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Abstract: Recently, one-dimensional (1D) nanostructures have attracted the scientific community
attention as sensitive materials for conductometric chemical sensors. However, finding facile
and low-cost techniques for their production, controlling the morphology and the aspect ratio
of these nanostructures is still challenging. In this study, we report the vapor-liquid-solid (VLS)
synthesis of one dimensional (1D) zinc oxide (ZnO) nanorods (NRs) and nanowires (NWs) by
using different metal catalysts and their impact on the performances of conductometric chemical
sensors. In VLS mechanism, catalysts are of great interest due to their role in the nucleation and the
crystallization of 1D nanostructures. Here, Au, Pt, Ag and Cu nanoparticles (NPs) were used to grow
1D ZnO. Depending on catalyst nature, different morphology, geometry, size and nanowires/nanorods
abundance were established. The mechanism leading to the VLS growth of 1D ZnO nanostructures
and the transition from nanorods to nanowires have been interpreted. The formation of ZnO
crystals exhibiting a hexagonal crystal structure was confirmed by X-ray diffraction (XRD) and ZnO
composition was identified using transmission electron microscopy (TEM) mapping. The chemical
sensing characteristics showed that 1D ZnO has good and fast response, good stability and selectivity.
ZnO (Au) showed the best performances towards hydrogen (H2). At the optimal working temperature
of 350 ◦C, the measured response towards 500 ppm of H2 was 300 for ZnO NWs and 50 for ZnO NRs.
Moreover, a good selectivity to hydrogen was demonstrated over CO, acetone and ethanol.

Keywords: 1D nanostructures; ZnO; VLS; catalysts; nanowires; conductometric sensors; response;
selectivity

1. Introduction

Nowadays, domestic or industrial accidents caused by dangerous chemical compounds and
pollutants demonstrate the real need for early detection systems. As a result, these detection devices have
many potential applications in significant fields such as transportation, environment, health, industry
and agriculture [1–4]. Among different types of chemical sensors, conductometric sensors based on
metal oxides (MOXs) materials have several advantages, such as easy integration (compatibility) with
current electronics, low production cost and suitability for a potential miniaturization. Nonetheless,
these sensors still have some limitations such as selectivity and sensitivity at low working
temperatures [5]. To overcome these problems, various studies have been performed to get the
optimal morphology and crystalline structure. Many of them improved the detection capability,
either by optimizing the synthesis method by modifying the surface properties, decorating with
other materials, adding dopants or manufacturing p-n junctions to improve sensitivity to target
gases. An example of the latter is reported by Kaur et al. who have enhanced the NiO sensitivity
and selectivity by synthesizing a NiO/ZnO heterojunction [6–8]. Moreover, hybrid carbon—metal
oxide heterojunctions such as graphene oxide-ZnO and graphene oxide-SnO2—have shown capability
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for selective room-temperature detection of low concentration volatile organic compounds [9,10].
Moreover, a new approach was provided by Hu-Jun Le et al. for designing versatile hydrogen sensors
using alloy@oxide core-shell, such as PdAualloy@ZnO core-shell, as sensing material with high response
and excellent selectivity to hydrogen [11].

The rapid development of nanoscience and nanotechnology has greatly pushed the scientific
community and industrial companies to explore new features of both conventional and novel materials
at the nanoscale level. Thanks to nanotechnology, it becomes possible to develop materials by
controlling their structure at atomic level, resulting in new properties for the material in order to
be used in all applications fields and chemical sensors in particular. Recently, one-dimensional (1D)
metal oxide nanostructures, such as nanowires and nanorods, are addressing this challenge, attracting
new possibilities and offering considerable characteristics for the fabrication of various nanodevices.
The controlled synthesis of one-dimensional nanomaterials, finding new strategies to enhance the
performance of their practical applications such as chemical sensors, is a hot topic for the scientific
committee in materials science field. The high crystallinity, density of states, 1D charge transport and
high specific area are key features for the next generation of nano-conductometric sensors in near
future [12].

Zinc oxide is a n-type semiconductor with a narrow band gap energy around 3.3 eV, high thermal
and chemical stability, large exciton binding energy of 60 meV at room temperature, high electron
mobility, non-toxic material and environmentally friendly. Those characteristics make ZnO a strong
concurrent to substitute expensive materials such as In2O3 and WO3 in many applications.

