Skip to main content
. 2020 Oct 6;9(10):1319. doi: 10.3390/plants9101319

Table 2.

Training and validation accuracy/loss, precision, recall, and F1-score along with the number of parameters, training time, and epochs required to train deep learning architectures (in the order of the lowest to the highest F1-score).

Deep Learning Architectures Parameters (in Millions) Epochs Required to Train the Model Training Time (in Hours) Training Accuracy Validation Accuracy Training Loss Validation Loss Precision Recall F1-score
LeafNet 0.324 M 59 5.95 0.8590 0.7961 0.4563 0.6658 0.7946 0.7971 0.7958
VGG-16 138 M 59 38.13 0.8339 0.8189 0.5328 0.5651 0.8182 0.8194 0.8188
OverFeat 141.8 M 58 6.75 0.8995 0.8603 0.3201 0.4330 0.8592 0.8628 0.8610
Improved Cifar-10 2.43 M 58 6.08 0.9256 0.8974 0.2628 0.3205 0.8944 0.8960 0.8952
Inception ResNet v2 54.3 M 58 32.83 0.9551 0.9091 0.1530 0.3047 0.9075 0.9105 0.9089
Reduced MobileNet 0.5 M 55 11.72 0.9570 0.9278 0.1860 0.2442 0.9269 0.9267 0.9268
Modified MobileNet 0.5 M 53 6.38 0.9534 0.9297 0.1632 0.2385 0.9278 0.9265 0.9271
ResNet-50 23.6 M 55 26.33 0.9873 0.9423 0.0468 0.1923 0.9351 0.9358 0.9354
MLCNN 78 M 57 67.33 0.9583 0.9402 0.1335 0.1820 0.9386 0.9411 0.9398
Inception v4 41.2 M 59 52.92 0.9586 0.9489 0.1410 0.1828 0.9410 0.9466 0.9438
Improved GoogLeNet 6.8 M 53 9.67 0.9829 0.9521 0.0522 0.1038 0.9528 0.9539 0.9533
AlexNet 60 M 54 6.10 0.9689 0.9578 0.1046 0.1298 0.9563 0.9570 0.9566
DenseNet-121 7.1 M 56 28.75 0.9826 0.9580 0.0758 0.1323 0.9581 0.9569 0.9575
MobileNet 3.2 M 47 14.70 0.9764 0.9632 0.0903 0.1090 0.9624 0.9612 0.9618
Hybrid AlexNet with VGG (AgroAVNET) 238 M 54 49.90 0.9841 0.9649 0.0546 0.1078 0.9626 0.9674 0.9650
ZFNet 58.5 M 47 6.47 0.9752 0.9717 0.0746 0.1139 0.9746 0.9751 0.9748
Cascaded AlexNet and GoogLeNet 5.6 M 57 6.5 0.9931 0.9818 0.0229 0.0592 0.9749 0.9751 0.9750
Xception 22.8 M 34 56.28 0.9990 0.9798 0.0140 0.0621 0.9764 0.9767 0.9765