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Simple Summary: Preening is poultry grooming and comfort behavior to keep plumages in good
conditions. Automated tools to continuously monitor poultry preening behaviors remain to be
developed. We developed and evaluated hen preening behavior detectors using a mask region-based
convolutional neural network (mask R-CNN). Thirty Hy-line brown hens kept in an experimental
pen were used for the detector development. Different backbone architectures and hyperparameters
(e.g., pre-trained weights, image resizers, etc.) were evaluated to determine the optimal ones for
detecting hen preening behaviors. A total of 1700 images containing 12,014 preening hens were
used for model training, validation and testing. Our results show that the final performance of
detecting hen preening was over 80% for precision, recall, specificity, accuracy, F1 score and average
precision, indicating decent detection performance. The mean intersection over union (MIOU) was
83.6–88.7%, which shows great potential for segmenting objects of concern. The detectors with
different architectures and hyperparameters performed differently for detecting preening birds
and thus we need to carefully adjust these parameters to obtain a robust deep learning detector.
In summary, deep learning techniques may have a great ability to automatically monitor poultry
behaviors and assist welfare-oriented poultry management.

Abstract: There is a lack of precision tools for automated poultry preening monitoring. The objective
of this study was to develop poultry preening behavior detectors using mask R-CNN. Thirty 38-week
brown hens were kept in an experimental pen. A surveillance system was installed above the pen
to record images for developing the behavior detectors. The results show that the mask R-CNN
had 87.2 ± 1.0% MIOU, 85.1 ± 2.8% precision, 88.1 ± 3.1% recall, 95.8 ± 1.0% specificity, 94.2 ± 0.6%
accuracy, 86.5 ± 1.3% F1 score, 84.3 ± 2.8% average precision and 380.1 ± 13.6 ms·image−1 processing
speed. The six ResNets (ResNet18-ResNet1000) had disadvantages and advantages in different
aspects of detection performance. Training parts of the complex network and transferring some
pre-trained weights from the detectors pre-trained in other datasets can save training time but did
not compromise detection performance and various datasets can result in different transfer learning
efficiencies. Resizing and padding input images to different sizes did not affect detection performance
of the detectors. The detectors performed similarly within 100–500 region proposals. Temporal and
spatial preening behaviors of individual hens were characterized using the trained detector. In sum,
the mask R-CNN preening behavior detector could be a useful tool to automatically identify preening
behaviors of individual hens in group settings.
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1. Introduction

The public and industry have expressed increasing concerns about poultry welfare [1,2].
The performance of natural behaviors is commonly used as a criterion in determination of poultry
welfare [3]. Preening is one of natural behaviors of poultry and important for keeping plumages
well-groomed in both natural and artificial conditions [4]. During preening, birds use their beaks to
distribute lipid-rich oil from the uropygial glands to their feathers, while simultaneously removing and
consuming parasites [5,6]. Preening, as a preventive body-surface maintenance behavior, could take
a large time budget (~13%) out of the total behavior repertoire of Red Jungle fowl [7], thus being
unignorable for welfare evaluation. Proper preening behavior responses help to interpret bird status
responding to surroundings. Overall time spent preening and number of preening bouts could reflect
environment appropriateness for birds. For example, preening is performed whenever there is nothing
more important to do and birds in cages showed more time spent preening than those in nature
(26% vs. 15%) [5]. Rearing birds in cages may increase bird boredom and not be suitable for bird welfare.
The duration and frequency of preening of individual birds could imply their pleasure/frustration status.
Birds having no access to resources (e.g., feeder) may feel frustrated and typically perform short-term
and frequent preening [8]. The number of simultaneously preening birds could be an indicator of space
sufficiency. If allocated space is not enough for all birds to preen simultaneously, high-ranking birds in
social groups have priority to preen first and subordinate ones may need to wait [9]. Spatial distribution
of preening birds could help to judge sufficiency of resource allowance as well. For instance, if birds
could not access feeders due to insufficient feeder allowance, they would preen near the feeders to
displace the mild frustration [4]. These are valuable responses for welfare-oriented poultry production
and manually collecting these responses could be time- and labor-consuming. However, there is no
available automated tool to extract these preening behavior responses. Precision poultry farming
techniques may provide availability to automatically obtain these responses, as various sensors and
computer tools have been utilized to detect poultry behaviors [10,11]. Convolutional neural network
(CNN) is another potential technology for poultry behavior detection.

Convolutional neural networks have been widely utilized for object detection in agricultural
applications [12,13]. With sufficient training, the CNN detectors could precisely detect objects of
concern in various environments [14]. Meanwhile, the CNN detectors can be integrated into various
vision systems to detect objects non-invasively, which is suitable to detect natural behaviors of poultry
without extra interferences. The detection performance of the CNNs is various with architectures.
Among them, the mask region-based CNN (mask R-CNN) is an extensive network of faster R-CNN [15].
It was used for detecting pig mounting behaviors [16], apple flowers [13], strawberries [17] and so forth
and obtained robust performance on those applications. Besides mask R-CNN, our team also applied
single shot detector (SSD), faster R-CNN and region-based fully convolutional network (R-FCN) for
detecting floor eggs in cage-free hen housing systems [14]. But from the previous paper [15] and our
preliminary test, the mask R-CNN outperformed these network architectures with regard to accuracy
because it retained as much object information as possible. Hence, it was selected to detect hen preening
behaviors in this case.

