” that is needed to ensure compatibility. SC has more parameters to estimate in the 

imputation model and is only possible if v is categorical (details in Section 3). CC does not 

require explicit imputation.

In what follows, we will focus on CC and SC with the functional being the expectation of Y|

x. We provide more details on CC in the next subsection and illustrate CC and SC in a 

simple example in Section 3.
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2.3 General specification of model-based compatible using constraints (CC)

CC can be constructed by using the idea of likelihood based marginalized models.11 To 

ensure compatibility with the functional being the mean, we need the following constraint:

E Yit ∣ xi = ∫ E Yit ∣ vi, xi dH vi ∣ xi .

This can be generalized to correlation data settings, including longitudinal, by conditioning 

on previous responses, Yit = Y i1, …, Y it  and/or random effects, bi,

E Yit ∣ xi = ∫ E Yit ∣ bi, Yi, t − 1, vi, xi dF bi, Yt − 1, vi ∣ xi .

Here, we will always integrate over the auxiliary covariates.

Related formulations (without auxiliary covariates and/or in causal inference settings) have 

been specified for a variety of cases: (1) longitudinal binary responses12,13; (2) multivariate 

responses14; (3) continuous responses with a nonlinear link.15 Each can be adapted to our 

setting (with auxiliary covariates); Daniels et al16 did such an extension for univariate 

longitudinal binary data with auxiliary covariates. We provide details on this case next.

3 SIMPLE LONGITUDINAL EXAMPLE

To better understand the issues with the CC and SC models introduced in Section 2, we 

thoroughly explore a simple example. Consider the scenario with one binary (baseline) 

auxiliary covariate V, two longitudinal measurements for each subject, (Y1, Y2), and a 

binary covariate of interest (treatment), X.

We assume that the missingness is monotone and the MDM is A-MAR with the following 

form:

logitP R2 = 0 ∣ R1 = 1, Y 1 = y, v = ϕ02 + ϕvv + ϕ1y (1)

logitP R1 = 0 ∣ v = ϕ01 + ϕvv . (2)

We assume that the inference model used is

logitP Y it = 1 ∣ Y i, t − 1 = y, x; β = β0 + β1(t − 1) + β2x + β3y, for t = 1, 2. (3)

For ease of notation, we let Yi0 ≡ 0. In what follows, we assume n subjects and T time 

points (where, here, T = 2). The CC imputation model is

logitP Y it = 1 ∣ Y i, t − 1 = y, x, v; α, β, θ = Δit + αv, for t = 1, 2. (4)
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where the parameters, Δit, which are (implicitly) a function of (β, θ, x, y), allow these two 

models to be compatible (ie, both can be correct simultaneously) via the following 

constraint:

E Yt ∣ Y t − 1 = y, x = ∑
v = 0

1
E Yt ∣ Y t − 1 = y, v, x p v ∣ Y t − 1 = y, x

= ∑
v = 0

1
E Yt ∣ Y t − 1 = y, v, x

P Yt − 1 = y ∣ v, x p(v ∣ x)
P Yt − 1 = y ∣ x ,

where P Y t = 1 ∣ v, x = ∑y = 0
1 P Y t = 1 ∣ Y t − 1 = y, v, x P Y t − 1 = y ∣ v, x . To compute Δit 

and ensure MBC-F for the mean, the distribution p(v|x; θ) needs to be estimated. This 

distribution does not need to be estimated for the SC or the non-MBC models. We examine 

the impact of this on the efficiency and operating characteristics of the CC approach in 

Section 4 via simulations. In randomized clinical trials with the only subject-specific 

inference covariate being treatment, we can model the distribution of v separately for each 

arm of treatment or assume p(v|x) ≡ p(v) (by randomization). As such, in this example, we 

can estimate θ by the empirical distribution of v. We discuss estimation of p(v|x; θ) in more 

complicated settings in Section 6. In the CC approach, the imputation model is constrained 

by the (form of the mean of the) inference model and both are (implicitly) fit 

simultaneously/jointly.

