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The two primary molecular regulators of lifespan are sirtuin-1 (SIRT1) and mammalian target of rapamycin complex 1 (mTORC1).
Each plays a central role in two highly interconnected pathways that modulate the balance between cellular growth and survival. The
activation of SIRT1 [along with peroxisome proliferator-activated receptor-gamma coactivator (PGC-1a) and adenosine
monophosphate-activated protein kinase (AMPK)] and the suppression of mTORC1 (along with its upstream regulator, Akt) act to
prolong organismal longevity and retard cardiac ageing. Both activation of SIRT1/PGC-1a and inhibition of mTORC1 shifts the balance
of cellular priorities so as to promote cardiomyocyte survival over growth, leading to cardioprotective effects in experimental models.
These benefits may be related to direct actions to modulate oxidative stress, organellar function, proinflammatory pathways, and mal-
adaptive hypertrophy. In addition, a primary shared benefit of both SIRT1/PGC-1a/AMPK activation and Akt/mTORC1 inhibition is the
enhancement of autophagy, a lysosome-dependent degradative pathway, which clears the cytosol of dysfunctional organelles and mis-
folded proteins that drive the ageing process by increasing oxidative and endoplasmic reticulum stress. Autophagy underlies the ability
of SIRT1/PGC-1a/AMPK activation and Akt/mTORC1 suppression to extend lifespan, mitigate cardiac ageing, alleviate cellular stress,
and ameliorate the development and progression of cardiomyopathy; silencing of autophagy genes abolishes these benefits. Loss of
SIRT1/PGC-1a/AMPK function or hyperactivation of Akt/mTORC1 is a consistent feature of experimental cardiomyopathy, and rever-
sal of these abnormalities mitigates the development of heart failure. Interestingly, most treatments that have been shown to be clinic-
ally effective in the treatment of chronic heart failure with a reduced ejection fraction have been reported experimentally to exert
favourable effects to activate SIRT1/PGC-1a/AMPK and/or suppress Akt/mTORC1, and thereby, to promote autophagic flux.
Therefore, the impairment of autophagy resulting from derangements in longevity gene signalling is likely to represent a seminal event
in the evolution and progression of cardiomyopathy.
...................................................................................................................................................................................................
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The two primary molecular regulators of lifespan identified to date
are sirtuin-1 (SIRT1) and mammalian target of rapamycin (mTOR).1

Each gene represents the cornerstone of two interconnected path-
ways that regulate the balance between cellular growth and survival.
When nutrients are plentiful, organisms prioritize the utilization of

fuels to expand the cell mass, and mTOR signalling is central to this
process. In contrast, when nutrients are in short supply, organisms
minimize the utilization of anabolic pathways and adopt a safe and
sheltered set of biological conditions that preserve the structural and
functional integrity of existing cells; SIRT1 is critical to this response.
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SIRT1 and Akt/mTOR signalling in
the regulation of organismal
longevity, cardiac ageing, and
cardiomyocyte survival

The counterbalancing effects of SIRT1 and mTOR control the set
point between cellular growth and cellular homeostasis. The posi-
tioning of this set point is exquisitely sensitive to the environmental
energy supply and the redox state.2,3

Role of SIRT1 in organismal longevity
and cardiac ageing
SIRT1 is one of a family of redox-sensitive nicotinamide adenine
dinucleotide-dependent deacetylases that catalyse the post-
translational modification of hundreds of proteins that are involved in
metabolism and cellular homeostasis. The yeast orthologue of SIRT1
is Sir2 (silent information regulator 2). Overexpression of Sir2
extends lifespan,4 and the ability of caloric restriction to prolong sur-
vival in yeast is dependent on the action of Sir2 to produce cytopro-
tective effects.5 Interestingly, in mammals, the organ that is critically
involved in the longevity effects of Sir2 is the heart. The mammalian
orthologue of Sir2 plays an essential role in mediating cell survival in
cardiac myocytes,6 and mice that are deficient in Sir2a (the murine
orthologue of Sir2) exhibit developmental abnormalities in the heart7

and develop early-onset heart failure.8,9

The expression of SIRT1 in most organs diminishes following birth,
but it normally persists at high levels in the healthy heart,10 unless the
myocardium exhibits the effects of ageing or shows evidence of a car-
diomyopathic process.11,12 Mild-to-moderate up-regulation of SIRT1
prevents ageing in the heart,13 and SIRT1 has cardioprotective effects
in a broad range of experimental models (Figure 1). Activation of
SIRT1 activates antioxidant mechanisms and reduces oxidative stress,
promotes mitochondrial health and biogenesis, and diminishes proin-
flammatory pathways in cardiomyocytes in order to promote cell
survival.14–16 SIRT1 also mediates the ability of redox modulators and
inflammasome suppressors to attenuate cardiac hypertrophy and to
reduce cell senescence and death following cardiac injury.17,18

