Skip to main content
. 2020 Oct 6;9(10):1319. doi: 10.3390/plants9101319

Table 3.

Performance of deep learning optimizers applied to train cascaded AlexNet with GoogLeNet, Improved GoogLeNet, and Xception models.

Optimizers Training Accuracy Validation Accuracy Training Loss Validation Loss Precision Recall F1-score
Cascaded AlexNet with GoogLeNet
SGD 0.9931 0.9818 0.0229 0.0592 0.9749 0.9751 0.9750
RMSProp 0.9894 0.9757 0.0482 0.1479 0.9746 0.9613 0.9679
Adagrad 0.9956 0.9824 0.0153 0.0547 0.9815 0.9782 0.9798
Adamax 0.9990 0.9859 0.0029 0.0574 0.9828 0.9795 0.9811
Adam 0.9989 0.9857 0.0039 0.0750 0.9836 0.9836 0.9836
Adadelta 0.9993 0.9873 0.0024 0.0696 0.9846 0.9856 0.9851
Improved GoogLeNet
SGD 0.9829 0.9521 0.0522 0.1038 0.9528 0.9539 0.9533
RMSProp 0.9723 0.9685 0.1780 0.2272 0.9692 0.9666 0.9679
Adagrad 0.9889 0.9718 0.0350 0.0930 0.9651 0.9618 0.9634
Adamax 0.9998 0.9847 8.782 × 10−4 0.0875 0.9792 0.9826 0.9809
Adam 0.9992 0.9904 0.0026 0.0434 0.9859 0.9872 0.9864
Adadelta 0.9991 0.9905 0.0022 0.0567 0.9828 0.9879 0.9861
Xception
SGD 0.9990 0.9798 0.0140 0.0621 0.9764 0.9767 0.9765
RMSProp 0.9998 0.9924 6.922 × 10−4 0.0433 0.9877 0.9920 0.9900
Adagrad 0.9987 0.9621 0.0164 0.1460 0.9682 0.9505 0.9593
Adamax 1.0000 0.9889 0.0012 0.0415 0.9902 0.9874 0.9888
Adam 1.0000 0.9981 6.890 × 10−4 0.0178 0.9981 0.9975 0.9978
Adadelta 1.0000 0.9906 8.407 × 10−4 0.0364 0.9926 0.9887 0.9906