Recall that the deterministic parameters, Δit, which are (implicitly) a function of (β, θ, x, y), 

enforce the form of the mean inference model. It is not a free regression parameter and the 

above specification has only five free regression parameters (β0, β1, β2, β3, α). Given the 

structure of the inference model in (3), there are six possible “mean” values corresponding 

to the values of {(t − 1), x, y}; these realizations are

0, 0, 0 , 0, 1, 0 , 1, 0, 0 , 1, 1, 0 , 1, 0, 1 , 1, 1, 1 .

As such, there are six unique Δit values.

Remark 1. If the inference model contains continuous covariates, there will be n * T distinct 

values of Δit. In general, the number of unique Δit corresponds to the number of observed 

unique sets of values of Xit
⋆ in (2). There are slightly fewer here (if x was continuous), due to 

Y0 being fixed at zero.

Given the inference model in (3), a typical non–MBC-F imputation model would replace Δit 

with α0
u + α1

u(t − 1) + α2
ux + α3

uy and use the following imputation model:

logitP Y it = 1 ∣ Y i, t − 1 = y, x, v = α0
u + α1

u(t − 1) + α2
ux + α3

uy + α4
uv, for t = 1,

2. (5)

This imputation model is not MBC-F with (3).
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Remaining in this simple scenario with only categorical covariates in the inference model, a 

seemingly non–MBC-F model that replaced Δit in (4) with a richer model than the one in 

(5), with design vector (1, t – 1, x, y, x * (t − 1), x * y), would be a SC model. We use the 

term saturated to indicate that there are enough parameters in the imputation model to 

accommodate the number of unique observed values of the mean in the inference model 

(this is the same as the number of unique Δit’s for the CC approach).

Remark 2. In general, for nonlinear links and continuous covariates, a SC model will not be 

possible or practical (cf Remark 1) as n * T regression parameters would be needed. The 

other thing to note is that such a general imputation model requires the estimation of 11 

regression parameters (four in the inference model plus seven in the imputation model), 

unlike the five regression parameters in the CC model (though as mentioned previously, the 

CC requires an estimate of the distribution of the auxiliary covariates, for which we use the 

empirical distribution) and will only be equivalent to the CC specification asymptotically; 

we will explore this further in the simulations in Section 4.

Remark 3. For linear links, we have fewer problems. For example, the following (mean) 

inference model:

E Yit = 1 ∣ Y i, t − 1 = y, x = β0 + β1(t − 1) + β2x + β3y, for t = 1, 2

can hold simultaneously with

E Yit = 1 ∣ Y i, t − 1 = y, x, v = α0
u + α1

u(t − 1) + α2
ux + α3

uy + α4
uv, for t = 1, 2

as the marginalization over p(v|x) keeps the same functional form for the mean. However, 

these non-CC approaches require estimation of more regression parameters (9 vs 5) than the 

CC model.

Next, we point out factors that affect the bias of the inference model parameters for non–

MBC-F models including: (1) ϕv, the effect of auxiliary covariate V in the MDM; (2) α, the 

effect of auxiliary covariate V in the imputation model; and (3) the overall missing rate.

If ϕv = 0, the auxiliary covariate is not needed to impute the missing values. However, if it is 

used, both CC and SC will be correct and neither will give the same inference (in small 

samples or asymptotically) as the non–MBC-F models.

Remark 4. Note that, when we assume A-MAR, we typically do not fit the MDM explicitly, 

so it would not be uncommon to have unneeded auxiliary covariates in the imputation 

model.

When the auxiliary covariate V has no effect in imputation model, ie, α = 0 and the sample 

size n is large enough such that an estimator α is close to the true value, we will see no 

difference between the analyses. However, when sample size n is small, it is possible that α
can be “far” from zero, which will negatively impact inference for non–MBC-F models. As |

α| → ∞, the effect of auxiliary covariate V increases, and we expect larger bias for the non–
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MBC-F approach. Clearly, as the probability of any missingness goes to zero, the estimates 

from the three approaches will be very similar (with increasing sample size). So, if the 

probability of missingness is low and the auxiliary covariates effects on y are “small,” there 

will be less bias for non–MBC-F models.

We explore more complex settings and the issues raised here via simulations in the next 

section.

