Table 2.
Deep Learning Architectures | Parameters (in Millions) | Epochs Required to Train the Model | Training Time (in Hours) | Training Accuracy | Validation Accuracy | Training Loss | Validation Loss | Precision | Recall | F1-score |
---|---|---|---|---|---|---|---|---|---|---|
LeafNet | 0.324 M | 59 | 5.95 | 0.8590 | 0.7961 | 0.4563 | 0.6658 | 0.7946 | 0.7971 | 0.7958 |
VGG-16 | 138 M | 59 | 38.13 | 0.8339 | 0.8189 | 0.5328 | 0.5651 | 0.8182 | 0.8194 | 0.8188 |
OverFeat | 141.8 M | 58 | 6.75 | 0.8995 | 0.8603 | 0.3201 | 0.4330 | 0.8592 | 0.8628 | 0.8610 |
Improved Cifar-10 | 2.43 M | 58 | 6.08 | 0.9256 | 0.8974 | 0.2628 | 0.3205 | 0.8944 | 0.8960 | 0.8952 |
Inception ResNet v2 | 54.3 M | 58 | 32.83 | 0.9551 | 0.9091 | 0.1530 | 0.3047 | 0.9075 | 0.9105 | 0.9089 |
Reduced MobileNet | 0.5 M | 55 | 11.72 | 0.9570 | 0.9278 | 0.1860 | 0.2442 | 0.9269 | 0.9267 | 0.9268 |
Modified MobileNet | 0.5 M | 53 | 6.38 | 0.9534 | 0.9297 | 0.1632 | 0.2385 | 0.9278 | 0.9265 | 0.9271 |
ResNet-50 | 23.6 M | 55 | 26.33 | 0.9873 | 0.9423 | 0.0468 | 0.1923 | 0.9351 | 0.9358 | 0.9354 |
MLCNN | 78 M | 57 | 67.33 | 0.9583 | 0.9402 | 0.1335 | 0.1820 | 0.9386 | 0.9411 | 0.9398 |
Inception v4 | 41.2 M | 59 | 52.92 | 0.9586 | 0.9489 | 0.1410 | 0.1828 | 0.9410 | 0.9466 | 0.9438 |
Improved GoogLeNet | 6.8 M | 53 | 9.67 | 0.9829 | 0.9521 | 0.0522 | 0.1038 | 0.9528 | 0.9539 | 0.9533 |
AlexNet | 60 M | 54 | 6.10 | 0.9689 | 0.9578 | 0.1046 | 0.1298 | 0.9563 | 0.9570 | 0.9566 |
DenseNet-121 | 7.1 M | 56 | 28.75 | 0.9826 | 0.9580 | 0.0758 | 0.1323 | 0.9581 | 0.9569 | 0.9575 |
MobileNet | 3.2 M | 47 | 14.70 | 0.9764 | 0.9632 | 0.0903 | 0.1090 | 0.9624 | 0.9612 | 0.9618 |
Hybrid AlexNet with VGG (AgroAVNET) | 238 M | 54 | 49.90 | 0.9841 | 0.9649 | 0.0546 | 0.1078 | 0.9626 | 0.9674 | 0.9650 |
ZFNet | 58.5 M | 47 | 6.47 | 0.9752 | 0.9717 | 0.0746 | 0.1139 | 0.9746 | 0.9751 | 0.9748 |
Cascaded AlexNet and GoogLeNet | 5.6 M | 57 | 6.5 | 0.9931 | 0.9818 | 0.0229 | 0.0592 | 0.9749 | 0.9751 | 0.9750 |
Xception | 22.8 M | 34 | 56.28 | 0.9990 | 0.9798 | 0.0140 | 0.0621 | 0.9764 | 0.9767 | 0.9765 |