The present work reports several deposition conditions and characteristics that allow the
precise control over the shape, density, form and orientation of 1D ZnO nanostructures. For this
purpose, vapor-liquid-solid (VLS) mechanism was selected, characterized by its simplicity, low cost,
reproducibility and feasibility for the deposition of high quality 1D nanostructures over a large area [13].
The material to be deposited is evaporated, transported and condensed on top of catalyst clusters on
substrates [14]. In particular, catalysts may be used to control the aspect ratio, shape and morphology,
as reported previously in literature. Yang et al. studied the orientation, positional control, density and
diameter of ZnO by dispersing Au clusters using different thin films thickness. A direct relation was
extracted confirming the dependence of Au nanoparticles (NPs) size with nanowire’s diameter [15].
Yanagida et al. interpreted the effect of catalyst size on the adsorption and diffusion of surrounding
atoms that comprises MgO vapor. A systematic study was performed, confirming that the diffusion
ratio of atoms within the catalyst droplet decreased by increasing catalyst size [16]. On the other hand,
Zappa et al. studied the effect of Pd, Au and Sn catalysts on SnO2 nanowires growth with VLS using
different metals while keeping the growth temperature and the other experimental conditions constant.
A surprising result was found: no morphology transition was observed and similar SnO2 nanowires
were produced with the use of all catalyst, which means that catalyst nature did not have a huge
impact on supersaturation and crystallization of nanowires [17]. Unfortunately, most of these studies
lack an investigation of the catalyst’s effect on the nanostructure’s functional performances. In this
study, the impact of catalyst nature on the structural, morphological and electrical properties of 1D
ZnO nanostructures are studied, and the sensing properties towards reducing gases are evaluated in
order to fabricate high performance and low cost conductometric sensors based on 1D ZnO.

The present work provides a new approach linking vapor liquid solid (VLS) mechanism with
enhancing sensing performance. In fact, the double role of the metal catalyst is evidenced, namely
controlling the growth mechanism of 1D ZnO and leading to superior sensing performance due to
chemical (spillover) or electronic sensitization or even promoting bulk doping.
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2. Materials and Methods

2.1. Material Preparation

Alumina (99.9% purity, 2 mm × 2 mm, Kyocera, Kyoto, Japan) and silicon substrates were used
as a support for growing 1D ZnO nanostructures. Alumina was used for the fabrication of chemical
sensors, whereas silicon was used for material characterization. Prior the deposition, samples were
ultrasonically cleaned in acetone (Carlo Erba, Milano, Italy) solvent for 15 min and then dried in
synthetic air to remove any dust or contamination. Magnetron sputtering was used to catalyze the
substrates, coating them with ultrathin films of gold, platinum, silver and copper (Au, Pt, Ag, Cu) with
thickness values between 2 and 7 nm, according to the experimental conditions reported in Table 1.
To the best of our knowledge, the present work is the first study reporting the use of Cu as a catalyst for
the synthesis of ZnO nanowires. Instead, Ag was used in few previous works [18,19], but the achieved
NWs were not exploited for chemical sensing applications. In VLS growth mechanism, catalysts
play a major role and behave as nucleation sites for ZnO growth, controlling the diameters of the
nanostructures and moreover may enhance the sensing performances.

To synthetize the nanostructures, ZnO powder (99.9% purity, Sigma Aldrich, St. Louis, MO, USA)
was placed in the middle of alumina tube and heated at 1200 ◦C, keeping the pressure at 10 mbar to
induce the powder evaporation. The ZnO vapor is then transported to a colder region of the furnace
using a carrier gas flow (argon, 75 sccm) where it condenses on the substrates covered by catalysts.
The deposition process was kept for 15 min. Each catalyst used for the 1D ZnO growth is active at a
specific temperature, i.e., Au (500 and 600 ◦C) Pt (600 ◦C), Ag (350 ◦C) and Cu (400 ◦C), confirming the
temperature role in supersaturation and growth of 1D ZnO nanostructures.

Table 1. Experimental parameters used in magnetron sputtering system for catalyst seed deposition.

