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Assessment of a deep-learning system for fracture detection in

musculoskeletal radiographs
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Missed fractures are the most common diagnostic error in emergency departments and can lead to treatment delays and long-term
disability. Here we show through a multi-site study that a deep-learning system can accurately identify fractures throughout the
adult musculoskeletal system. This approach may have the potential to reduce future diagnostic errors in radiograph interpretation.
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Misdiagnosed fractures are the leading cause of diagnostic errors
in Emergency Departments (EDs), occurring in ~1% of all ED
patient visits'™*. Missed fractures are the most common type of
interpretational error made by physicians on musculoskeletal
radiographs®™. They can result in treatment delays, may lead to
malunion and arthritis with attendant morbidity?, and are one of
the most common factors leading to malpractice claims against
physicians®2,

Reliably identifying fractures on radiographs is difficult because
fractures are uniquely heterogeneous: they can occur in any bone
and their appearance depends on the regional anatomy and
radiographic projection. Clinicians without a specialization in
musculoskeletal imaging generally have limited training at
identifying fractures across their many distinct and often-subtle
presentations. Providing ED clinicians with timely access to the
fracture-detection expertise of specialists could help a large
number of patients receive more accurate and timely diagnoses
and could help address the leading cause of diagnostic errors
in EDs.

The primary aim of this study was to build and test a deep-
learning system to provide clinicians with the timely fracture-
detection expertise of experts in musculoskeletal imaging (see
Fig. 1). We developed a deep-learning system for detecting
fractures across the musculoskeletal system, trained it on data
manually annotated by senior orthopedic surgeons and radiolo-
gists, and then evaluated the system’s ability to emulate them.
Prior deep-learning systems for fracture detection are limited in
scope to single bones, areas within a bone, specific anatomical
regions (e.g., refs °~'"), or limited clinical settings (e.g., orthopedic
settings—hand, wrist, ankle'?). Deep-learning methods have
recently shown great promise at successfully addressing a wide
variety of medical visual search tasks'>™'®, but have yet to tackle a
common and heterogeneous clinical problem in medical imaging.

The overall AUC of the deep-learning system was 0.974 (95% Cl:
0.971-0.977), sensitivity was 95.2% (95% Cl: 94.2-96.0%), specifi-
city was 81.3% (95% Cl: 80.7-81.9%), positive predictive value
(PPV) was 47.4% (95% Cl: 46.0-48.9%), and negative predictive
value (NPV) of 99.0% (95% Cl: 98.8-99.1%). Secondary tests of

radiographs with no inter-annotator disagreement yielded an
overall AUC of 0.993 (95% Cl: 0.991-0.994), sensitivity of 98.2%
(95% Cl: 97.5-98.7%), specificity of 83.5% (95% Cl: 82.9-84.1%),
PPV of 46.9% (95% Cl: 45.4-48.5%), and NPV of 99.7% (95% Cl:
99.6-99.8%).

Over half of the regional anatomies had mean AUCs above 0.98;
foot was the lowest-performing with an AUC of 0.888 (95% Cl:
0.851-0.922) and knee was the highest performing with an AUC of
0.996 (95% Cl: 0.993-0.998) (see Fig. 2). Performance varied by
fracture type, with the lowest AUC of 0.948 for fractures without
lucent lines (95% Cl: 0.931-0.963) and the highest AUC of 0.982 for
fractures without callus formations (95% Cl: 0.979-0.985) (see
Supplementary Table 1).

These results demonstrate that a deep-learning system can
accurately emulate the expertise of orthopedic surgeons and
radiologists at detecting fractures in adult musculoskeletal radio-
graphs, a challenging heterogeneous clinical problem that is the
largest source of diagnostic errors in emergency departments. In
each of the 16 anatomical regions tested and across different
fracture types (e.g., cases without lucent lines), the deep-learning
system has a high AUC, indicating a high level of agreement with
the experts’ judgments.

As expected, there was performance variation across anatomical
regions, with the lowest AUC in foot. Foot fractures are commonly
missed by clinicians'” and the foot is one of the most visually
complex regions in the musculoskeletal system, with over two
dozen bones. Importantly, performance was high across different
fracture types ranging from 0.948 for images without lucent lines
to 0.982 for images without callus formation. The data suggest
that performance of the deep-learning system is robust to clinical
variation and to cases that physicians would consider more
difficult.