Cardiac-specific deletion of SIRT1 in mice augments mitochondrial
production of reactive oxygen species, enhances oxidative and endo-
plasmic reticulum stress, and sensitizes the heart to pressure over-
load and ischaemia/reperfusion injury, leading to cardiac dysfunction
and cardiomyopathy.19–21 Conversely, SIRT1 enrichment or activa-
tion improves cardiac function and prevents adverse ventricular
remodelling following experimental infarction22,23; mitigates cardiac
injury and mitochondrial dysfunction produced by diverse cellular
stresses24–26; and ameliorates fibrosis produced by pressure over-
load.27 In experimental models of heart failure, activation of SIRT1
restores the functionality of sarco-endoplasmic reticulum Ca2þ-
ATPase and improves cardiac function,28,29 whereas suppression of
SIRT1 decreases angiogenesis and leads to systolic and diastolic
abnormalities.19,21,30

Many of the adaptive effects of SIRT1 signalling on organellar health
and cellular stress are mediated or facilitated by its action to deacety-
late peroxisome proliferator-activated receptor-gamma coactivator
(PGC-1a), a member of a family of transcription coactivators that

play a central role in the regulation of cellular energy metabolism.
Like SIRT1, PGC-1a exerts cardioprotective effects in numerous ex-
perimental models as a result of its actions to promote mitochondrial
biogenesis and antioxidant mechanisms, while suppressing inflamma-
tion (Figure 1).31–34 Loss of PGC-1a signalling is accompanied by an
accelerated transition from hypertrophy to heart failure.35 Cardiac-
specific deletion of PGC-1a leads to impaired oxidative metabolism,
increased oxidative stress and the development of dilated cardiomy-
opathy.36,37 Interestingly, both cardiac ageing and heart failure are
characterized by a decline in the expression and activity of PGC-
1a,37–40 and activation of PGC-1a leads to attenuation of the ageing
process in the myocardium and amelioration of the development of
heart failure.41,42 PGC-1a hypomorphic mice show a vascular senes-
cence phenotype that is associated with increased reactive oxygen
species, mitochondrial abnormalities, and reduced telomerase activ-
ity.43 Suppression of PGC-1a recapitulates age-related changes in
mitochondrial gene expression, whereas up-regulation prevents
senescence-related changes in the myocardium.41

These experimental observations supporting an important cardio-
protective effect of SIRT1/PGC-1a signalling are consistent with stud-
ies showing a linkage between SIRT1/PGC-1a activity and cardiac
disorders (including heart failure) in the clinical setting.
Polymorphisms of SIRT1 in humans are associated with cardiac devel-
opmental abnormalities44 and an increased predisposition to cardiac
injury45,46 and cardiac hypoperfusion syndromes.47 Conversely, gain
of function polymorphisms in the gene for PGC-1a have been linked
with longer lifespans in clinical cohorts.48 Down-regulation of SIRT1
is accompanied by increase in oxidative stress and inflammatory sig-
nalling in human cardiomyocytes.11 Circulating levels of SIRT1 are in-
versely related to levels of proinflammatory cytokines in patients
with coronary artery disease; low SIRT1 levels are accompanied by
increased telomere attrition.49 SIRT1 expression is decreased in per-
ipheral blood monocytes in patients with Type 2 diabetes50 and in
patients with obesity with increased epicardial adipose tissue vol-
ume.51 The expression of SIRT1 is suppressed both in peripheral
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Figure 1 Effects of nutrient sensor signalling on the cellular mech-
anisms that underlie cardioprotection. Cellular mechanisms are
shown in blue, and cardiac responses are shown in red. Akt, protein
kinase B; mTORC1, mammalian target of rapamycin complex 1;
PGC-1a, peroxisome proliferator-activated receptor-gamma coac-
tivator-1alpha; SIRT1, sirtuin-1.
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leucocytes and cardiomyocytes of patients with chronic cardiomyop-
athy.52,53 Similarly, the expression of PGC-1a is depressed in the
myocardium of patients with heart failure and a reduced ejection
fraction54–56 and is accompanied by defective mitochondrial replica-
tion and antioxidant defence mechanisms.57

Role of Akt/mTOR in organismal
longevity and cardiac ageing
Both Akt and mTOR are serine/threonine protein kinases that func-
tion as critical promoters of cell growth and proliferation. mTOR
exists in two complexes, mTOR complex 1 (mTORC1) and mTOR
complex 2, and Akt potentiates the activation of mTORC1, which is
preferentially inhibited by rapamycin.1 Akt/mTORC1 signalling influ-
ences hundreds of downstream effectors that promote anabolic
pathways, drives mitochondrial production of reactive oxygen spe-
cies to facilitate cellular replication and innate immunity, and enhan-
ces the expression of the senescence-associated secretory
phenotype that is essential to the cellular disposal required for effect-
ive organ growth.58 Inhibition of mTOR redirects the priorities of the
cell away from growth towards homeostasis and survival. mTOR sup-
pression in yeast extends lifespan and is critical to the ability of caloric
restriction to prolong survival in model organisms59–61; interestingly,
the effect of mTOR on longevity in yeast is independent of the effects
of Sir2. Mice with genetically-driven hypomorphic mTOR expression
have an increased lifespan, an effect that is mimicked when mTOR ac-
tivity is suppressed by rapamycin.62