4 SIMULATIONS

We conduct a series of simulations to understand the “cost” of a non–MBC-F analysis 

compared to both MBC-F analyses in a more complex setting with four time points and 

more auxiliary covariates. We assess the impact of several factors on the performance of the 

two analyses including sample size, unneeded auxiliary covariates (certain ϕv = 0), 

estimation of p(v|x; θ), and no relation between the auxiliary covariates and the response (α 
= 0). The details of the simulations are provided in the following.

4.1 Simulation setup

Auxiliary covariates—Consider auxiliary covariates V with dimension p = 8, each having 

only two levels 0 and 1. Define

p(v) = θv = μv/ ∑
allv*

μv* ,

where uv* is calculated according to a log-linear model with three-way interactions

log μv = ∑
k

λvk
k + ∑

k ≠ l
λvk, vl

kl + ∑
k ≠ l ≠ m

λvk, vl, vm
klm ,

with λ0
k = 0, λ00

kl = λ01
kl = λ10

kl = 0, 

λ000
klm = λ001

klm = λ010
klm = λ011

klm = λ100
klm = λ101

klm = λ110
klm = 0 for k, l, m, ∈ 1, …, 8 . One set of the true 

values for the remainder of the λ’s is randomly generated from

λ1 = λ1
1, …, λ1

8 Unif(8, 0, 1)

λ11
kl N(1, 0, 0.4) for k, l ∈ 1, …, 8 and k ≠ l

λ111
klm N( − 0.1, 0.2) for k, l, m ∈ 1, …, 8 and k ≠ l ≠ m .
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Here, we can examine the impact of estimating p(v|x; θ) using the empirical distribution on 

the operating characteristics of the estimates of the inference model parameters in the CC 

approach.

The inference model—In the setting of four longitudinal responses, Yt, the true inference 

model is specified as

logitP Y it = 1 ∣ Y i, t − 1 = y = β0 + β1(t − 1) + β2y . (6)

The imputation model—For the CC approach, the true imputation model has the 

following form:

logitP Y it = 1 ∣ Y i, t − 1 = y, vi = Δit + ∑
j = 1

p
αjvij . (7)

Δit is a function of (β, θ) and y and has seven possible values based on unique combinations 

of (t – 1, y): {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)} in the inference model in (6). 

Recall that, for the CC analysis, the Δ’s in the imputation model are constrained so that the 

conditional mean E(Yt|Yt−1 = y) obtained by marginalization of E(Yt|Yt−1 = y, v) over 

auxiliary covariates V is equal to that from the inference model.

The CC model is the true data generating model here. We consider three different sets of 

parameter values in the imputation model (ie, α) as given in Table 1. For each set, we 

simulate the full data response Y from (7) using the parameter values given in Table 1. The 

non–MBC-F and SC approaches use the same inference model as above, with the following 

two imputation models, respectively.

The non–MBC-F model is specified as

logitP Y it = 1 ∣ Y i, t − 1 = y, vi = α0
u + α1

u(t − 1) + α2
uy + ∑

j = 1

8
αv, ju vij, (M1)

and the SC model is specified as

logitP Y it = 1 ∣ Y i, t − 1 = y, vi = α0
SC + α1

SCI t = 2 + α2
SCI t = 3

+ α3
SCI t = 4

+α4
SCI t = 2 y + α5

SCI t = 3 y + α6
SCI t = 4 y + ∑

j = 1

8
αv, jSCvij .

(M2)

The SC model parameters, αiSC: j = 1, …, 6, are sufficient to ensure that the inference model 

in (6) can hold simultaneously with the SC imputation model. There are more regression 

parameters in the SC model, but it should be “equivalent” to the CC analysis in larger 

samples.
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Specification of MDM—We assume that the MDM is A-MAR and has the following 

form:

logitP Rit = 0 ∣ Ri, t − 1 = 1, Yi = yi, vi = ϕ0 + ϕ1yi, t − 1 + ϕ2yit + ∑
j = 1

8
ϕv, jvij, (8)

where Rit = I (Yit is observed). The values of ϕ are listed in Table 1. With these values, we 

generate monotone missingness; the missing data rate at T = 4 is about 45%. By setting ϕ2 = 

0, the MDM is assumed to be MAR conditional on the auxiliary covariates. Missingness in 

the full data response is generated using (8).