Although deep-learning methods have shown promise at
addressing a variety of medical visual search tasks'>™'>, they have
yet to tackle a heterogeneous clinical problem in medical imaging
such as identifying fractures across 16 anatomical regions. Prior
deep-learning studies for fracture detection typically have been
limited to a single bone or anatomical region (e.g., wrist or hip®™'"'3)
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The deep-learning system. a The deep-learning system used an ensemble of 10 convolutional neural networks. To produce a

prediction, radiographs are processed by each network in the ensemble, averaged, and then post-processed to generate an overall fracture
determination and bounding boxes. b Example outputs for each of the 16 anatomical regions supported by the deep-learning system.

and the most similar study in scope is a deep-learning model that
reports an overall AUC of 0.929 detecting abnormalities in only
upper extremity musculoskeletal radiographs'®. Thus, the present
study has much broader clinical breadth than prior deep-learning
systems for musculoskeletal radiograph:s.

This study has limitations. In order to ensure that conclusions
could be drawn about the efficacy of the deep-learning system in
each anatomical region, we over-represented infrequently
acquired regions (e.g., clavicle) relative to more commonly
acquired regions (e.g., foot). Thus, in practice, the overall AUC of
the system may be different and vary depending on the
distribution of anatomical regions. Similarly, the PPV of the system
is relatively low (47.4%) due to the low fracture prevalence in the
test dataset and the high sensitivity of the system. While our deep-
learning system was designed to yield a high sensitivity, further
clinical research should assess whether a different balance of
sensitivity and PPV (potentially a lower sensitivity and higher PPV)
can aid clinicians most effectively. Finally, while the deep-learning
system demonstrated high performance on a diverse dataset from
two healthcare systems, future research will be necessary to
evaluate performance with additional healthcare systems.

As measured by AUC, sensitivity, and specificity, the deep-
learning system has a high performance across a wide range of
anatomical regions. The results were used to support FDA
clearance of a deep-learning system to assist clinicians in
detecting fractures for a selected subset of the 16 anatomical
regions'”. Further clinical research is necessary to evaluate the
potential of the deep-learning system to reduce diagnostic errors
and to improve patient outcomes.

METHODS
Overall design and testing

To build the deep-learning system, 18 orthopedic surgeons and 11
radiologists manually annotated a model-development dataset of 715,343
de-identified radiographs from 314,866 patients collected from 15
hospitals and outpatient care centers in the United States (see Table 1).
Orthopedic surgeons and radiologists were included as annotators as both
physicians have expertise in detecting fractures within the musculoskeletal
system?°~22, On each radiograph, a single annotator drew a bounding box
that was as small as possible around the site of any clinically relevant
fracture (i.e., impactful on subsequent patient care) or noted that the
radiograph contained no visible fractures as per specifications in a
comprehensive fracture taxonomy. The annotators were provided only
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with the radiograph and not the original radiologist’s interpretation. The
development dataset was randomly split into a training set (80% of the
development set), a tuning set (10%), and a validation set (10%).

After collecting annotations on the development dataset, we created an
ensemble of 10 convolutional neural networks that identifies and localizes
fractures from their appearance on radiographs (see Fig. 1). All networks
used minor variants of the Dilated Residual Network architecture?®, with
variation introduced in the image pre-processing techniques and the
output layer structure. Each network was independently optimized on the
training set to predict the probability that a radiograph contained a
fracture (“radiograph-level probability”), and, for a subset of networks, the
probability that each pixel was part of a fracture site (“pixel-wise
probability map”). Network parameters were iteratively updated using
the gradient-based optimizer Adam?* to minimize the binary cross-entropy
loss between network predictions and physician annotations. After
training, the output of the ensemble could be obtained by passing a
radiograph through each network and averaging the resulting outputs. To
enable binary radiograph-level predictions, anatomical-region-specific
thresholds were optimized on the tuning set such that the ensemble
system yielded a 92.5% sensitivity on each anatomical region. In addition,
the tuning set was used to determine thresholds that enabled conversion
of the ensemble’s pixel-wise probability maps into bounding-box
predictions.