The action of mTOR activity to promote anabolic pathways is
required for cardiomyocyte replication during foetal development
and adaptive hypertrophy during pressure overload,63 but it contrib-
utes to maladaptive cardiac hypertrophy when hearts are stressed or
injured in adulthood.64 Specifically, complete cardiac-specific deletion
of mTOR during embryonic development promotes lethality63 and
undermines the ability of the heart to tolerate states of rapid-onset
pressure overload.64,65 In contrast, partial mTORC1 suppression

(produced by heterozygous deletion of mTORC1 or by rapamycin)
in states of cardiac stress or injury ameliorates maladaptive hyper-
trophy and fibrosis and retards the development of heart failure
(Figure 1).66,67 The cardiac ageing that results from inflammasome ac-
tivation is related to activation of the Akt/mTOR pathway,20 and in-
hibition of the immunoproteasome system in the heart by rapamycin
attenuates both inflammation and sympathetically-mediated hyper-
trophy.68 Increases in oxidative stress in cardiomyocytes may cause
premature senescence as a result of aberrantly increased Akt/mTOR
signalling.69 Sustained activation of Akt disrupts mitochondrial ener-
getics and accentuates ageing-induced cardiac hypertrophy and myo-
cardial contractile dysfunction70,71; mitochondrial function is
normalized following mTOR inhibition.72 The totality of these experi-
mental observations explains why cardiac-specific overactivation of
the Akt/mTOR pathway induces heart failure,73 whereas suppression
of Akt signalling ameliorates heart failure in experimental models.74

These findings supporting an effect of AKT/mTOR to promote
cardiomyopathy are consistent with similar observations in the clinic-
al setting. The myocardium in patients with a non-ischaemic cardio-
myopathy shows aberrant activation of mTORC1; the intensity of
this activation is associated with the severity of cardiac fibrosis and a
poor prognosis.75 In hypertensive patients with heart failure, there is
an inverse relation between the degree of Akt activation and meas-
ures of cardiomyocyte senescence.76 Akt activation may help to ex-
plain the insulin resistance that is characteristic of patients with
chronic heart failure,77 and mTORC1 up-regulation impairs cardiac
function in obesity-related heart failure.78 Activation of Akt in the
human myocardium distinguishes the transition from well-
compensated left ventricular hypertrophy to decompensated heart
failure.79

Interplay of SIRT1/PGC-1a and Akt/
mTOR and the intermediary role of
adenosine monophosphate-activated
protein kinase in modulating
cardiomyocyte survival
The SIRT1/PGC-1a and Akt/mTOR pathways are highly intercon-
nected, both at a molecular and physiological level (Figure 2). SIRT1
can modulate the transcription of Akt and mTOR as a result of its
deacetylase activity,80 and additionally, SIRT1 and PGC-1a can nega-
tively regulate the transcription of Akt and directly interfere with Akt
and mTOR.81–84 At the same time, up-regulation of Akt leads to sup-
pression of PGC-1a,85 whereas inhibition of mTOR by rapamycin or
Akt down-regulation leads to activation of SIRT1 and PGC-1a.86–90

Interventions that retard organ-level ageing (e.g. glucose deprivation,
cytoprotective drugs and genetic suppression of inflammasome activ-
ity) act to simultaneously up-regulate SIRT1/PGC-1a and suppresses
the Akt/mTOR pathway.20,91–93 Furthermore, drugs that act to dir-
ectly up-regulate SIRT1 (e.g. resveratrol and SIRT1 activators) also
serve to inhibit Akt/mTOR,85,94–98 and conversely, suppression of
SIRT1 leads to up-regulation of Akt/mTOR.98 The interplay between
SIRT1/PGC-1a and Akt/mTOR is greatly enhanced by the fact that
both SIRT1 and Akt/mTOR influence common downstream tar-
gets.99,100 Activators of SIRT1/PGC-1a and suppressors of Akt/
mTOR can act synergistically or competitively to influence both life-
span as well as the cardiac response to ageing.71,101 The set point for
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Figure 2 Mutual enhancement and antagonism of nutrient sensor
signalling in the regulation of autophagic flux in cardiomyocytes.
Nutrient deprivation sensors that promote autophagic flux are
shown in blue, whereas the nutrient surplus sensors that suppress
autophagy are shown in red. Akt, protein kinase B; AMPK, adeno-
sine monophosphate-activated protein kinase; mTORC1, mamma-
lian target of rapamycin complex 1; PGC-1a, peroxisome
proliferator-activated receptor-gamma coactivator-1 alpha; SIRT1,
sirtuin-1.
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..the interplay of pathways that regulate growth and survival in cardio-
myocytes is sensitive to both nutrients and the redox state.2,3