Inclusion of unnecessary auxiliary covariates V for A-MAR—To compare the 

robustness of all the analyses to the inclusion of auxiliary covariates, which are unnecessary 

for A-MAR assumption but predictive of the outcome Y, we set the coefficients of V5, … , 

V8(ϕv,5, … , ϕv,8) to zero in the MDM in (8). Thus, V1, … , V4 are necessary auxiliary 

covariates, and V5, … , V8 are unnecessary (or extra) auxiliary covariates.

For each model considered, we fit models with and without unnecessary auxiliary covariates. 

This is to assess the development regarding ϕv from Section 3 in more detail in practice.

Sample size—We run simulations with sample sizes of 200, 500, 20 000, and 100 000. 

The largest sample size is meant to correspond to an “asymptotic result.” For each sample 

size, the results are based on 1000 simulated datasets.

4.2 Comparisons between MBC-F and non–MBC-F approaches

We compare the performance in six settings: (1) U* as non–MBC-F analysis with 

imputation model (M1) using all available auxiliary covariates, (2) SC* as SC analysis with 

imputation model (M2) using all available auxiliary covariates, (3) CC* as CC analysis 

using all auxiliary covariates, (4) U as non–MBC-F analysis with imputation model (M1) 

using only necessary auxiliary covariates, (5) SC as SC analysis with imputation model 

(M2) using only necessary auxiliary covariates, and (6) CC as CC analysis using only 

necessary auxiliary covariates.

For the imputation models, M1 and M2, to remove any bias from a small “finite” number of 

imputations, the missing outcomes are imputed m = 100 times based on the imputation 

model. The inference model is fit for each of these 100 “complete” datasets. We make 

inference for β and conditional mean E(Yt|Yt−1 = y) according to Rubin’s multiple 

imputation rules.4 We use the optim() function in R to obtain the maximum likelihood 

estimates for the CC analysis. For randomly selected starting values, we run optim() several 

times to ensure the global maximum is found.

We compute the bias and mean squared error (MSE) for β and the 90% and 95% confidence 

interval coverage rates. Tables 2 and 3 show simulation results for parameter setting 1, 

Tables 4 and 5 show simulation results for parameter setting 2, and Tables S.1 and S.2 (in the 

supplementary materials) show simulation results for parameter setting 3. The first 

parameter setting illustrates the setting where the auxiliary covariates have a large impact on 
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the response (ie, in the inference model). The second parameter setting corresponds to a 

smaller impact, and the third corresponds to the auxiliary covariates being almost unrelated 

to the response; the third setting will allow us to assess the conjecture in Section 3 that, in 

larger sample sizes, a non–MBC-F analysis will be essentially valid.

Overall, it is clear that the performance of the CC analysis and the SC analysis are quite 

close, and both are more accurate and efficient than the non–MBC-F analysis; however, 

recall that the SC approach is not possible in general (eg, with continuous auxiliary 

covariates as discussed in Section 3). We also note the findings regarding the comment in 

Remark 2. Both CC and SC seem to have similar efficiency (the former needs an estimate of 

the distribution of the auxiliary covariates and the latter has more regression parameters to 

estimate). So, at least for the simulation settings considered here, there is a similar trade-off 

between the extra regression parameters in the SC approach and having to estimate the 

distribution of the auxiliary covariates for CC. The bias for the non–MBC-F analysis does 

not disappear with sample size. On the contrary, the estimates for the two MBC-F 

approaches are asymptotically unbiased as shown in these Tables for the larger sample sizes. 

The true coverage rates of confidence intervals for non–MBC-F analysis severely deteriorate 

for the larger sample sizes. For example, for the largest sample size considered, the coverage 

rate of the 95% CI for β0 and β1 from the non–MBC-F analysis with unneeded auxiliary 

covariates (U*) are less than 25% in imputation parameter settings 1 and 2 (Tables 3 and 5).

These results also illustrate the robustness of the two MBC-F analyses to unnecessary 

auxiliary covariates. However, when they are included in the non–MBC-F analysis, its 

performance deteriorates very badly in terms of bias in β and the coverage rate of confidence 

intervals. For sample size of 20 000 and 100 000 in parameter settings 1 and 2, the bias in β0 

from the non–MBC-F analysis including unnecessary auxiliary covariates is about 10 times 

that from the non–MBC-F analysis including only necessary auxiliary covariates, and the 

coverage rate for the former is about 20% (Tables 3 and 5). On the contrary, it appears that 

the MBC-F analyses are minimally impacted in terms of efficiency loss and bias increase 

when unnecessary auxiliary covariates are added into the imputation model. This is a 

practically desirable feature for a MBC-F analysis since it can minimize the need for model 

selection for the auxiliary covariates in the MDM.