To test the deep-learning system, we created a test dataset by randomly
sampling 16,019 de-identified radiographs from 12,746 adults across 15
hospitals and outpatient care centers. No radiographs from the develop-
ment dataset were present in the test dataset. Each radiograph in the test
set was independently annotated by three orthopedic surgeons or
radiologists, without access to the original radiologist’s interpretation.
Performance was measured on all 16,019 radiographs, inclusive of the
1265 radiographs where annotators did not agree about the presence or
absence of a fracture and a reference standard was constructed using
majority opinion (see Table 1). The 14,754 radiographs where annotators
agreed about the presence or absence of a fracture were also used to test
the performance of the deep-learning system. The main outcome
measures were AUC, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV). Confidence intervals for
sensitivity and specificity were calculated using Wilson's method, and all
other confidence intervals were calculated using bootstrap sampling (m =
1000). Secondary analyses sub-classified positive fracture cases for the
presence or absence of a clinical indicator of fracture types, specifically
identifying callus formation, displacement, angulation, comminution, and
lucent line. Analyses were conducted on cases without each of the
indicators to assess performance of the deep-learning system on clinically
challenging cases.
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Table 1. Characteristics of the development and test datasets.

Development dataset Test dataset

Radiographs
No. of hospitals®
No. of radiographs
No. of radiographic views
No. of anatomical regions
Median (range) radiographs per anatomical region
No. of radiographs with fracture(s) (%)
No. of fracture bounding-box annotations

Patients
No. of patients
Median (range) patients per anatomical region
No. of male (%)
Median (range) patient age in years
Annotators
No. of orthopedic surgeons (median years experience post-residency)
No. of radiologists (median years experience post-residency)

No. of bounding-box annotations per fractured radiograph, mean (range)

15 15
715,343 16,019
16° 9°
16 16

40,658 (6249-106,705)
82,830 (12%)

1000 (774-1079)
2415 (15%)

97,559 2718¢
1.2 (1-13) 1.1 (1-6)
314,866 12,746

18,952 (3022-71,484)
137,929° (44%)

909 (326-1042)
5520 (43%)

54 (0-90)f 55 (22-90)
18 (16) 11 (13)
11 (13) 7 (13)

No radiographs used for testing were in the development dataset.

Children in CA.

and oblique view (oblique; oblique-mortise).

€602 patients were missing biological sex information.

“Datasets sampled from the MedStar Health System located in Baltimore, MD, Washington, D.C., Olney, MD, Leonardtown, MD, and Clinton, MD, the CarePoint
Health System in Bayonne, NJ, Jersey City, NJ, and Hoboken, NJ as well as the Hospital for Special Surgery (HSS) in New York, NY and Orthopedic Institute for

PNumber of unique radiographic views estimated through a manual review of 20,000 randomly sampled radiographs across anatomical regions.
“Views were collapsed for statistical analyses into frontal view (frontal; frontal dorso-plantar; frontal inlet-outlet), lateral view (axillary; frog-leg lateral; lateral; y),

92718 reflects unique fracture sites after fusing the 3 reference standard annotations per image through a pixel-wise majority vote.
fPatient age missing for 43% of the development dataset because patient age was removed from radiographs collected at HSS. De-identification procedures

capped patient age at 90 years. In the development dataset, 0.1% of radiographs were from patients 0 to 10 years of age, and 2.95% were from patients 10 to
20 years of age. By design, no radiographs in the test dataset were from patients <22 years of age.

HIPAA compliance

All Protected Health Information used in the training and validation of this
deep-learning system was de-identified in compliance with the Healthcare
Information Portability and Accountability Act of 1996 (HIPAA)'s Expert
Determination method. The de-identification procedures removed DICOM
metadata by whitelist-based redaction and transformation of quasi-
identifiers. The DICOM pixel data containing PHI was obscured via drawing
black boxes over pixel areas containing PHI. These procedures removed all
patient information except patient age, institution where the imaging was
acquired, and biological sex. The risk that combining these patient
variables could disclose the identity of the person was statistically tested
with data from the U.S. Census Bureau. The level of re-identification risk
was very small and acceptable by HIPAA Expert Determination methods.
The study complied with all relevant ethical regulations and a patient
waiver of consent was granted by the New England Independent Review
Board because the study presented no risk to patients.

Algorithm design

The deep-learning system’s processing of a given radiograph consists of
three stages: a pre-processing stage, the analysis stage, and the post-
processing stage.

Pre-processing stage. Input radiographs are automatically pre-processed
in order to standardize their visual characteristics. A given radiograph is
first cropped to remove excess black padding around the edges.
Next, an aspect ratio preserving image resizing operation is applied to
standardize the resolution to a height and width of 1024px. When
necessary in order to preserve the aspect ratio, the resize operation adds
padding to the edge of the image. Finally, for use in a subset of the models
within the ensemble, the radiograph’s contrast is normalized via Local
Contrast Normalization?®, with the resulting pixel intensities rescaled to lie
on the range [—1, 1].