An important mediator of the interconnectivity between SIRT1
and Akt/mTOR is adenosine monophosphate-activated protein kin-
ase (AMPK). AMPK discerns the balance between cytosolic levels of
ATP and AMP, and it acts to promote ATP synthesis. Ageing is
accompanied by suppression of AMPK,102 and in turn, up-regulation
of AMPK ameliorates the effects of cardiac ageing by mitigating fibro-
sis,103 promoting ischaemic tolerance in the myocardium,104,105 and
reversing ageing-related impairment of angiogenesis and regenerative
repair.106,107 In general, caloric restriction activates both SIRT1,
PGC-1a, and AMPK in parallel, and the molecular actions of AMPK
support those of SIRT1/PGC-1a and oppose those of Akt/mTOR
with respect to cellular homeostasis and survival (Figure 2). In add-
ition, the actions of AMPK and SIRT1/PGC-1a reinforce each
other93; the effect of AMPK to promote NADþ leads to SIRT1 acti-
vation,108 and AMPK can activate PGC-1a by phosphorylation.109

Simultaneously, SIRT1 can augment the activity of upstream regula-
tors of AMPK,110 while inhibition of AMPK leads to suppression of
PGC-1a.93 In addition, AMPK can inhibit mTOR by an action on its
upstream regulators as well as through a direct effect on components
of the mTORC1 complex.111,112 As a result of the interplay of these
effects, AMPK augments the ability of SIRT1/PGC-1a signalling to op-
pose the actions of the Akt/mTOR pathway.

Mechanisms underlying the effects
of SIRT1, AMPK, and Akt/mTOR
on longevity and cardiac ageing
and their role in the development
of cardiomyopathy

What cellular mechanism underlies the ability of SIRT1/AMPK activa-
tion and Akt/mTORC1 suppression to prolong lifespan, slow cardiac
ageing and mitigate the development of cardiomyopathy and heart
failure? The accumulation of dysfunctional organelles and misfolded
proteins drives the ageing process by increasing oxidative and endo-
plasmic reticulum stress, typically with secondary activation of proin-
flammatory pathways.113,114 SIRT1/PGC-1a and AMPK signalling and
Akt/mTORC1 inhibition can act directly to maintain organellar integ-
rity, to promote antioxidant mechanisms and to interfere with activa-
tion of the inflammasome.20,72,115–119 Akt/mTORC1 can also directly
modulate the functions of the senescence-associated secretory
phenotype.58

Role of autophagy in promoting longevity
and cardiomyocyte survival
Yet, the most important mechanism by which SIRT1/PGC-1a/AMPK
and Akt/mTORC1 prevents cellular stress and ageing is the disposal
and neutralization of unwanted and injurious cytosolic constituents
by the cellular housekeeping process of autophagy. Autophagy is an
evolutionarily-conserved degradative pathway, which involves the
encircling of dangerous cellular components by a double-membrane
vesicle; its fusion with the lysosome allows degradative enzymes to

destroy the vesicle’s contents.120 The process not only negates the
effects of the injurious constituent, but it allows for recycling of the
breakdown products, thus boosting cellular ATP.

Autophagic flux is the most important determinant of lifespan and
cardiac ageing.86,121–123 Normal and pathological ageing is accompa-
nied by a reduced capacity for autophagy.122,124–126 Mutation of es-
sential autophagy genes induces degenerative changes in tissues that
closely resemble those of ageing,98 and inhibition of autophagy com-
promises the longevity effects of caloric restriction.122,127,128 Loss of
autophagy allows for the accumulation of deranged organelles and
misfolded proteins, which are the major source of oxidative and
endoplasmic reticulum stress in cardiomyocytes.114,129 Conversely,
enhancement of autophagic flux prevents the molecular and cellular
features of ageing in the myocardium.130 Pharmacological or genetic
interventions that increase lifespan in model organisms act through
stimulation of autophagy.122,127

How does autophagy delay ageing and promote cellular survival?
The formation of autophagic vacuoles and their fusion with lyso-
somes disposes of misfolded proteins (as well as glucose and lipid
intermediates), thus reducing endoplasmic reticulum stress.
Furthermore, the autophagic clearance of deranged mitochondria
and peroxisomes (referred to as mitophagy and pexophagy, respect-
ively) is critical to the mitigation of oxidative stress.131

(Cardiomyocytes are replete with mitochondria and peroxisomes,
which underlie their enormous capacity to consume oxygen and gen-
erate reactive oxygen species.) Amelioration of oxidative and endo-
plasmic reticulum stress is essential to cardiomyocytes, since non-
proliferating cells cannot utilize cell division to mediate dilution of
intracellular debris or replace cells that have died.122

Role of SIRT1/AMPK and Akt/mTOR
signalling in the modulation of autophagy
SIRT1/PGC-1a/AMPK and Akt/mTORC1 are the primary mediators
of the ability of autophagy to prolong organismal longevity (Figure 1).
The most important inducer of autophagy is caloric restriction, which
acts to prolong organismal survival by signalling through both SIRT1/
PGC-1a/AMPK as well as Akt/mTORC1.122,132