Mask R-CNN contains a great number of hyperparameters for training and appropriately
tuning/modifying the model is important to develop a robust detector in a customized dataset.
The residual network (ResNet) is proposed by He et al. [15] and used as a backbone for the mask
R-CNN. Various designs and depths of the ResNets can influence speed and quality for extracting
features of input images. Some commonly-used CNN models contain considerable weights that
were trained with some benchmark datasets, such as common objects in context ‘COCO’ [18] and
ImageNet [19]. The weights pre-trained with COCO and ImageNet dataset were hereafter named as



Animals 2020, 10, 1762 3 of 18

pre-trained COCO weights and pre-trained ImageNet weights. To apply the models into customized
datasets, one efficient solution is to transfer the pre-trained weights learned previously into parts
of the model and only trained the rest parts. Such transfer learning could save training time and
simultaneously not compromise network performance [20]. Before developing deep learning models,
image resizers are typically used to uniform sizes of input images in benchmark datasets, in which sizes
of images are various due to different photographing conditions. Inappropriate resizing strategies may
downgrade detection performance. For example, resizing large images into small ones may increase
processing speed but risk missing small objects in the resized images [21]; and enlarging small images
into large ones with changed length-to-width ratios could distorted shapes and features of objects of
concern [22]. Insufficient region proposals may lead to missing target objects while excessive proposals
may downgrade processing speed [23]. However, it is uncertain which backbone architecture is better
for detecting preening birds and which hyperparameters are more efficient to develop the detectors.

The objective of this research was to develop mask R-CNN preening behavior detectors using brown
hens as examples. The brown hens lay brown-shell eggs accounting for a large share (>90% in Europe
and >70% in China) of the global egg market [24]. The backbone architecture and hyperparameters,
including pre-trained weight, image resizer and regions of interest (ROI), were modified to construct an
optimal detector for the detection purpose. The backbone architectures of residual networks (ResNet)
were ResNet18, ResNet34, ResNet50, ResNet101, ResNet152 and ResNet1000. The trainings included
without pre-trained weights, with the pre-trained COCO weights and with the pre-trained ImageNet
weights. The modes of image resizers were ‘None,’ ‘Square’ and ‘Pad64′. Numbers of ROIs were 30,
100, 200, 300, 400 and 500. With the trained detector, hen preening behaviors were quantified as well.

2. Materials and Methods

2.1. Housing, Animals and Management

The experiment was conducted at the U.S. Department of Agriculture (USDA) Poultry Research
Unit at Mississippi State, USA and all procedures in this experiment were approved by the USDA-ARS
Institutional Animal Care and Use Committee at Mississippi State, USA. Thirty Hy-line Brown hens at
38 weeks of age were placed in a pen, measuring 2.5 m long × 2.2 m wide. Nest boxes, feeders and
drinkers were equipped in the pen. Fresh litter was spread on the floor before bird arrival. Commercial
feed was provided ad libitum. Temperature, light program and light intensity were, respectively, set to
24 °C, 16L:8D (light ON at 6:00 am and OFF at 10:00 pm) and 20 lux at bird head level.

2.2. Data Acquisition

A night-vision network camera (PRO-1080MSB, Swann Communications U.S.A Inc., Santa Fe Springs,
LA, USA) was mounted in the middle of the pen and at ~2 m above the ground to capture top-view
videos. Hen activity was continuously monitored and videos were stored in a digital video recorder
(DVR-4580, Swann Communications U.S.A Inc., Santa Fe Springs, LA, USA). The video files were
recorded with a resolution of 1280 × 720 pixels at a sample rate of 25 frames per second (fps) and
converted to image files (.jpg) using Free Video to JPG Converter (ver. 5.0).

2.3. Preening Behavior Definition and Labelling

The definition of preening was that a bird grooms its feathers on different body parts, including
breast, throat, belly, shoulder, wing, back, tail and vent [6,25–27]. Based on the definition, we manually
labeled each preening hen that had the features in Figure 1. It should be noted that this study examined
preening behavior with beak only and the preening behavior with foot [26] was not considered. A total
of 48 h of videos, 16 h in one day, was used. Images with at least 1-min intervals were selected [12]
and the images containing preening hens were used for the labelling, resulting in totally 1700 images
from three-day videos. The labelling was conducted in an open-source labeling software (VGG Image
Annotator, VIA 2.0.4). A protocol of labeling preening birds that had the features in the preening
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definition was set. The dataset was split into two parts and two experienced labelers labeled respective
parts of images following the protocol. Then they mutually checked the labeled results to ensure that
the labels were correct.
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Figure 1. Sample pictures of preening hens. The preening birds were manually cropped from
original images.

2.4. Network Description

The mask R-CNN consists of a backbone to extract features from an input image, a region proposal
network (RPN) to propose ROI and a detection head for object detection and instance segmentation
(Figure 2).