Catalyst Ar Flow (SCCM) Pressure
(10−3 mbar)

Magnetron Power
(W)

Deposition Time
(s)

Gold (Au) 7 5 75 5
Platinum (Pt) 7 5 75 2

Silver (Ag) 7 5 50 5
Cooper (Cu) 7 5 50 15

2.2. Characterization

The structural properties of ZnO samples were extracted using X-Ray diffractometer (Empyrean;
PANalytical, Almelo, The Netherland) with Cu-LFF (λ = 1.54 Å) tube operated at 40 kV–40 mA.
Morphological analysis was investigated using field scanning electron microscopy (LEO 1525 model;
Carl Zeiss AG, Oberkochen, Germany) operated at 10 KV and transmission electron microscopy (TEM)
200CX (JEOL, Tokyo, Japan).

2.3. Device Fabrication

Conductometric chemical sensors have been prepared by depositing a heater and electrical contacts
on the substrates with the sensing material (ZnO), as shown in Figure 1. Firstly, TiW/Pt adhesion
layer was deposited by means of DC magnetron sputtering (KENOSYSTEC SRL, Milano, Italy) (70 W
argon plasma, 7 SCCM argon flow, 5 × 10−3 mbar pressure). Afterwards, platinum electrodes with
interdigital geometry were deposited using the same conditions. Because metal oxides are generally
thermally activated, DC magnetron sputtering was used to deposit a platinum heater on backside of
alumina substrates (70 W argon plasma, 5 × 10−3 mbar pressure). Finally, alumina substrates were
mounted on transistor outline (TO5) packages using electro-soldered gold wires [20,21].

The gas sensing tests were performed inside a stainless-steel chamber at the fixed temperature of
20 ◦C. Several gases such as hydrogen, CO, ethanol and acetone were tested at 50% relative humidity.
The concentration (in ppm) of each gas was achieved by mixing the gas with the synthetic air. The flow
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was fixed at 200 sccm and the electrical conductance was measured using picoammeter (Keithley,
Solon, OH USA) by applying 1 V. The desired gas concentration has been injected for 30 min and then
the synthetic air was injected for 1 h to restore the baseline of the electrical conductance. The samples
were tested at different working temperature ranging from 200 to 500 ◦C. Three different samples
were prepared for each catalyst in the same conditions. The presented results are the average of the
measurements performed on all devices. The response of the ZnO sensor towards reducing gases was

defined as
Ggas−Gair

Gair
, where Gair and Ggas are the sensor conductance in the absence and presence of the

reducing gas, respectively.
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Figure 1. Design of conductometric sensor device.

3. Results

3.1. Surface Morphological Analysis

In this work, the control over the form, shape and morphology of 1D ZnO nanostructure was
explained by two mechanisms: catalyst’s composition and thermodynamic conditions. Each catalyst is
active for nanostructure formation at specific temperature, depending on its specific melting point.
Liquid droplets formation and supersaturation are crucial parameters for controlling the nanostructures
morphology and explaining the different shapes obtained. In general, the mechanism leading the
formation of 1D ZnO structures is based on the nucleation, diffusion and crystallization phenomena [22].
The temperature plays a crucial role in VLS mechanism. Firstly, atoms in the ZnO vapor adsorb
on the substrate surface. The substrates were heated from 350 to 600 ◦C during 15 min deposition,
increasing the energy of these atoms and thus enhancing their ability to diffuse onto the substrate
surface. Due to the treatment at high temperature, the catalyst particles aggregates forming liquid
clusters and promoting the condensation of ZnO vapor. The ZnO vapor molecules reach the droplet
catalyst surface and are incorporated as adatoms. The adatoms diffuse into the cluster and, as the
supersaturation of the droplet occurs, the segregation will start forming 1D nanostructures.