In states of glucose deprivation, AMPK promotes autophagy by dir-
ectly activating several autophagy genes, including Ulk1,133–136

whereas in states of nutrient surplus, mTOR prevents Ulk1 activation
and disrupts the interaction between Ulk1 and AMPK.108 Starvation
does not prolong longevity if mTOR signalling is already sup-
pressed,128 and conversely, mTOR inhibition with rapamycin does
not favourably affect survival if autophagy genes are already knocked
down or out.136 Conversely, SIRT1 deacetylases (and thereby acti-
vates) several autophagy genes137; SIRT1-mediated deacetylation of
beclin 1 promotes autophagic flux138; and PGC-1a interacts with the
E3 ubiquitin ligase Parkin to mediate mitophagy.139,140 Importantly,
the longevity effects of SIRT1 are mediated by its actions to promote
autophagy,141 and caloric restriction does not induce mitochondrial
autophagy in aged animals if SIRT1 is absent.142 The actions of SIRT1
to extend lifespan by promoting autophagy can be attenuated by acti-
vation of Akt.71 Knockdown or knockout of autophagy genes abol-
ishes the lifespan-prolonging effects of caloric restriction, resveratrol,
or Sir2 overexpression.143 These observations, when considered

Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy 3859
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..collectively, strongly support the critical role of autophagy in media-
ting the ability of SIRT1/PGC-1a/AMPK and Akt/mTOR signalling to
influence organismal survival.

SIRT1/PGC-1a/AMPK and Akt/mTORC1 are also the primary
mediators of the ability of autophagy to retard cardiac ageing
(Figure 1).144 The effects of inflammasome suppression to retard age-
related deleterious changes in the heart are related to inhibition of
Akt/mTOR and activation of SIRT1, leading to enhanced autophagic
flux.20 Ageing-related cardiomyocyte contractile dysfunction and loss
of mitophagy are accompanied by suppression of PGC-1a and are
ameliorated by mTOR inhibition with rapamycin and with direct Sirt1
activators.71,102 AMPK activation restores autophagy in aged
hearts,145 and knockout of AMPK promotes cardiac ageing by sup-
pressing autophagy, an action that is not alleviated by concurrent in-
hibition of Akt.102 The effects of Akt to exacerbate cardiac ageing are
dependent on its actions to suppress autophagy,126,127 and the effects
of mTOR inhibition with rapamycin to mitigate oxidative stress and
ageing are mediated though enhanced mitophagy.131 Similarly, the
actions of caloric restriction to mitigate cardiac ageing are accompa-
nied by simultaneous suppression of mTOR and enhanced autopha-
gic flux.146 These findings demonstrate the importance of autophagy
in mediating the effects of SIRT1/PGC-1a/AMPK and Akt/mTOR on
cardiomyocyte senescence.

Importance of longevity gene
signalling and autophagy
modulation in the development
and treatment of chronic heart
failure

As a result of its critical role in maintaining cardiomyocyte health,
autophagy plays a major role in the evolution and progression of
heart failure. Diseases that lead to heart failure (as well as the heart
failure state itself) mimic the ageing process, in that they are charac-
terized by an increase in oxidative and endoplasmic reticulum stress,
which is exacerbated by a striking impairment in the capacity of the
heart to stimulate autophagy. Autophagic flux of cardiomyocytes is
markedly impaired in cardiomyocytes derived from injured or failing
hearts147–149; in return, pharmacological stimulation of autophagic
flux can directly ameliorate oxidative stress and organellar dysfunc-
tion, thereby preventing or reversing cardiomyocyte dysfunction and
mitigating the development of cardiomyopathy.150–152 This deficiency
in autophagic capacity in heart failure is related to the simultaneous
impairment of SIRT1/PGC-1a and AMPK signalling52,53,153 and
enhanced activation of the Akt/mTORC1 pathway in cardiomyo-
cytes.147,151,154 These derangements in longevity gene signalling is
seen both experimentally and clinically.

Interestingly, most treatments for heart failure and a reduced ejec-
tion fraction have been reported to exert favourable effects on
SIRT1/AMPK and Akt/mTOR signalling, thereby, on autophagic flux.
The action of angiotensin-converting enzyme inhibitors to mitigate
the effects of angiotensin II may involve signalling through
SIRT1155,156 and enhancement of PGC-1a.157 Angiotensin receptor
blockers have been noted to promote autophagy,158 effects that

have been attributed to their effects to activate AMPK and inhibit
Akt/mTOR.159,160 Beta-blockade is accompanied by up-regulation of
AMPK,161,162 and carvedilol up-regulates PGC-1a163 and appears to
enhance autophagic flux through SIRT1 stimulation164 and by mTOR
inhibition.165 Spironolactone activates SIRT1/AMPK in the heart,166