Each input image is first resized into a proper size using an image resizer. A ResNet and a
feature pyramid network (FPN) are used to construct the backbone to extract features from the resized
image. The ResNet is a bottom-up convolution network and divided into five stages of convolutions
(C1–C5) [15]. With higher stages of convolution, the sizes of resultant maps become smaller and
higher-level semantics are retained. The FPN is a top-down convolution network and generates five
scales of feature maps (P2–P6), which are resulted from the C2–C5 maps, respectively. The C2–C5 and
P2–P6 maps are laterally connected with a convolution of 1 × 1 × 256 and up-sampling with the size of
(2, 2). The P6 map is processed from the P5 map with a max pooling of [(1, 1), 2]. The ResNet-FPN
structure facilitates the extraction of both lower- and higher-level semantics, which are critical for
instance segmentation with regards to objects having various scales in an image. The P2–P5 maps are
concatenated to form feature maps for detection head, while the P2–P6 maps are combined and go
through a convolution of 3 × 3 × 256 to process a map for RPN.

In the RPN, an anchor generator generates the anchors with 5 scales of 32, 64, 128, 256 and 512 and
3 ratios of 0.5, 1 and 2. These anchors are tiled onto the map generated from the P2–P6 maps and then a
series of candidate boxes synthesized with objectness and bounding box deltas are proposed. With the
non-maximum suppression (NMS) rule, unnecessary boxes are filtered out and ROIs are retained.
The ROIs are finally projected onto the feature maps to position objects of interest using ROI Align
operation. The ROI Align uses the bilinear function to maintain float coordinates and makes pixel-wise
prediction more accurate than the ROI Pooling in the faster R-CNN, in which float coordinates are
typically quantized and valuable pixel information may lose.
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Figure 2. Network structure of mask region-based convolutional neural network (mask R-CNN).
ResNet is a residual network; FPN is a feature pyramid network; RPN is a region proposal network;
ROI is region of interest; NMS is non-maximum suppression; FC layer is fully-connected layer; Bbox is
bounding box; FCN is fully-connected network; C1–C5 are convolutional stages 1 to 5 in the ResNet;
P2–P6 are feature maps in the FPN; Box1–Box5 are proposed boxes with various scales and ratios after
the RPN; Conv. 1 × 1,256 is the convolution with the kernel size of (1, 1) and depth of 256; MP [(1, 1), 2]
is max pooling with the size of (1, 1) and stride of 2; ×2 Ups. is upsampling with the size of (2, 2);
Conv. 3 × 3 × 256 is the convolution with the kernel size of (3, 3) and depth of 256; 7 × 7 × 256 is the
size (length of 7, width of 7 and depth of 256) of convolution layers; 1024 is the number of neurons in
the FC layer; 14 × 14 × 256 is the size (length of 14, width of 14 and depth of 256) of convolution layers;
×4 is the repeated operations of the previous layer for 4 times; 28 × 28 × 256 is the size (length of 28,
width of 28 and depth of 256) of convolution layers; 28 × 28 × 80 are 80 target masks with the size of 28
in length and 28 in width.

The detection head comprises three branches that are object classification branch, bounding box
regression branch and object instance segmentation branch. The first two branches belong to the faster
R-CNN classification branch and the third branch is the fully-connected network (FCN) mask branch.
Various sizes of feature patches are proposed after the above-mentioned procedures and resized to
consistent sizes using another ROI Align operation, which can again retain more pixels than the ROI
Pooling. For the faster R-CNN branch, the resized feature patches go through a convolution layer of
7 × 7 × 256 and two 1024-neuron fully-connected (FC) layers to predict object scores and refine object
locations. As for the FCN branch, the patches undergo several convolution layers of 14 × 14 × 256 and
a de-convolution layer of 28 × 28 × 256. Eighty 28 × 28 candidate masks are processed and rescaled
according to the image size. Each pixel with the score being greater than 0.5 is assigned to the object of
concern to generate the final binary mask, which is visualized together with the bounding box and
class name.

2.5. General Workflow of Detector Training, Validation and Testing

Figure 3 shows the overall process of training, validation and testing. Training data was input
into the mask R-CNN detectors for training and the training loss was continuously calculated during
the training process. The training detectors were stored in specific training iteration periodically
and validated with the validation set. The training and validation losses were compared. If training
and validation losses kept decreasing, it meant that the detectors were underfitted and needed more
training. If the training loss decreased while the validation loss increased, it meant that the detectors
were overfitted and the training process needed to be stopped [28]. With the final saved detectors,
the hold-out testing data was used to evaluate the detector performance on preening detection.
The computing system used for detector training, validation and testing computing was equipped
with 32 GB RAM, Intel(R) Core (TM) i7-8700K processor and NVIDIA GeForce GTX 1080 GPU card
(Dell Inc., Round Rock, TX, USA).
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Table 1 shows the data distribution for training, validation and testing. Labeled images were
described in Section 2.3 with 1175 images for training, 102 for validation and 423 for testing, resulting
in 8464 labeled hens for training, 762 for validation and 2788 for testing. The training, validation and
testing data came from three different days, respectively and those images had at least 1-min intervals.
Therefore, they were thought to have sufficient variations for detector development.

Table 1. Data distribution for training, validation and testing.