Seoul National University Bundang Hospital

Analysis stage. The analysis stage takes the pre-processed radiograph
(and its contrast-normalized counterpart) and uses an ensemble of 10
deep convolutional neural networks to create two outputs: one is a score
representing the likelihood that any fractures are visible within the
radiograph, and the other is a pixel-wise probability map representing an
estimate of where any fractures are within the radiograph. All individual
models in the ensemble are minor variants of the Dilated Residual
Network®, which is a type of network that combines the performance
benefits of deep residual networks*® with dilated convolutions®’. The
models within the ensemble vary in terms of their input (either the pre-
processed radiograph, its contrast-normalized version, or both), whether or
not the model produces a probability map output in addition to the overall
image-level fracture likelihood score, whether or not the model has an
attention mechanism, and whether or not spatial pyramid pooling®® is
used instead of average pooling. Given the fracture likelihood scores from
each model, the ensemble’s overall fracture likelihood score is computed
by unweighted averaging. Similarly, the ensemble’s probability map
output is computed by unweighted averaging over the subset of models
that produce probability map outputs.

Post-processing stage. The deep-learning system takes the output from
the ensemble and applies post-processing operations to create two
outputs: a binary determination representing the deep-learning system'’s
prediction of whether or not any fractures are visible within the
radiograph, and a set of bounding boxes associated with any such
fracture sites. The binary determination is calculated from the averaged
score output from the ensemble using an anatomical-region-specific
threshold pre-computed on the tuning dataset. Any score lying on or
above the threshold results in a fracture present determination, and any
score below the threshold results in a fracture absent determination. The
thresholds were optimized to yield 92.5% sensitivity per anatomical region
(note that this exact target sensitivity is not necessarily observed on the
test dataset). The set of bounding boxes are created from the ensemble’s
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Anatomy n Sensitivity Specificity AUC
Knee 1,079 1.000 0.847 0.996 9
Tibia / Fibula 1,000 1.000 0.883 0.994 ¢
Wrist 1,000 0.990 0.867 0.992 L3
Femur 1,000 0.941 0.943 0.989 o
Forearm 1,000 0.980 0.914 0.987 O
Ankle 1,000 0.981 0.873 0.983 X3
Humerus 1,000 0.937 0.934 0.983 X
Hip 1,036 0.920 0.946 0.982 4
Pelvis 1,007 0.930 0.915 0.982 &
Elbow 1,032 0.960 0.822 0.964 ¢
Clavicle 774 0.897 0.905 0.962 &
Shoulder 1,042 0.920 0.880 0.962 9
Hand 1,000 0.947 0.669 0.959 2
Finger 1,000 0.972 0.617 0.950 ¢
Lumbar Spine 1,049 0.970 0.551 0.940 L 2
Foot 1,000 0.918 0.512 0.888 L 2
Overall 16,019 0.952 0.813 0.974 L

018 0.55 0J9 0“95 1‘

AUC

Fig. 2 The deep-learning system’s AUCs. Error bars represent 95% confidence intervals calculated using bootstrap sampling (m = 1000).

n indicates the number of radiographs tested.

pixel-wise probability map output using a heuristic that places boxes
around the site of high-probability regions within the probability map. The
approach also relies on pre-computed, region-specific thresholds that
binarize the probability map. The choice to have the deep-learning system
output boxes instead of the probability map was based on feedback from
physicians suggesting that boxes provide greater clinical utility than
probability maps. The choice to compute region-specific binarization
thresholds instead of a common threshold was made in order to ensure a
minimum sensitivity per anatomical region. Due to the varying incidence
rates across anatomical regions, determining a common binarization
threshold would result in anatomical regions with more positives
dominating the threshold determination.

Model training

Per standard machine learning practices, the development dataset was
randomly subdivided into a “training” (80%), “tuning” (10%), and
“validation” set (10%).