Figure 2 shows ZnO nanostructures grown using Au, Pt, Ag and Cu catalysts and their respective
size distribution. While the length of all samples is tabulated in Table 2. The NWs obtained using Ag
catalysts are dense and homogeneous, covering completely the alumina substrate with an average
diameter around 46 nm with a 342 nm length. ZnO NWs obtained using Cu catalyst are quite different
in morphology: a kind of ductility of the NWs was observed, with low density. Despite that, on average
they are 4 micrometres long and 42 nm in diameter. A good density of small nanowires (≈38 nm
diameter and ≈842 nm length) was achieved with Pt catalyst. ZnO NWs were obtained with Au
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catalyst at low temperatures with a high aspect ratio and density (≈25 nm diameter and ≈771 nm
length). On the other hand, high temperature promotes nanorods formation, which may be explained
by the high diffusion of ZnO vapor affecting the supersaturation of ZnO and leading to the formation
of ZnO NRs with high quality. The catalyst NPs size controls the diameter of crystallized NRs (≈84 nm
diameter and ≈442 nm length). The morphology transition from NWs to NRs (Figure 3b,d) can be also
explained by coalescence effect of the catalyst seeds. The final products consist of NPs with different
size as shown in Figure 3a,c.
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3.2. Structural Properties

Figure 4 depicts the X-ray diffraction patterns of 1D ZnO synthetized using various catalysts.
All peaks observed for the different ZnO nanostructures agree with standard ZnO (JCPDS 80-1916).
The (011) (002) (010) and (012) peaks situated at 31,7◦, 34.4◦, 36.3◦ and 47.5◦, respectively, show the
formation of ZnO crystal belonging to hexagonal structure. The catalyst’s particles appear in their
metallic or oxidized form, depending on the material. The appearance of gold (JCPDS no. b96-901-1614),
platinum (JCPDS no. 98-002-1997) and silver (JCPDS no. 98-002-1958) in metallic form is confirmed by
their peaks situated at 38.24◦, 39.84◦ and 40.17◦, respectively. They remain stable during the deposition
even under pressure and high temperature. On the contrary, copper was oxidized into CuO (JCPDS
no. 94-003-8482), as demonstrated by the peak situated at 35.56◦. This is expected, considering the
low chemical stability of copper. Similar results were observed by Zhang et al. [18], who studied
the stability of catalyst nanoparticles before and after NWs growth. They confirmed the chemical
stability of platinum and gold, while they observed and discussed the Ag oxidation to AgO, and the
formation of Ag4SiO4 in case of silicon substrate. The crystallite size (D) was calculated (Table 2) using
Debye Scherrer formula defined as (D = (0.94λ)/(FWHM Cosθ)), where FWHM is the full width at
half-maximum of an (hkl) peak at θ value, θ is the half of the scattering angle and λ is X-Ray wavelength
equals 0.154 nm. The crystallite size is 22 nm for ZnO (Au) NWs and NRs, which are smaller than
the crystallite size of ZnO (Cu) NWs (D = 24 nm) ZnO (Pt) NWs (D = 30 nm) and ZnO (Ag) NWs
(D = 31 nm).
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Table 2. The crystallite size and the average length of the 1D ZnO nanostructures using different catalysts.

Sample Crystallite Size (nm) Average ZnO Length (nm)

ZnO (Au) NWs 22 772 ± 47

ZnO (Au) NRs 22 442 ± 11

ZnO (Pt) NWs 30 840 ± 30

ZnO (Ag) NWs 31 342.1 ± 9.8

ZnO (Cu) NWs 24 ≈4000

The catalysts affect not only the shape and the morphology of the nanostructure, but also play a
major role on the preferred orientation of crystallites. In this context, the texture coefficients of ZnO
nanostructures were calculated using the equation below.

TC(hkl) =
I(hkl)
I0(hkl)

(
1
n

∑n

i=1

I(hkl)
I0(hkl)

) (1)

where (hkl) are Miller indices denotes the X-ray diffraction direction plan, I(hkl) is the intensity of
CuO measured, I0(hkl) is the standard intensity taken from the (JCPDS 80-1916) and n is reflection
number. Using the texture coefficient, the preferred orientation of crystallites could be established.
The texture coefficient values of 1D ZnO nanostructures using different catalysts are tabulated in
Table 3. The diffraction peak (hkl) with TC that comprises values between zero and one defines
a lack in crystallites orientation hkl. While, when the TC value exceeds one (TC > 1), there is a
majority of crystallites orientation in (hkl) direction. As shown in Table 3, ZnO (Au) nanowires and
nanorods, ZnO (Pt) nanowires and ZnO (Cu) nanowires polycrystalline structure have (002) as preferred
orientation. It is clear that ZnO (Au) NWs samples possess the highest TC (2.18). These results show
that the diffraction peak (002) is not only the most intense peak, but also the crystallites preferential
direction. As a result, (002) is the predominant orientation. On the contrary, in ZnO (Ag) nanowires
(010) and (002) are both considered as preferential direction of due to their almost identical TC values.
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Table 3. The texture coefficient values of 1D ZnO nanostructures using different catalysts.