Items Training Validation Testing

Hen age (day) 266 267 268
Images 1175 102 423

Number of preening hens 8464 762 2788
Number of non-preening hens 26,786 2298 9902

The losses for training and validation included total loss, detection head class loss, detection head
bounding box loss, detection mask loss, RPN bounding box loss and RPN class loss. The six types of
losses were reported by He et al. [15] and reflected how much deviation there was between prediction
and ground truth (Figure 4). Except for total loss, the other five types of losses corresponded to the
three outputs in the detection head and two outputs in the RPN and the total loss was the sum of
the five losses. A smaller loss indicated a better prediction. For instance, as loss samples shown in
Figure 4, the training losses kept decreasing, while most of the validation losses decreased before
9 × 103 iterations and had a rebound increase after 9 × 103 iterations. Therefore, the training process
was stopped at the 9 × 103th iteration to avoid overfitting and the detectors were saved accordingly.

2.6. Modifications for Detector Development

The modifications for the detector development involved ResNet architecture, pre-trained weight,
image resizer and number of ROI. The detectors with the following modifications was trained as
described in Section 2.5 and the modification with optimal testing performance was used to develop
the preening behavior detectors. The following modifications were trained with the default settings
of mask R-CNN that were ResNet101, pre-trained COCO weights, ‘Square’ image resizer mode and
200 ROIs, unless specified in the sections. As for other hyperparameters for training, we followed the
default settings recommended by Abdulla [22].

2.6.1. Residual Network Architecture

The ResNet was proposed by He, et al. [29]. Sufficiently extracting semantics in the C2–C5
stages was critical for detection performance. Six ResNet architectures that were ResNet18, ResNet34,
ResNet50, ResNet101, ResNet152 and ResNet1000 were embedded into the mask R-CNN backbone
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for training (Table 2). The number beside ‘ResNet’ indicates the number of layers in the architecture.
The ResNets with less than 50 layers were constructed with normal blocks (Figure 5a), while those with
more than 50 layers were stacked with bottleneck blocks (Figure 5b), which can reduce computational
complexity with increasing layers in the ResNet. The original mask R-CNN was built with ResNet50
or ResNet101.Animals 2020, 10, x 7 of 19 
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Figure 4. Samples of training and validation losses during training process. (a) Total loss; (b) detection
head bounding box loss; (c) detection head class loss; (d) detection head mask loss; (e) region proposal
network bounding box loss; and (f) region proposal network class loss.
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Figure 5. Examples of building block with shortcut connections for the residual network (ResNet).
(a) Normal block at the C2 stage of the ResNet18 and ResNet34; and (b) bottleneck block at the C2 stage
of the ResNet50-ResNet1000. ReLu is rectified linear units; 64-d is depth of 64; and 256-d is depth of
256. The figure was redrawn from He, et al. [29].
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Table 2. Detailed architectures for residual network (ResNet).

Stage of
Convolution ResNet18 ResNet34 ResNet50 ResNet101 ResNet152 ResNet1000

C1 7 × 7, 64, stride 2
3 × 3 max pooling, stride 2

C2
[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 248

C3
[

3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 22

 1× 1, 128
3× 3, 128
1× 1, 512

× 248

C4
[

3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 22

 1× 1, 256
3× 3, 256
1× 1, 1024

× 247

C5
[

3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 247

Average pooling, 1000-d FC, softmax

Note: ResNet18-ResNet1000 are residual network with 18–1000 layers of convolution; C1–C5 are convolutional
stages 1 to 5 in the ResNet; and FC is fully-connected.

2.6.2. Pre-Trained Weight

The mask R-CNN was pre-trained with the benchmark datasets of COCO [18] and ImageNet [19]
and obtained pre-trained weights. The trainings included without pre-trained weights, with pre-trained
COCO weights and with pre-trained ImageNet weights. The training with the pre-trained weights
only involved the heads of FPN, RPN and detection branches, which contained 28 items, while the full
layer training without pre-trained weights was related to every layer in the detectors, which contained
236 items in total.

2.6.3. Image Resizer

To obtain uniform size of images for detector development, we need to resize the input images
to the same size. Appropriate image resizers could improve processing speed and retain as much
pixel-wise information as possible [22]. Three modes of resizers were compared, which were ‘None,’
‘Square’ and ‘Pad64′. In the ‘None’ mode, input images (1280 × 720 pixels) were neither resized nor
padded. In the ‘Square’ mode, input images were resized from 1280 × 720 pixels to 1024 × 1024 pixels
and zeros were used to pad blank areas of resized images. In the ‘Pad64′ mode, input images were
resized from 1280 × 720 pixels to 1280 × 768 pixels and the differences were padded with zeros. Resized
sample images with the three modes of resizing are shown in Figure 6.Animals 2020, 10, x 9 of 19 
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2.6.4. Proposed Regions of Interest

Target preening birds may be ruled out in a feature map with insufficient ROIs, resulting in
miss-identification of preening birds, while processing speed may decrease using a map with excessive
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ROIs [23]. The detectors were trained with 30, 100, 200, 300, 400 and 500 ROIs and the performance
was compared.

2.7. Evaluation Metrics

After the detectors were trained and validated, the hold-out testing set was used for evaluating
the trained detectors as described in Section 2.5. To determine whether a preening hen had been
correctly segmented, the intersection over union (IOU) for each predicted hen was computed using
overlap and union pixels of the ground truth and prediction (Equation (1)). An IOU greater than 0.5 in
this case means the detectors segmented and detected a preening hen correctly.

IOU[%] =
(pixels ∈ ground truth)∩ (pixels ∈ prediction)
(pixels ∈ ground truth)∪ (pixels ∈ prediction)

× 100% (1)

The mean IOU (MIOU) was used to evaluate overall segmentation performance of the detectors
and calculated in Equation (2).