and its action to inhibit Akt/mTOR signalling has been linked to its ef-
fect to promote autophagic flux.167,168 PGC-1a activation can inter-
fere with the deleterious actions of mineralocorticoid receptor
activation.169 Natriuretic peptides may activate AMPK,170,171 and
neprilysin may stimulate Akt/mTOR signalling and suppress PGC-
1a.172–174 Hydralazine up-regulates both AMPK and SIRT1, and thus,
prolongs longevity in model organisms.175 Digitalis glycosides induce
autophagy (potentially by activating AMPK),176 but they also
activate Akt, which may limit the positive inotropic effect of these
drugs.177–180 The effect of cardiac resynchronization to effect reverse
remodelling is accompanied by activation of autophagic flux and im-
provement in mitochondrial function.181 Therefore, currently avail-
able treatments for heart failure appear to exert a consistently
favourable influence on the interplay of SIRT1/AMPK and Akt/mTOR
in a manner that promotes autophagy.

SGLT2 inhibitors have recently been shown to have favourable
effects on the evolution and progression of heart failure in the pres-
ence and absence of Type 2 diabetes.182 When the actions of SGLT2
are inhibited, the urinary loss of calories triggers systemic transcrip-
tional reprogramming that closely mimics that seen during states of
nutrient deprivation.183,184 The depletion of tissue nutrients that fol-
lows glycosuria leads to activation of SIRT1 and AMPK and the sup-
pression of Akt and mTOR.183,184 It is therefore noteworthy that
several SGLT2 inhibitors up-regulate SIRT1, PGC-1a and AMPK,
while simultaneously inhibiting the Akt/mTOR pathway,118,183–191

thus potentially explaining the action of these drugs to promote
autophagy in diverse organs, including the heart.192,193 The induction
of autophagy may underlies the ability of SGLT2 inhibitors to mute
oxidative stress, promote organellar integrity, suppress proinflamma-
tory pathways, and ameliorate the course of experimental cardiomy-
opathy.118,188,193–197 Importantly, because nutrient deprivation elicits
a system-wide response, SGLT2 inhibitors can exert cardioprotective
effects, even though SGLT2 is not expressed in the heart.183,184 In
addition, SGLT2 inhibitors may be able to bind directly to SIRT1 to
activate its functions (Figure 1).198

Drugs that are well-characterized agonists and antagonists of
SIRT1/AMPK and Akt/mTOR signalling may also prove to have fa-
vourable effects in the treatment of chronic heart failure. Metformin
is an established agonist of AMPK (which also up-regulates PGC-1a),
and it promotes autophagy and ameliorates the development of ex-
perimental diabetic and non-diabetic cardiomyopathy.26,199–201

Epidemiological studies have suggested that the use of metformin
may be accompanied by a reduced risk of heart failure, but these
reports have been difficult to interpret, given the observational na-
ture of these analyses and concerns that the reported benefits may
have been related to an adverse effect of the comparator drugs ra-
ther than a favourable action of metformin.202 Resveratrol (an activa-
tor of SIRT1)18,29,45,203–208 and rapamycin and its analogues
(inhibitors of mTORC1)151,209–211 have also been shown to enhance
autophagic flux and to ameliorate cardiomyopathy in experimental
models. However, clinical trial evidence to support a benefit of
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metformin, resveratrol and rapamycin in patients with chronic heart
failure is lacking.

Conclusions

Genes that modulate lifespan in model organisms play a crucial role
in the regulation of cellular growth and survival as a result of their
effects on the cellular housekeeping process of autophagy.
Autophagic flux is exquisitely controlled by the interplay of the
SIRT1/AMPK and Akt/mTOR pathways, which underlies the ability of
caloric restriction and the redox state to modulate ageing (Take
home figure). The interaction of these longevity genes is particularly
important in cardiomyocytes, since these cells readily produce react-
ive oxygen species and their non-proliferating state impairs the dilu-
tion of cellular stress and the replenishment of senescent cells from
stem cell niches. The impairment of autophagy that results from
derangements in longevity gene signalling is likely to represent a sem-
inal event in the evolution and progression of cardiomyopathy.
Enhancement of autophagic flux may be an important feature of cur-
rent and future treatments for heart failure.
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Ryffel B, Flores I, Bullón P, Ruiz-Cabello J, Cordero MD. NLRP3 inflammasome
suppression improves longevity and prevents cardiac aging in male mice. Aging
Cell 2020;19:e13050.

19. Sanz MN, Grimbert L, Moulin M, Gressette M, Rucker-Martin C, Lemaire C,
Mericskay M, Veksler V, Ventura-Clapier R, Garnier A, Piquereau J. Inducible
cardiac-specific deletion of Sirt1 in male mice reveals progressive cardiac dys-
function and sensitization of the heart to pressure overload. Int J Mol Sci 2019;
20:E5005.