Training of each model within the ensemble was achieved by minimizing
a joint loss function assessing the model’s ability to correctly predict the
image-level classification (fracture present or absent) and the ability to
correctly predict the localization of fracture sites. The joint loss function is
defined as a weighted sum of two terms. The first term is the average per-
pixel binary cross-entropy loss between the predicted probability map and
the ground truth map for radiographs with a fracture present. The second
term is a binary cross-entropy loss for the image-level classification score.
The weights associated with the two terms in the weighted sum are in the
ratio (localization:classification) of 3:1 (default) or 10:1 (for models within
the ensemble with an attention layer). No weight regularization was used.
Data augmentation was used during training; radiographs were randomly
rotated, vertically or horizontally flipped, gamma-corrected, contrast-
adjusted, vertically or horizontally translated, and zoomed in or out. Due
to the low prevalence of fractures in certain anatomical regions, dataset
balancing was employed during the first 10 epochs of training to ensure
that, on expectation, each possible combination of anatomical region and
fracture present/absent label was sampled with equal probability.

Once the parameters of the module were initialized at random (no transfer
learning was used), the training algorithm repeatedly iterated through the
training set in randomized batches of 48 (default) or 32 (models with
attention layer) radiographs. The parameters of the module were updated
after processing each batch to minimize the above-mentioned loss function.
This minimization was achieved using a variant of the stochastic gradient
descent algorithm called Adam®’. After each epoch, the module was
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evaluated on the tuning set. Early stopping was used to terminate the
training either when the module’s performance on the tuning set did not
show any improvement for 10 epochs or when 30 training epochs had been
completed. The early stopping performance criteria is the AUC across all
radiographs in the tuning set.

After training finished, the radiographs in the validation set were run
through the trained ensemble. Internal performance tests were run on the
held-out validation set and based on cross-validation on the combined
tuning and validation set. For data efficiency, prediction scores on images
of the combined tuning and validation sets were used to compute the per
anatomical region operating point for the final model. The resulting
decision thresholds (one per anatomical region) are then fixed and held
constant prior to testing.

Test dataset

A holdout set of 16,019 unique radiographs was used in this study to test the
performance of the deep-learning system, with the main outcome measures
reported on the subset of 14,754 radiographs that have an unambiguous
reference standard. The 16,019 radiographs were randomly subsampled from
a large holdout set composed of radiographs from 15 hospitals within 2 large
health systems. The holdout set includes radiographs from the natural
distribution in emergency, inpatient, and outpatient settings. From the
CarePoint Health system radiographs, holdout radiographs were randomly
sampled over a 3.5 year period (January 1, 2013-December 5, 2017). The
timeframe of this set overlapped temporally with that of the development
dataset, however, it was split prior to development to ensure that the sets of
radiographs were disjoint. From the MedStar Health system, the holdout set
was composed of 6 months of consecutively sampled radiographs (April 1,
2017-September 31, 2017). The timeframe of this set did not overlap with
that of the Medstar Health system data in the training set. Radiographs
subsampled for inclusion in the test dataset were manually confirmed to be
of a frontal, lateral, or oblique view. The sampling procedure was designed to
create a test dataset for each anatomical region containing ~1000
radiographs, enriched as needed to contain at least 100 fractures per region
according to a majority vote of 3 annotators. The sampling process was
designed to ensure that the set of non-fractured radiographs and the set of
fractured radiographs within each anatomical region are each random
sample from the larger pool of radiographs.

The hospitals and outpatient care centers in the test dataset are a random
subset of those in the development dataset. No radiographs overlapped
between the datasets, and 99.98% of test patients (12,744 of 12,746) were
not present in the development dataset. The two patients (0.016%) who
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were present had a radiograph in the development dataset and a different
radiograph in the test dataset. The overlap in hospitals and outpatient care
centers allows for the possibility that the generalizability of the model’s
performance could be affected by the presence of confounding variables
specific to the hospitals®®. This concern is mitigated by training the deep-
learning system on bounding-box annotations and training it to produce
localized output. Localized training data and model outputs provide
interpretability in the model predictions and penalize the model during
the training process for being unable to identify the precise location of a
fracture in a radiograph predicted to have one. In addition, the models were
trained on a diverse dataset of 314,866 patients from 15 healthcare centers,
increasing the applicability of the models for new patients.

Further data are provided in Supplementary Tables 1-5 in Supplemen-
tary Information.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The output of the model and the ground truth labels used to calculate the results in
this study are available upon reasonable request. Access to the X-ray images are not
publicly available under Imagen Technologies’ license.

CODE AVAILABILITY

The code used for training the models has a large number of dependencies on
internal tooling and its release is therefore not feasible. However, all experiments and
implementation details are described thoroughly in the “Methods” so that it can be
independently replicated with non-proprietary libraries.
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