Sample
Diffraction Peaks

(010) (002) (011)

ZnO (Au) NWs 0.41 2.18 0.39
ZnO (Au) NRs 0.67 1.78 0.53
ZnO (Pt) NWs 0.80 1.53 -
ZnO (Ag) NWs 1.18 1.17 0.64
ZnO (Cu) NWs 0.75 1.67 0.57

3.3. Gas-Sensing Performace

3.3.1. Working Principle

Despite the simplicity of conductometric sensors design, the gas detection mechanism remains
complex and not fully understood. The gas/MOXs surface reactions, that transduce the chemical
signal into an electrical one, are shortly described hereby. Oxygen is the main reaction precursor
involved in conductometric sensors. As air interacts with ZnO (Figure 5a), oxygen atoms adsorb
onto its surface [23]. Oxygen adsorption in oxide semiconductor materials involves a carrier charge
exchange. Oxygen starts with physical adsorption at low temperatures and ends with ionic adsorption
(chemisorption), yielding in the final step an anion oxygen (O−) at high temperatures as explained
by Equations (2)–(4) [12,24]. The interaction with oxygen molecules (in air) leads to a change of the
electrical conductance caused by electrons transfer from the semiconductor to oxygen ionosorbed due
to its high electronic affinity.

O2 (gas)→ O2 (ads) (2)

O2 (ads) + e−→ O2
− (ads) (3)

O2
− (ads) + e−→ 2O− (ads) (4)

During gas injection, various possible scenarios may occur, depending on the
semiconducting—behavior of the material (n- or p-), the injected gases nature (reducing or oxidizing),
electronic affinity, ionization energy and others. When a target gas is injected, electrons exchange
according to different processes. In the present work, H2 and the other tested gases are reducing
compounds. As shown in Figure 5b, hydrogen molecules react with the adsorbed oxygen to form
water molecules, as described by the Equations (5) and (6) [25]. Thanks to their small ionization energy,
reducing gases behave as electrons-donors. The released electrons generated by the reaction between
the reducing gases and the adsorbed oxygen cause a decrease of the thickness of the depletion region
(region free of electrons) at the surface of ZnO. As a result the electrical conductance of the sensor
increases [12].

H2 + O− → H2O + e− (5)

2H2 + O2
−
→ 2H2O + e− (6)

Moreover, in specific thermodynamic conditions, hydrogen as a reducing gas is sometimes able to
remove oxygen from the ZnO crystal, creating oxygen vacancies that play a crucial role in gas sensing
mechanism (Equation (7)) [26]. However, a fraction of oxygen vacancies formed is able to ionize and
release one or two electrons, enhancing the electrical conduction, as explained by Equations (8) and (9).

H2+OO → H2O + VO (7)

VO → V+
O + e− (8)

VO → V++
O + 2e− (9)
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3.3.2. Catalyst Effect on Sensing Characteristics