MIOU =

∑n
i=1 IOUi

n
(2)

where IOUi is the IOU for the ith preening hen and n is the total number of preening hens.
Precision, recall, specificity, accuracy and F1 score for detecting each preening hen in the images

were calculated using Equations (3)–(7). Precision is the percentage of true preening cases in all detected
preening cases. Recall is the percentage of the true preening cases in all manually-labeled preening
cases. Specificity is the percentage of true non-preening cases in all manually-labeled non-preening
cases. Accuracy is the percentage of true preening and non-preening cases in all cases. F1 score
is the harmonic mean of precision and recall and a balance metric on comprehensively evaluating
false preening and non-preening cases. For all five metrics, a closer to 100% value reflects a better
performance of the detectors.

Precision[%] =
TP

TP + FP
× 100% (3)

Recall[%] =
TP

TP + FN
× 100% (4)

Speci f icity[%] =
TN

TN + FP
× 100% (5)

Accuracy[%] =
TN + TP

TN + TP + FN + FP
× 100% (6)

F1 score [%] = 2×
Precision×Recall
Precision + Recall

× 100% (7)

where TP is true positive, that is, number of cases that a detector successfully detects existent preening
hens in an image with IOU greater than 0.5; FP is false positive, that is, number of cases that a
detector reports non-existent preening hens in an image or IOU is less than 0.5; FN is false negative,
that is, number of cases that a detector fails to detect existent preening hens in an image; and TN is
true negative, that is, number of cases that non-preening hens are reported by both a detector and
manual label.

Average precision (AP) summarizes the shape of the precision-recall curve and is defined as
the mean precision at a set of 11 equally-spaced recall levels [0, 0.1, . . . , 1] [30]. The precision-recall
curve is produced according to the predicted confidence level. Increasing the confidence may reduce
false positives but increase false negative, resulting in increasing precision and decreasing recall.
A closer to 100% AP indicates a more generalized detector to detect objects with various confidence.
The calculation of the AP is shown in Equation (8).

AP[%] =
1

11

∑
r∈{0,0.1,...,1}

Pinterp(r) (8)
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where r is level of recall at {0, 0.1, . . . , 1}; and Pinterp(r) is the interpolated precision in the precision-recall
curve when recall is r.

The interpolated precision is the maximum value within one piece of a wiggle-shape curve
(Equation (9)).

Pinterp(r) = max
r̃:̃r≥r

P(̃r) (9)

where r̃ is the recall within a wiggle piece; and P(̃r) is the measured precision at recall r̃.
The processing time reported by Python 3.6 was used to evaluate the processing speed of the

detectors for processing 423 images. The processing speed (ms·image−1) was obtained by dividing the
total processing time with 423 images.

2.8. Sample Detection

We finally deployed the detector trained with ResNet101, pre-trained COCO weights, ‘Square’
mode and 200 ROIs, after the performance comparison. We continuously detected hen preening
behaviors for half hour in week 38 of bird age. A segmented image based on traditional Otsu’s
thresholding [31] was used to compare the result of preening instance segmentation using the mask
R-CNN detector. The hen preening behaviors at 6:00 am–6:30 am were characterized as time spent
preening (min·hen−1), number of preening bouts (bouts·hen−1), average preening duration (min·bout−1),
frequency of preening duration, number of birds simultaneously preening and spatial distribution of
preening birds. Spatial location of preening birds was plotted in a heat map. To construct a heat map,
a mesh grid was firstly constructed onto the pen map based on the dimension of the pen, in which the
gird size was set to 10 pixels. Then a Standard Gaussian Kernel Density Estimation Function was run
onto the center of each grid in the map and the preening frequency in each grid was calculated by
Equation (10). Finally, the density map was visualized using Matplotlib, an open-source visualization
library. The cooler-color (i.e., dark blue) areas in the map represented the areas where birds performed
preening more often, while the warmer-color (i.e., dark red) areas were the areas where birds were less
likely to preen.

P =
n∑

i=1

1
√

2π
e−d2

i /2 (10)

where P is the probability in Standard Gaussian Distribution curve; n is the total number of grids in
the entire image; and di is the pixel-representing distance between the grid center and ith detected
preening bird center.

3. Results

3.1. Sample Detection

A sample detection is shown in Figure 7. Individual preening birds could be detected and
segmented separately using the mask R-CNN detector, while some segmented hens by traditional
thresholding method were cohesive and mixed with the background due to similar features with the
background. Therefore, we applied the CNN detector to detect preening hens in this case. Meanwhile,
as the deep learning outperformed the traditional image processing with regards to object segmentation,
it may be a better choice for some research/application purposes (e.g., bird activity analysis).
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Figure 7. Sample detection. (a) Original image; (b) preening instance segmentation using the
mask region-based convolution neural network detector; and (c) image segmentation using Otsu’s
thresholding. Some preening birds in the Figure 7b are masked with different colors.