The magnitude of the coefficients of auxiliary covariates in the imputation model (α) 

significantly impact the performance of the non–MBC-F analysis. For parameter settings 1 

and 2, the bias increases and the true coverage rate drops for the non–MBC-F analysis is 

clear (Tables 2–5). This supports our conjecture in Section 3. However, for parameter setting 

3 where auxiliary covariates V have the smallest imputation model coefficients, all six 

models perform similarly (Tables S.1 and S.2).

5 RECOMMENDATIONS

Based on the example in Section 3 and the simulations in Section 4, we provide a few 

recommendations. In general, for the common setting where the analyst fits both the 

imputation and inference models, an MBC-F approach is clearly preferred. SC is a very 

simple MBC-F approach that does not require a model for the auxiliary covariates or explicit 
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computation of Δit; however, this can only be used for the case of categorical covariates. The 

inclusion of unnecessary auxiliary covariates, which is typical, is problematic and 

exacerbates bias in non–MBC-F models; as such, MBC-F approaches are preferred again.

6 DISCUSSION

We have illustrated with an analytic example and simulations the misleading inferences that 

can result when conducting a non–MBC-F analysis. For example, we saw the negative 

impact of unneeded auxiliary covariates in the non–MBC-F model. As such, we urge caution 

in making inference based on a non–MBC-F analysis when it can be avoided. We also 

observed similar performance for the CC and SC models. The latter can be inefficient (or 

impossible) to specify for more complex inference models as the number of regression 

parameters in the imputation model to estimate greatly increases.

In addition, estimation of the distribution of the auxiliary covariates, v given x can be more 

complex when x includes more than a few categorical covariates; otherwise, the empirical 

distribution can be used to estimate it (and in a randomized trial, the only covariate is 

typically treatment). For this case, one might use a Bayesian nonparametric model (to 

minimize model misspecification problems) to estimate this distribution (eg, a Dirichlet 

process mixture of normals17) and Monte Carlo integration to compute the Δit; we are 

currently exploring this.

We would expect to see worse performance for MICE approaches,18 given they typically do 

not correspond to a valid joint distribution and are most often non–MBC-F without explicit 

adjustments.10

Extension to the case where missingness is still not at random even after including all 

available auxiliary covariates would be very useful. We are currently working on (Bayesian) 

approaches for MBC-F analysis under this scenario,19 which allow for sensitivity analysis.20 

Also, formal construction of CC approaches in different MDMs is needed using the 

framework in Section 2. We are also working on such extensions.

7 SUPPLEMENTARY MATERIALS

Tables referenced in Section 4 are available with this paper at the website.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Daniels and Luo Page 13

TABLE 1

Simulation parameter values

Inference 
Model

MDM Imputation Set 1 Imputation Set 2 Imputation Set 3

β0 −0.5 ϕv,1 −0.5 ϕv,7 0 α1 0.4*3 α6 −0.6*3 α1 0.4*1.8 α6 −0.6*1.8 α1 0.4*0.1 α6 −0.6*0.1

β1 0.25 ϕv2 − 
1.2

ϕv,8 0 α2 0.3*3 α7 −0.3*3 α2 0.3*1.8 α7 −0.3* 
1.8

α2 0.3*0.1 α7 −0.3*0.1

β2 0.4 ϕv,3 −0.8 ϕv,9 0 α3 0.5*3 α8 −0.7*3 α3 0.5*1.8 α8 −0.7*1.8 α3 0.5*0.1 α8 −0.7*0.1

ϕv,3 0.5 ϕ0 0.5 α4 0.2*3 α4 0.2*1.8 α4 0.2*0.1

ϕv,5 0.6 ϕ1 0 α5 −0.4*3 α5 −0.4*1.8 α5 −0.4*0.1

ϕv,6 0

Abbreviation: MDM, missing data mechanism.
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TABLE 2