Despites the high quality of 1D nanostructures produced by VLS, there is a lack of understanding
of the catalyst’s role especially on the functional properties. Researchers are trying to explain how
the catalyst’s presence controls the VLS growth, making hypothesis about its distribution along
NWs/NRs during VLS process. It may act as a doping agent, as reported by Chen et al. who have
considered the catalysts as additives or contamination explaining its substitution within the crystal [27].
These catalyst’s particles may be distributed around/decorating the NWs sidewalls, as reported by
Hannon et al. who have explained in detail the migration (by diffusion) of the catalyst particles from
droplets to the sidewalls until the NWs growth is completely terminated [28]. In all cases, the catalyst
has a crucial role in enhancing conductometric sensors characteristics. In the present work, we have
analyzed all the possibilities, thanks to TEM mapping of ZnO grown by gold catalysts illustrated in
Figure 6 and SEM image in the inset of Figure 7b. Au is decorating ZnO and the sensing response can be
enhanced based on chemical sensitization as described in Figure 7. Gold distribution around the NWs
improves gas sensing via spillover effect, by dissociating gas molecules and activating the chemical
reaction on the MOX surface [29]. Gold, and in general noble metals, provides active sites for chemical
adsorption, such as O2 adsorption (Figure 7a). At the same time, H2 is dissociated into fragments
(atomic H) at specific temperature, and spills over ZnO surface to interact with pre-adsorbed oxygen,
creating H2O and therefore releasing electron back to ZnO, affecting its conductance (Figure 7b).
Most important, spillover effect occurs without transferring electrons from gold to ZnO. Same principle
may occur for Pt and Ag, even if the latter may oxidize during the gas testing at higher temperatures.
Cu interaction with the gas phase, on the contrary, may described by electronic sensitization due
to the formation of stable oxide CuO. More discussions about electronic sensitization are found in
literature [30]. Moreover, spillover effect does not change the gas sensing mechanism, enhancing only
the rate of the chemical interaction processes.

On the other hand, many reports investigated the metallic cluster decoration which can be highly
beneficial for chemical sensors applications. Moreover, bimetallic clusters have been found to be even
more effective than monometallic clusters. In this context, Bahariqushchi et al. investigated free carrier
enhanced depletion in ZnO nanorods decorated with bimetallic AuPt nanoclusters [31]. In comparison
to ZnO NRs, the mono- and bi-metallic decorated ZnO showed high sensitivity due to increase of
free carriers depletion. Furthermore, the bimetallic effect leads to an enhancement of gas adsorption
and causes a stronger electron spillover from the ZnO surface to the bimetallic nanoclusters. Chen et
al. investigated Au/Pd-NPs decorated ZnO nanowires for NO2 sensor [32]. Indeed, the enhanced
sensing performance towards NO2 is attributed to the oxygen vacancies that have been increased
in Au/Pd@ZnO sample as well as the chemical sensitization that provides more active sites for NO2

adsorption. Furthermore, the effect of metal decoration is well achieved also in other applications such
as photocatalysts [33].



Nanomaterials 2020, 10, 1940 10 of 16

Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 17 

 

 
Figure 6. (a) shows ZnO transmission electron microscopy (TEM) nanowire image. TEM-energy 
dispersive x-ray spectroscopy (EDS) elemental mapping image of (b) Zn, (c) O, (d) Au and (e) 
represents the EDS mapping of single ZnO nanowire. 

As mentioned before, the incorporation of gold into nanowires cannot be excluded, especially 
considering the solubility of Au in ZnO that may be achieved in specific conditions such as deposition 
at high pressure and growth temperature, annealing at high temperature and gold content [34,35]. 
However, the solubility and the chemical state of ZnO (Au) are still not clear according to the few 
reports in literature [35]. 

In some cases, it could form a ternary alloy if additive exceeds specific concentration (not 
expected in the present work). Instead, at low concentrations of additives, it may be a substitute in 
the host materials, affecting the charge carrier transfer while keeping the material the same. The 
impact on sensing properties is justified by the Fermi level shift due to the existence of deep donor 
levels within ZnO band gap energy, which can enhance the density of ionized oxygen in ZnO surface, 
reinforcing the reaction with reducing gases and affecting the charge depletion layer. 

 
Figure 7. Schematic diagram exemplifying the chemical sensitization mechanism for ZnO/metal 
under (a) Oxygen; (b) H2 gas. 

3.3.3. Sensing Properties 

In the present work, H2 sensors based on 1D ZnO were investigated with particular attention to 
the sensing characteristics such as gas response, sensors kinetic, stability and selectivity. Figure 8 

Figure 6. (a) shows ZnO transmission electron microscopy (TEM) nanowire image. TEM-energy
dispersive x-ray spectroscopy (EDS) elemental mapping image of (b) Zn, (c) O, (d) Au and (e) represents
the EDS mapping of single ZnO nanowire.

As mentioned before, the incorporation of gold into nanowires cannot be excluded, especially
considering the solubility of Au in ZnO that may be achieved in specific conditions such as deposition
at high pressure and growth temperature, annealing at high temperature and gold content [34,35].
However, the solubility and the chemical state of ZnO (Au) are still not clear according to the few
reports in literature [35].