3.2. Performance of Various Residual Networks

Table 3 shows the performance of various ResNets on preening detection. The six ResNets
had similar segmentation performance of preening birds as indicated by similar MIOU (87.3–87.8%).
The ResNet18 had middle performance but the second fastest processing speed (364.8 ms·image−1).
The ResNet34 had the highest precision (88.5%) but the second lowest recall (86.2%) and AP (83.1%).
The ResNet50 had the lowest recall (85.3%), accuracy (93.5%), F1 score (84.9%), AP (81.4%) and
processing speed (342.9 ms·image−1). The ResNet101 had the highest accuracy (95.0%) and F1 score
(88.1%). The ResNet152 had the lowest precision (83.1%) but the highest AP (85.7%). The ResNet1000
had the third lowest precision (84.5%) and slowest processing speed (393.2 ms·image−1). Overall,
the six ResNets had strengths and weaknesses in different detection performance. Since the ResNet101
is a popular network in other agriculture applications, it was selected to develop the detector.

Table 3. Performance of various residual networks on preening detection.

ResNet MIOU
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1 Score
(%)

AP
(%)

Processing Speed
(ms·image−1)

ResNet18 87.4 87.2 87.1 96.7 94.7 87.1 83.6 364.8
ResNet34 87.4 88.5 86.2 97.0 94.8 87.3 83.1 378.4
ResNet50 87.8 84.4 85.3 95.7 93.5 84.9 81.4 342.9
ResNet101 87.4 87.7 88.4 96.7 95.0 88.1 83.5 386.0
ResNet152 87.4 83.1 90.1 95.1 94.1 86.5 85.7 387.7

ResNet1000 87.4 84.5 90.8 95.6 94.6 87.6 85.6 393.2

Note: ResNet is residual network; ResNet18-ResNet1000 is the ResNet with 18–1000 layers; MIOU is mean
intersection over union; and AP is average precision.

3.3. Performance of the Detectors Trained with Various Pre-Trained Weights

Table 4 shows the detection performance of the mask R-CNN detectors trained with various
pre-trained weights. The detector trained with pre-trained ImageNet weights had the low performance
of preening detection and segmentation among the three trainings, except for the specificity and
precision. The detectors trained without pre-trained weights and with pre-trained COCO weights
had similar detection performance, while the former training took ~50% more time and ~70% more
computer memory. Therefore, the detector was trained with the pre-trained COCO weights in this case.
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Table 4. Performance of the detectors trained with various pre-trained weights.

Training MIOU
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1 Score
(%)

AP
(%)

Processing Speed
(ms·image−1)

w/o pre-trained
weights 88.7 80.3 92.3 93.9 93.6 85.9 87.5 379.0

w/pre-trained
COCO weights 87.2 83.4 91.3 94.5 93.8 87.2 86.7 382.9

w/pre-trained
ImageNet weights 83.6 81.2 83.1 94.9 92.5 82.2 80.0 413.7

Note: COCO is common object in context; MIOU is mean intersection over union; and AP is average precision. ‘w/o’
and ‘w/’ indicate ‘without’ and ‘with’, respectively.

3.4. Performance of Various Image Resizers

Table 5 shows the performance of various image resizers. Similar MIOU and accuracy were
observed for the three modes of resizers. The ‘Square’ mode had the lowest recall (86.3%) and F1 score
(86.6%) but the highest specificity (96.6%). The ‘Pad64′ had the lowest precision (84.2%) and specificity
(95.6%) but the highest recall (90.1%) and processing speed (383.3 ms·image−1). It should be noted that
except for processing speed and recall, performance differences among the resizers were mostly less
than 3%. As there was no obvious strength of detection performance among the resizers, the default
resizers (‘Square’ mode) was deployed to develop the final detector.

Table 5. Performance of various image resizers.

Mode of
Image Resizer

MIOU
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1 Score
(%)

AP
(%)

Processing Speed
(ms·image−1)

None 87.2 85.3 88.4 96.0 94.4 86.8 84.6 377.7
Square 87.6 86.9 86.3 96.6 94.5 86.6 86.7 377.8
Pad64 87.0 84.2 90.1 95.6 94.5 87.0 86.3 383.3

Note: MIOU is mean intersection over union; and AP is average precision.

3.5. Performance of the Detectors Trained with Various Numbers of Regions of Interest

The MIOU, accuracy and F1 score were similar among different numbers of ROIs (Table 6).
The detector trained with 30 ROIs had the lowest recall (79.3%) and AP (75.8%) but the highest precision
(92.5%) and specificity (98.2%). With more than 30 ROIs, the precision, recall, specificity and AP,
respectively, ranged from 82.8–85.8%, 87.2–90.7%, 95.0–96.3% and 84.9–86.5%. The processing speed
(378.2–390.7 ms·image−1) did not absolutely increase as more ROIs were used. Because there was no
absolute improvement of detection performance with increasing ROIs (>30), the default ROIs of 200
was used in the final training.

Table 6. Performance of the detectors trained with various numbers of regions of interest (ROI).

Number
of ROI

MIOU
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1 Score
(%)

AP
(%)

Processing Speed
(ms·image−1)

30 87.5 92.5 79.3 98.2 94.2 85.4 75.8 378.2
100 87.1 84.2 89.1 95.5 94.2 86.6 84.9 379.4
200 86.9 85.8 89.5 96.0 94.6 87.6 85.4 378.1
300 87.2 85.7 87.2 96.3 94.4 86.4 83.8 390.7
400 87.6 82.7 90.3 95.0 94.0 86.3 86.5 382.0
500 87.0 82.8 90.7 95.0 94.1 86.6 86.2 378.8

Note: MIOU is mean intersection over union; and AP is average precision.