Imputation parameter setting 1: comparison of non-MBC analysis (U) with saturation compatible (SC) and 

constraint compatible (CC). We denote approaches that have all available auxiliary covariates as U*, SC*, and 

CC* and only necessary auxiliary covariates as U, SC, and CC. Results based on 1000 simulated datasets with 

sample size 200, 500, 20 000, and 100 000. Monte Carlo standard errors are in parentheses

Size Parameter U* SC* CC* U SC CC

200 Bias β0 −0.026(0.004) −0.001(0.004) −0.003(0.004) −0.001(0.004) 0.001(0.004) 0.003(0.004)

Bias β1 0.021(0.002) −0.001(0.002) 0.002(0.002) −0.012(0.003) −0.001(0.003) −0.002(0.002)

Bias β2 −0.005(0.008) 0.001(0.008) −0.006(0.007) 0.003(0.008) 0.001(0.008) −0.001(0.008)

103 *MSE β0 14.8(0.66) 14.4(0.64) 14.1(0.64) 14.7(0.66) 14.1(0.64) 14.1(0.64)

103 *MSE β1 6.1(0.28) 5.9(0.27) 5.5(0.25) 6.9(0.33) 5.9(0.23) 5.4(0.21)

103 *MSE β2 59.8(2.7) 59.8(2.6) 54.8(2.4) 65.0(2.8) 55.7(2.7) 53.2(2.4)

500 Bias β0 −0.023(0.002) 0.001(0.002) 0.001(0.002) 0.003(0.002) 0.001(0.002) 0.001(0.002)

Bias β1 0.024(0.001) 0.003(0.002) 0.004(0.001) −0.011(0.002) −0.003(0.002) −0.002(0.002)

Bias β2 −0.013(0.005) −0.001(0.005) −0.001(0.004) 0.001(0.005) −0.001(0.005) −0.001(0.005)

103 *MSE β0 6.0(0.27) 5.6(0.26) 5.2(0.24) 5.6(0.25) 5.7(0.26) 5.7(0.25)

103 *MSE β1 2.7(0.13) 2.7(0.12) 2.6(0.12) 2.6(0.12) 2.3(0.10) 2.1(0.09)

103 *MSE β2 21.0(0.98) 23.1(1.1) 21.8(0.99) 23.0(1.1) 21.4(0.97) 18.3(0.88)

20 000 Bias β0 −0.024(0.00) 0.00(0.00) −0.001(0.00) 0.002(0.00) 0.00(0.00) 0.00(0.00)

Bias β1 0.021(0.00) 0.00(0.00) 0.001(0.00) −0.013(0.00) −0.001(0.00) −0.001(0.00)

Bias β2 −0.006(0.001) −0.001(0.001) −0.002(0.001) 0.004(0.001) 0.001(0.001) 0.001(0.001)

103 *MSE β0 0.70(0.02) 0.18(0.01) 0.21(0.02) 0.15(0.01) 0.15(0.01) 0.12(0.01)

103 *MSE β1 0.48(0.01) 0.14(0.01) 0.11(0.01) 0.30(0.01) 0.06(0.00) 0.05(0.00)

103 *MSE β2 0.59(0.03) 0.63(0.03) 0.65(0.03) 0.54(0.03) 0.42(0.02) 0.62(0.03)

100 000 Bias β0 −0.024(0.00) 0.00(0.00) 0.00(0.00) 0.002(0.00) 0.00(0.00) 0.00(0.00)

Bias β1 0.021(0.00) 0.00(0.00) 0.00(0.00) −0.013(0.00) 0.00(0.00) 0.00(0.00)

Bias β2 −0.005(0.00) 0.001(0.00) 0.00(0.00) 0.005(0.00) 0.001(0.00) 0.00(0.00)

103 *MSE β0 0.59(0.01) 0.06(0.00) 0.09(0.01) 0.03(0.00) 0.02(0.00) 0.03(0.00)

103 *MSE β1 0.43(0.00) 0.19(0.00) 0.27(0.00) 0.26(0.01) 0.01(0.00) 0.01(0.00)

103 *MSE β2 0.13(0.01) 0.15(0.01) 0.14(0.01) 0.10(0.00) 0.11(0.01) 0.07(0.00)