In some cases, it could form a ternary alloy if additive exceeds specific concentration (not expected
in the present work). Instead, at low concentrations of additives, it may be a substitute in the host
materials, affecting the charge carrier transfer while keeping the material the same. The impact on
sensing properties is justified by the Fermi level shift due to the existence of deep donor levels within
ZnO band gap energy, which can enhance the density of ionized oxygen in ZnO surface, reinforcing
the reaction with reducing gases and affecting the charge depletion layer.
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3.3.3. Sensing Properties

In the present work, H2 sensors based on 1D ZnO were investigated with particular attention to
the sensing characteristics such as gas response, sensors kinetic, stability and selectivity. Figure 8 shows
the response of ZnO nanostructures synthetized using different catalysts towards H2 at several working
temperatures: 200, 300, 350, 400 and 500 ◦C. For each ZnO sensor corresponding to specific catalyst,
there is a precise temperature corresponding to the optimum response. High response was observed
for H2 at 350 ◦C for all samples, but ZnO (Au) nanowires and nanorods showed the best one. However,
ZnO (Cu) and ZnO (Pt) showed higher response at 300 and 200 ◦C, respectively. ZnO (Ag), instead,
gives an appreciable response to H2 also at elevated temperatures (400 and 500 ◦C). The high sensitivity
of ZnO towards H2 was reported by Akash Katoch et al. who proposed a sensing mechanism that
considers the surface metallization of ZnO to Zn in the presence of H2 [36]. Indeed, the progressive
ZnO to Zn transition at the surfaces of ZnO enhances electrons transport from the surface of metallic
Zn to ZnO. This process affects the electrical conductance and improve the sensing properties.

Figure 9a,b reveal the dynamic response of ZnO (Au) nanowires and nanorods under exposure
to 50, 200 and 500 ppm of H2. ZnO has an n-semiconducting nature, which explain the observed
increase of the conductance. As reported in Figure 9c, ZnO response improves with the increase of
hydrogen concentrations, and a high sensors response of about 300 for ZnO (Au) NWs and 50 for ZnO
(Au) NRs was observed. Moreover, the signal is stable and recovering perfectly to the baseline level.
These results are very interesting, compared to some studies reported in Table 4. This high response of
ZnO (Au) NWs is attributed to the expected high specific area compared to bulk material and other
morphologies. The sensors speed (sensors kinetic) was discussed by extracting the response/recovery
time (Supplementary Materials Figure S1) from the prepared samples. The response time is defined as
the time required by the sensor to reach the 90% of final conductance variation in presence of the gas.
Conversely, the recovery time is the time needed for a sensor to reach 10% of conductance variation
during the recovery. The response time was found to be similar for ZnO NWs and NRs (about 1200 s),
while ZnO NWs showed a short recovery time of about 100 s. Furthermore, the capability of detection
of low concentration of H2 (50 ppm) with stable baseline is verified. The selectivity of the sensors
fabricated using all catalysts is displayed in Figure 10, showing that ZnO (Au) nanowires is a highly
selective material toward H2 over CO, ethanol and acetone. It has been shown that ZnO decorated
with Au shows high response towards H2 at high temperature (300 and 400 ◦C) while the sensing
performance were poor at lower temperature which is maybe due to the high thermal energy that
H2 needs to react with the pre-adsorbed oxygen through Au [37]. Instead, Pt decorated ZnO has
shown good sensing capability toward H2 at 200 and 300 ◦C. These results are consistent with our
work. Moreover, It has been reported previously that Ag oxidizes to Ag2O with p-type conductivity
after an annealing treatment at 500 ◦C [38]. Therefore, the high response observed for ZnO (Ag) at
high temperature (500 ◦C) may be attributed to the p-Ag2O/n-ZnO heterojunction formation at the
interface. Similarly, p-CuO-n-ZnO heterojunction is formed in case of ZnO (Cu) sample, Cu catalyst
was oxidized during the ZnO growth forming CuO. However, more elucidation is still needed to
correlate the sensing performances with the nature of catalyst, since many factors such as the content
(wt%) of catalyst on the surface (tip of the wire in our case), the shape, the aspect ratio and the possible
oxidation of catalyst at high temperature should be taken into account [39].
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Table 4. Studies reporting Hydrogen sensor based on ZnO nanomaterial.