3.6. Preening Behavior Measurement via the Trained Detector

Figure 8 shows the preening behavior measurement in half hour via the trained detector. The hen
spent on average 18.1 min, 106 bouts and 0.23 min·bout−1 on preening. For over 90% of the time,
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the hens preened for less than 30 sec. A hen preened for up to 20.5 min within a preening event.
Ten birds choosing to simultaneously preen took up the most proportion (16.9%) and the overall
frequency was distributed in a shape of normal distribution. The hens spent more time preening at the
top left corner of the pen. The hotspot was caused by multiple preening birds. Some birds may finish
the preening and leave for eating/drinking while others may enter that area for preening.
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Figure 8. Preening behavior measurement during 6:00–6:30 am for 38-week-old hens. (a) Frequency of
preening duration. (b) Frequency of simultaneously preening numbers. (c) Heat map for the location
of preening birds. The drinker, feeder and nest box are marked as the white rectangles on the top,
middle and bottom, respectively. The non-unit frequency represents the probability for birds preening
at specific locations and is calculated by Standard Gaussian Kernel Density Estimation Function.

4. Discussion

4.1. Ambiguous Preening Behavior

Hens can preen various parts of their body. In the images from the single camera and camera
angle, some birds were hard to manually tell whether they were preening (Figure 9), which were ~3%
of all hens in images. Those questionable hens were not labeled in this case and only the hens with
clear preening features as mentioned in Figure 1 were labeled. Although this could make the detectors
accurately detect preening hens with obvious features, the detectors still inevitably became ambiguous
on detecting those questionable hens, especially the birds preening their chest or pecking ground.
That could compromise detection performance. To reduce the confusion and improve detection
performance, multiple cameras with multiple angles may be considered to capture different views of
preening birds. To exemplify the applications of mask R-CNN on poultry preening behavior detection,
we trained the detectors with images only containing brown hens. However, the detector may also
be trained with other images containing other types of chickens, which can extend application range.
Based on our previous experiment, deep learning networks could be generalized to different light
intensities, backgrounds, object colors, object numbers and object sizes, as long as they were fed and
trained with enough sample images [14].
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Figure 9. Sample pictures of questionable birds. The birds were manually cropped from original
images. They were not labeled as preening birds and used for model development.

As shown in Figure 8a, birds typically preened for less than 30 s and some birds even did it shorter
(<1 s). With that regard, if the accuracy is acceptable, higher processing speed is still preferred since it
may cover more prompt preening behaviors.

4.2. Segmentation Method Comparison

The compared segmentation method, despite not being the most state-of-the-art, is still commonly
used for bird activity evaluation [11,32]. Pairs of adjacent images were compared to get the difference
images and then the resulting images were binarized using the image processing methods. Activity
index may reflect status of birds responding to surroundings and is important for poultry production.
This parameter was extracted with traditional image segmentation methods. However, based on our
current test, the traditional methods may result in cohesive maps. Although delicate adjustment may
help to solve the issue, it requires intensive labor and has poor generalization. The mask R-CNN
could solved the problem and may facilitate the bird activity evaluation, thus being recommended in
this case.

4.3. Architecture Selection

The mask R-CNN is not the most state-of-the-art architecture. However, as agricultural engineers,
our major goal is not to pursue the most advanced technique regardless but to seek reliable solutions
to facilitate agricultural productions. With that regard, mask R-CNN was widely used in different
areas and commercialized to accurately detect objects of concern, which may be acceptable for
farmers, thus being our solution to detect poultry preening. Meanwhile, based on our preliminary
test, the mask R-CNN outperformed its counterparts (e.g., SSD, faster R-CNN and R-FCN) in terms
of accuracy, because the mask R-CNN retained as many pixels as possible using FPN and ROI align.
Taking these into consideration, we decided to test the mask R-CNN systematically and seek the
optimal modifications of the mask R-CNN.

4.4. Performance of Various Residual Network

Various ResNet architectures had different performance on preening detection. The efficiency of
instance segmentation mainly relied on the mask detection architecture (FCN in this case) in the mask
R-CNN detector [15,33] and the same mask detection architecture among various ResNets caused
similar MIOU. Although the ResNet101 had slightly better or similar precision, recall, specificity,
accuracy, F1 score and AP, the differences of the performance were small (2–4%). The ResNet-FPN
backbone was proposed to extract ROI features from different levels according to their scales within an
images and ResNet with more layers may theoretically improve the extraction and further detection
performance [29,34]. The scales in some common images were partitioned at three levels that were
<1024 pixels, 1024–9216 pixels and >9216 pixels corresponding to small, medium and large objects,
respectively [35]. Compared with those, the scales of preening birds ranged from 7765 to 17,353 pixels,
in which object areas in an image were relatively consistent. That may be the reason for why we cannot
get significant improvement with ResNets having more layers.
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Appropriate design of the CNN architecture could improve processing speed as more layers
are stacked onto the architecture. The processing speed increased as the ResNet layers increased
from 18 to 34 and 50 to 1000. However, it decreased as the ResNet increased from 34 layers to
50 layers. As shown in Figure 4, the ResNet18–ResNet34 were built with normal blocks, while the
ResNet50–ResNet1000 were constructed with bottleneck blocks. The latter design can reduce the
computational complexity and further increase the processing speed in deeper ResNets (≥50 layers) [29].
In sum, proper CNN architectures are critical for developing a robust and efficient detector as it can
affect detection performance.