20. Hsu YJ, Hsu SC, Hsu CP, Chen YH, Chang YL, Sadoshima J, Huang SM, Tsai CS,
Lin CY. Sirtuin 1 protects the aging heart from contractile dysfunction mediated
through the inhibition of endoplasmic reticulum stress-mediated apoptosis in
cardiac-specific Sirtuin 1 knockout mouse model. Int J Cardiol 2017;228:
543–552.

21. Planavila A, Dominguez E, Navarro M, Vinciguerra M, Iglesias R, Giralt M, Lope-
Piedrafita S, Ruberte J, Villarroya F. Dilated cardiomyopathy and mitochondrial
dysfunction in Sirt1-deficient mice: a role for Sirt1-Mef2 in adult heart. J Mol Cell
Cardiol 2012;53:521–531.

22. Liu X, Chen H, Zhu W, Chen H, Hu X, Jiang Z, Xu Y, Zhou Y, Wang K, Wang
L, Chen P, Hu H, Wang C, Zhang N, Ma Q, Huang M, Hu D, Zhang L, Wu R,
Wang Y, Xu Q, Yu H, Wang J. Transplantation of SIRT1-engineered aged mes-
enchymal stem cells improves cardiac function in a rat myocardial infarction
model. J Heart Lung Transplant 2014;33:1083–1092.

23. Kanamori H, Takemura G, Goto K, Tsujimoto A, Ogino A, Takeyama T,
Kawaguchi T, Watanabe T, Morishita K, Kawasaki M, Mikami A, Fujiwara T,
Fujiwara H, Seishima M, Minatoguchi S. Resveratrol reverses remodeling in

SIRT1 / PGC-1αα /
AMPK activation

Extension of
lifespan in

model organisms

Akt / mTORC1
suppression

Mitigation of
cardiac aging

Amelioration of
cardiomyopathy

Reduction in oxidative and endoplasmic
reticulum stress, promotion of organellar health,

mitigation of inflammation and maladaptive hypertrophy

Enhancement of autophagic flux

Nutrient deprivation
SGLT2

inhibitors Rapamycin

Take home figure Pathways that mediate and influence the
interplay of lifespan extension, cardiac ageing, and the development
of cardiomyopathy. Akt, protein kinase B; AMPK, adenosine mono-
phosphate-activated protein kinase; mTORC1, mammalian target of
rapamycin complex 1; PGC-1a, peroxisome proliferator-activated
receptor-gamma coactivator-1 alpha; SIRT1, sirtuin-1.

Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy 3861



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..hearts with large, old myocardial infarctions through enhanced autophagy-
activating AMP kinase pathway. Am J Pathol 2013;182:701–713.

24. Prola A, Pires Da Silva J, Guilbert A, Lecru L, Piquereau J, Ribeiro M, Mateo P,
Gressette M, Fortin D, Boursier C, Gallerne C, Caillard A, Samuel JL, François
H, Sinclair DA, Eid P, Ventura-Clapier R, Garnier A, Lemaire C. SIRT1 protects
the heart from ER stress-induced cell death through eIF2a deacetylation. Cell
Death Differ 2017;24:343–356.

25. Wang Y, Liang X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal
plants as bioactive compounds against oxidative damage in mitochondrial func-
tion. Oxid Med Cell Longev 2016;2016:4206392.

26. Ma S, Feng J, Zhang R, Chen J, Han D, Li X, Yang B, Li X, Fan M, Li C, Tian Z,
Wang Y, Cao F. SIRT1 activation by resveratrol alleviates cardiac dysfunction
via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell
Longev 2017;2017:4602715.

27. Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins JF,
Kabir G, Zhang Y, Mitchell M, Switzer J, Thai K, Shen V, Abadeh A, Singh KK,
Billia F, Advani A, Gilbert RE, Connelly KA. Sirtuin 1 activation attenuates car-
diac fibrosis in a rodent pressure overload model by modifying Smad2/3 trans-
activation. Cardiovasc Res 2018;114:1629–1641.

28. Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak
TH, Eom SH, Park ZY, Yoo YJ, Kim DH, Kook H, Sunagawa Y, Morimoto T,
Hasegawa K, Sadoshima J, Vangheluwe P, Hajjar RJ, Park WJ, Kho C. Role of
SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca2þ-
ATPase in heart failure. Circ Res 2019;124:e63–e80.

29. Gu XS, Wang ZB, Ye Z, Lei JP, Li L, Su DF, Zheng X. Resveratrol, an activator
of SIRT1, upregulates AMPK and improves cardiac function in heart failure.
Genet Mol Res 2014;13:323–335.

30. Maizel J, Xavier S, Chen J, Lin CH, Vasko R, Goligorsky MS. Sirtuin 1 ablation in
endothelial cells is associated with impaired angiogenesis and diastolic dysfunc-
tion. Am J Physiol Heart Circ Physiol 2014;307:H1691–H1704.

31. Zhang CL, Feng H, Li L, Wang JY, Wu D, Hao YT, Wang Z, Zhang Y, Wu LL.
Globular CTRP3 promotes mitochondrial biogenesis in cardiomyocytes
through AMPK/PGC-1a pathway. Biochim Biophys Acta Gen Subj 2017;1861:
3085–3094.