Material Technique Temperature (◦C) Response/H2
(ppm) Ref.

1D ZnO nano-assemblies PE-CVD 400 13/5000 [40]
1D ZnO NWs VLS process 400 90/300 [41]

ZnO Nanowires Ultra-fast Microwave 250 0.95/500 [42]

Pd-decorated ZnO “nanosponge” Supersonic cluster beam deposition
(SCBD)

UV illumination,
20 ◦C 85/2% [43]

ZnO nanobundles nano-templating technique 350 20%/- [44]
ZnO nanowires electrochemical anodization 400 11.26/1000 [45]

Vanadium- doped ZnO thin film Spray pyrolysis 300 55/500 [6]
ZnO two-dimensional

nanostructures thermal oxidation 175 5.37/200 [46]

Nanopillar ZnO Two-step solution approach 350 28/2500 [47]
NPs-decorated networked ZnO

NWs Chemical vapor deposition (CVD) Room temperature 4,6
(460%)/1000 [48]

ZnO NWs @ZIF-8 Vapor phase growth + Solvothermal 300 1.44/50 [49]

ZnO nanorods facile one-pot galvanic-assisted
technique Room temperature 33/2000 [26]

p–n junction of ZnO thin films D.C. sputtering technique + CVD 400 1.2/1000 [50]
ZnO thin films Magnetron sputtering 350 98%/200 [51]
ZnO thin films e-beam evaporation 400 59/40 [52]

Ni-doped ZnO thin film RF sputtering 150 ∼69%/10,000 [53]
Co:ZnO nanorods hydrothermal method 150 53.7%/3000 [25]

ZnO nanowires VLS 350 300
(30,000%)/500

This
work
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4. Conclusions

This work reports the catalyst effect in the vapor liquid solid (VLS) growth of one-dimensional
ZnO (1D ZnO) together with its effect on chemical sensors performances. The 1D ZnO nanostructures
were successfully prepared using a low-cost method and catalyst (Au, Pt and Ag and Cu) supported
growth following VLS mechanism as described in detail. The morphological, structural and electrical
properties of the 1D nanostructures were studied. Depending on catalyst nature, different form,
geometry, size and nanowires/nanorods abundance of ZnO were obtained. A morphology transition
from nanowires to nanorods was observed using Au catalyst by increasing the deposition temperature
and explained by coalescence effect of the Au catalyst seeds. ZnO crystallizes in hexagonal phase,
while catalyst particles were shown in its metallic (Au, Pt and Ag) or oxidized (CuO) form. ZnO (Au)
nanowires and nanorods, ZnO (Pt) nanowires and ZnO (Cu) nanowires polycrystalline structure have
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(002) as preferred orientation. Instead, for ZnO (Ag) nanowires both (010) and (002) are considered as
preferential direction due to their almost identical TC values. The 1D ZnO nanostructures synthetized
using different catalysts were tested under several reducing gases at several working temperatures: 200,
300, 350, 400 and 500 ◦C. ZnO (Au) nanowires and nanorods showed the best response to H2 at 350 ◦C.
ZnO (Au) showed high response, good stability and selectivity to H2 with small response and recovery
time, demonstrating their possible use for low-cost fabrication of high-performance chemical sensors.
The signal was stable and recovered perfectly to the baseline level. Moreover, the ZnO (Au) nanowires
was able to detect low H2 concentration (50 ppm). The response time was found to be similar for ZnO
NWs and NRs (about 1200 s), while ZnO NWs showed a short recovery time (100 s). Selectivity has
been observed towards hydrogen over other reducing gases. Most importantly, the effect of catalysts
(Au, Pt, Ag and Cu) used in VLS for the growth on gas sensor mechanism was discussed. Finally,
a possible explanation of the catalyst’s role in enhancing the conductometric sensors characteristics
was presented, i.e., the chemical sensitization (spillover effect) induced by gold nanoparticle on the
ZnO NWs tip.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/10/1940/s1.
Figure S1: The kinetic of ZnO (Au) NWs and ZnO (Au) NRs sensors. (a) Response and (b) recovery time of ZnO
NWs based hydrogen sensor.
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