4.5. Performance of the Detectors Trained with Various Pre-Trained Weights

Modern CNNs are massive architectures containing considerable parameters to be trained, thus,
efficiently training the inner structure is critical. Transfer learning could be a solution. Compared with
the performance between the trainings without pre-trained weights and with pre-trained COCO
weights, transfer learning could save training time without compromising detection performance.
The latter training only involved the heads of FPN, RPN and detection branches, containing high-level
semantics [36]. Such semantics may be more important for instance segmentation and object detection
than low-level generic features extracted by the bottom architecture of the detectors [15]. That is
why the detectors with the two trainings showed similar performance. As for transfer learning,
various pre-trained weights among benchmark datasets can result in various performance. Perhaps,
the pre-trained COCO weights had more similarity for preening hens than the pre-trained ImageNet
weights, resulting in better efficiency of transfer learning and better performance for the former
pre-trained weights [18–20].

4.6. Performance of Various Image Resizers

The resizers in this case had similar detection performance. The original image size was
1280 × 720 pixels and the size after resizing was 1024 × 1024 pixels for the ‘Square’ mode and
1280 × 768 pixels for the ‘Pad64′ mode. Most of the sizes were the multipliers of 64, which can ensure
smooth scaling of feature maps up and down at the six levels of the FPN and reduce information
loss [22]. That could result in the similar performance. Furthermore, the shapes of preening birds were
not distorted before and after resizing, which made the detectors learn consistent features of preening
birds and generate similar results. Reducing input image sizes indeed can help to cut processing
time [23].

4.7. Performance of the Detectors Trained with Various Numbers of Regions of Interest

Detection performance varied with the proposed numbers of ROI. When less ROIs (<30) were
proposed, some candidate preening hens may be ruled out, resulting in low recall and AP [23].
Meanwhile, fewer non-preening birds may be wrongly recognized as preening birds with less ROIs,
causing higher precision and specificity. However, these trends disappeared when the ROIs were more
than 100. Perhaps, more than 100 ROIs were sufficient to cover possible preening hens for the detection
in this case. Processing speed did not absolutely increase with advanced ROIs, probably because
processing lower than 500 ROIs did not exceed the capacity of the mask R-CNN detectors [15,23].

4.8. Preening Behavior Measurement with the Trained Detector

Individual preening hens could be continuously monitored with the trained detector. The extracted
behavior information showed that the hens showed temporal and spatial preference on the preening
during the testing period. These behaviors may provide valuable insights into farm management and
facility design. For example, hens may show displacement preening around feeders when they cannot
access feed [25] and understanding the frequency of preening hens present around feeders may help to
evaluate the sufficiency of feeder allowance. At the current stage, we just explored the probability of
using deep learning to detect the preening behavioral responses and further research is recommended
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to determine the thresholds of the responses with regards to welfare evaluation. Overall, the mask
R-CNN preening behavior detector is a useful tool to evaluate hen preening behaviors.

5. Conclusions

This study developed mask R-CNN preening behavior detectors by modifying the ResNets,
pre-trained weights, image resizers and number of ROIs. The detectors accurately segmented
individual preening hens (MIOU: 83.6–88.7%) and had decent performance on detecting preening and
non-preening hens, in which the precision, recall, specificity, accuracy, F1 score and AP were mostly
over 80%. The overall processing speed for preening detection ranged from 342.9 to 413.7 ms·image−1.
The ResNet101 performed better on the preening detection among the six ResNets. The pre-trained
COCO weights had better transfer learning efficiency than the pre-trained ImageNet weights. The image
resizers in the ‘None,’ ‘Square’ and ‘Pad64′ modes performed similarly on hen preening detection.
The 30 ROIs had the highest precision and specificity but the lower recall and AP among various
numbers of ROIs, while more than 100 ROIs had similar performance on hen preening detection.
With the trained detector, temporospatial preening behaviors of individual hens could be extracted.
Overall, the mask R-CNN preening behavior detector is a useful tool to detect hen preening behaviors.
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Nomenclature

AP Average precision MIOU Mean intersection over union
ARS Agriculture Research Service MP Max pooling
Bbox Bounding box NMS Non-maximum suppression

Box1–Box5
Proposed boxes with various sales and
ratios after the region proposal network

Pinterp(r)
Interpolated precision in the
precision-recall curve when recall is r

C1–C5
Convolutional stages 1 to 5 in the
residual network

P(̃r) Measured precision at recall r̃

COCO Common object in context P2-P6
Feature maps in the feature pyramid
network

Conv. Convolution ReLu Rectified linear units
CNN Convolutional neural network ResNet Residual network

Faster RCNN
Faster region-based
convolutional neural network

ResNet18-
ResNet1000

Residual network with 18-1000 layers of
convolution

FC Fully-connected ROI Regions of interest
FCN Fully-connected network RPN Region proposal network
FN False negative TN True negative
FP False positive TP True positive
FPN Feature pyramid network Ups. Upsampling
IOU Intersection over union USA United State of American

Mask R-CNN
Mask region-based convolutional
neural network

USDA United State department of agriculture
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