32. Geng T, Li P, Yin X, Yan Z. PGC-1a promotes nitric oxide antioxidant defenses
and inhibits FOXO signaling against cardiac cachexia in mice. Am J Pathol 2011;
178:1738–1748.

33. Waldman M, Nudelman V, Shainberg A, Abraham NG, Kornwoski R, Aravot D,
Arad M, Hochhauser E. PARP-1 inhibition protects the diabetic heart through
activation of SIRT1-PGC-1a axis. Exp Cell Res 2018;373:112–118.

34. Palomer X, Salvadó L, Barroso E, Vázquez-Carrera M. An overview of the
crosstalk between inflammatory processes and metabolic dysregulation during
diabetic cardiomyopathy. Int J Cardiol 2013;168:3160–3172.

35. Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM.
Transverse aortic constriction leads to accelerated heart failure in mice lack-
ing PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci USA 2006;103:
10086–10091.
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49. Opstad TB, Kalstad AA, Pettersen AÅ, Arnesen H, Seljeflot I. Novel biomole-
cules of ageing, sex differences and potential underlying mechanisms of telo-
mere shortening in coronary artery disease. Exp Gerontol 2019;119:53–60.

50. Costantino S, Paneni F, Battista R, Castello L, Capretti G, Chiandotto S, Tanese
L, Russo G, Pitocco D, Lanza GA, Volpe M, Lüscher TF, Cosentino F. Impact of
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76. González A, Ravassa S, Loperena I, López B, Beaumont J, Querejeta R, Larman
M, Dı́ez J. Association of depressed cardiac gp130-mediated antiapoptotic path-
ways with stimulated cardiomyocyte apoptosis in hypertensive patients with
heart failure. J Hypertens 2007;25:2148–2157.

77. Kemppainen J, Tsuchida H, Stolen K, Karlsson H, Björnholm M, Heinonen OJ,
Nuutila P, Krook A, Knuuti J, Zierath JR. Insulin signalling and resistance in
patients with chronic heart failure. J Physiol 2003;550:305–315.

78. Völkers M, Doroudgar S, Nguyen N, Konstandin MH, Quijada P, Din S, Ornelas
L, Thuerauf DJ, Gude N, Friedrich K, Herzig S, Glembotski CC, Sussman MA.
PRAS40 prevents development of diabetic cardiomyopathy and improves hep-
atic insulin sensitivity in obesity. EMBO Mol Med 2014;6:57–65.

79. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L,
Michael A, Hajjar R, Force T, Molkentin JD. Differential activation of signal
transduction pathways in human hearts with hypertrophy versus advanced
heart failure. Circulation 2001;103:670–677.

80. Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its
implication in cardiac hypertrophy and aging. Circ Res 2014;114:368–378.

81. Liu Z, Gan L, Liu G, Chen Y, Wu T, Feng F, Sun C. Sirt1 decreased adipose in-
flammation by interacting with Akt2 and inhibiting mTOR/S6K1 pathway in
mice. J Lipid Res 2016;57:1373–1381.

82. Zhang T, Du X, Zhao L, He M, Lin L, Guo C, Zhang X, Han J, Yan H, Huang K,
Sun G, Yan L, Zhou B, Xia G, Qin Y, Wang C. SIRT1 facilitates primordial fol-
licle recruitment independent of deacetylase activity through directly modulat-
ing Akt1 and mTOR transcription. FASEB J 2019;33:14703–14716.

83. Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mamma-
lian target of rapamycin. PLoS One 2010;5:e9199.

84. Brown EL, Foletta VC, Wright CR, Sepulveda PV, Konstantopoulos N,
Sanigorski A, Della Gatta P, Cameron-Smith D, Kralli A, Russell AP. PGC-1a
and PGC-1b increase protein synthesis via ERRa in C2C12 myotubes. Front
Physiol 2018;9:1336.

85. Alayev A, Berger SM, Holz MK. Resveratrol as a novel treatment for diseases
with mTOR pathway hyperactivation. Ann N Y Acad Sci 2015;1348:116–123.

86. Zheng H, Fu Y, Huang Y, Zheng X, Yu W, Wang W. mTOR signaling promotes
foam cell formation and inhibits foam cell egress through suppressing the SIRT1
signaling pathway. Mol Med Rep 2017;16:3315–3323.

87. Wang Y, Li X, He Z, Chen W, Lu J. Rapamycin attenuates palmitate-induced
lipid aggregation by up-regulating sirt-1 signaling in AML12 hepatocytes.
Pharmazie 2016;71:733–737.

88. Zhang XM, Li L, Xu JJ, Wang N, Liu WJ, Lin XH, Fu YC, Luo LL. Rapamycin pre-
serves the follicle pool reserve and prolongs the ovarian lifespan of female
rats via modulating mTOR activation and sirtuin expression. Gene 2013;523:
82–87.
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