Abbreviations: MBC, model-based compatibility; MSE, mean squared error.
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TABLE 3

Imputation parameter setting 1 simulation results: posterior 90% and 95% confidence interval coverage rates 

for the six different models (U*, SC*, CC*, U, SC, and CC). Results are based on 1000 simulated datasets 

each for sample sizes of 200, 500, 20 000, and 100 000

Size Parameter U* 90 SC* 90 CC* 90 U 90 SC 90 CC 90 U* 95 SC* 95 CC* 95 U 95 SC 95 CC 95

200 β0 0.90 0.90 0.89 0.90 0.91 0.89 0.95 0.95 0.94 0.95 0.94 0.95

β1 0.90 0.91 0.90 0.92 0.93 0.91 0.90 0.91 0.90 0.92 0.93 0.93

β2 0.89 0.89 0.89 0.89 0.89 0.89 0.93 0.93 0.92 0.94 0.94 0.93

500 β0 0.90 0.92 0.92 0.92 0.92 0.92 0.96 0.95 0.95 0.96 0.95 0.95

β1 0.90 0.92 0.92 0.91 0.92 0.92 0.96 0.95 0.95 0.96 0.95 0.95

β2 0.89 0.90 0.90 0.89 0.90 0.90 0.93 0.93 0.94 0.93 0.94 0.94

20 000 β0 0.41 0.92 0.92 0.92 0.92 0.93 0.54 0.94 0.94 0.97 0.94 0.94

β1 0.16 0.92 0.90 0.53 0.92 0.92 0.25 0.94 0.96 0.68 0.95 0.96

β2 0.85 0.90 0.91 0.84 0.90 0.92 0.90 0.94 0.94 0.89 0.94 0.95

100 000 β0 0.00 0.93 0.93 0.91 0.93 0.93 0.01 0.93 0.93 0.96 0.94 0.94

β1 0.00 0.93 0.92 0.03 0.93 0.93 0.00 0.96 0.97 0.05 0.96 0.97

β2 0.81 0.93 0.93 0.78 0.94 0.95 0.89 0.95 0.96 0.86 0.94 0.96
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TABLE 4

Imputation parameter setting 2: comparison of non-MBC analysis (U) with saturation compatible (SC) and 

constraint compatible (CC). We denote approaches that have all available auxiliary covariates as U*, SC*, and 

CC* and only necessary auxiliary covariates as U, SC, and CC. Results based on 1000 simulated datasets with 

sample size 200, 500, 20 000, and 100 000. Monte Carlo standard errors are in parentheses

Size Parameter U* SC* CC* U SC CC

200 Bias β0 −0.014(0.004) 0.001(0.004) 0.001(0.004) 0.002(0.004) 0.001(0.004) 0.001(0.004)

Bias β1 0.007(0.003) −0.005(0.003) −0.003(0.003) −0.005(0.003) −0.005(0.003) −0.002(0.003)

Bias β2 0.013(0.007) 0.008(0.007) 0.003(0.007) 0.014(0.007) 0.008(0.007) 0.003(0.007)

103 *MSE β0 42.4(0.78) 12.7(0.79) 13.4(0.78) 11.9(0.78) 3.6(0.79) 4.0(0.78)

103 *MSE β1 6.9(0.28) 7.2(0.30) 6.8(0.28) 6.4(0.26) 6.8(0.27) 6.3(0.26)

103 *MSE β2 65.5(2.7) 65.8(2.7) 63.6(2.6) 64.5(2.7) 63.9(2.7) 61.0(2.6)

500 Bias β0 −0.015(0.002) 0.004(0.003) 0.003(0.002) −0.00(0.002) 0.00(0.002) −0.001(0.002)

Bias β1 0.01(0.002) −0.001(0.002) −0.001(0.002) −0.008(0.002) −0.001(0.002) −0.001(0.002)

Bias β2 0.010(0.005) 0.009(0.005) 0.008(0.005) 0.008(0.005) 0.007(0.005) 0.007(0.004)

103 *MSE β0 35.3(0.49) 6.2(0.49) 7.2(0.48) 5.4(0.49) 4.0(0.30) 2.5(0.39)

103 *MSE β1 2.7(0.12) 2.9(0.13) 2.7(0.12) 2.5(0.11) 2.6(0.12) 2.4(0.11)

103 *MSE β2 32.6(1.4) 32.7(1.4) 31.9(1.3) 32.4(1.4) 31.7(1.4) 30.2(1.3)

20 000 Bias β0 −0.014(0.00) 0.003(0.00) 0.003(0.00) 0.001(0.001) −0.00(0.00) −0.00(0.00)

Bias β1 0.011(0.00) 0.00(0.00) 0.00(0.00) −0.007(0.00) 0.00(0.00) −0.00(0.00)

Bias β2 0.003(0.001) 0.002(0.001) 0.001(0.001) 0.00(0.001) 0.00(0.001) 0.00(0.001)

103 *MSE β0 0.90(0.02) 0.73(0.01) 0.90(0.00) 0.81(0.01) 0.37(0.01) 0.68(0.00)

103 *MSE β1 0.18(0.01) 0.16(0.01) 0.15(0.01) 0.12(0.01) 0.07(0.00) 0.05(0.00)

103 *MSE β2 0.56(0.02) 0.54(0.02) 0.45(0.02) 0.49(0.01) 0.44(0.01) 0.41(0.01)

100 000 Bias β0 −0.013(0.00) 0.00(0.00) 0.00(0.00) 0.001(0.00) 0.00(0.00) 0.00(0.00)

Bias β1 0.01(0.00) 0.00(0.00) 0.00(0.00) −0.008(0.00) 0.00(0.00) 0.00(0.00)

Bias β2 0.003(0.00) 0.002(0.00) 0.002(0.00) 0.001(0.00) 0.001(0.00) 0.001(0.00)

103 *MSE β0 0.52(0.01) 0.07(0.01) 0.06(0.01) 0.12(0.00) 0.05(0.01) 0.05(0.01)

103 *MSE β1 0.12(0.00) 0.01(0.00) 0.01(0.00) 0.07(0.00) 0.01(0.00) 0.01(0.00)

103 *MSE β2 0.22(0.01) 0.21(0.01) 0.20(0.01) 0.18(0.01) 0.15(0.00) 0.14(0.00)

Abbreviations: MBC, model-based compatibility; MSE, mean squared error.
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TABLE 5

Imputation parameter setting 2 simulation results: posterior 90% and 95% confidence interval coverage rates 

for the six different models (U*, SC*, CC*, U, SC, and CC). Results are based on 1000 simulated datasets 

each for sample sizes of 200, 500, 20 000, and 100 000

Size Parameter U* 90 SC* 90 CC* 90 U 90 SC 90 CC 90 U* 95 SC* 95 CC* 95 U 95 SC 95 CC 95

200 β0 0.90 0.92 0.92 0.91 0.92 0.92 0.96 0.96 0.95 0.96 0.96 0.96

β1 0.90 0.91 0.91 0.90 0.91 0.91 0.95 0.96 0.94 0.95 0.96 0.95

β2 0.87 0.87 0.88 0.87 0.87 0.88 0.92 0.92 0.93 0.93 0.93 0.94

500 β0 0.91 0.91 0.90 0.91 0.91 0.90 0.96 0.95 0.95 0.96 0.95 0.95

β1 0.90 0.92 0.90 0.91 0.92 0.91 0.95 0.95 0.95 0.96 0.96 0.95

β2 0.88 0.88 0.90 0.88 0.88 0.90 0.93 0.93 0.94 0.94 0.94 0.94

20 000 β0 0.72 0.90 0.90 0.91 0.91 0.91 0.82 0.94 0.93 0.96 0.95 0.95

β1 0.64 0.90 0.92 0.77 0.91 0.92 0.76 0.95 0.96 0.84 0.95 0.96

β2 0.86 0.90 0.92 0.84 0.91 0.92 0.93 0.93 0.97 0.93 0.93 0.97

100 000 β0 0.22 0.91 0.90 0.90 0.91 0.91 0.33 0.96 0.94 0.95 0.96 0.95

β1 0.12 0.91 0.93 0.36 0.91 0.93 0.20 0.95 0.96 0.48 0.95 0.96

β2 0.88 0.90 0.93 0.86 0.90 0.93 0.92 0.93 0.97 0.92 0.93 0.97
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