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Abstract

Salt-bridge interactions play an important role in stabilizing many protein structures, and have 

been shown to be designable features for protein design. In this work, we study the effects of non-

native salt-bridges on the folding of a soluble alanine-based peptide (Fs peptide), using extensive 

all-atom molecular dynamics simulations performed on the Folding@home distributed computing 

platform. Using Markov State Models (MSMs), we show how non-native salt-bridges affect the 

folding kinetics of Fs peptide by perturbing specific conformational states. Furthermore, we 

present methods for the automatic detection and analysis of such states. These results provide 

insight into helix folding mechanisms and useful information to guide simulation-based 

computational protein design.

Introduction

Protein folding results from the balance of many different molecular driving forces–

hydrophobic interactions, electrostatics, van der Waals effects, salt-bridge interactions, and 

hydrogen bonding. A detailed understanding of the roles played by these interactions in the 

folding process is necessary both for a complete picture of protein folding, and for 

developing improved de novo protein design algorithms. Salt-bridge interactions, i.e. 

electrostatic interactions between oppositely charged amino acid residues, have been shown 

to stabilize or destabilize protein helices1–3 depending on the identity of interacting 

residues4 and their sequence patterning. 5 Salt-bridge interactions can be highly cooperative, 
6,7 and extreme cases of such cooperativity is exploited by motor proteins to form rigid 

structural elements8,9. Not surprisingly, salt-bridge interactions have been targeted as highly 

designable features for de novo protein design, with computational algorithms utilizing a 

combination of information from structural databases10,11 as well as biophysical models of 

electrostatics.12,13.

It is only more recently that time-resolved spectroscopic studies have begun to address how 

different patterns of salt-bridge interactions affect protein folding kinetics.14 Using 

temperatrue-jump IR measurements, Meuzelaar et al. has shown that non-optimal Glu-Arg 

salt-bridge patterning not only destabilizes protein helices but slows folding rates by almost 

an order of magnitude15. At low pH (2.5) this effect is less pronounced, suggesting that non-

*To whom correspondence should be addressed: vvoelz@temple.edu. 

Supplemental Figures S1–S5. This material is available free of charge via the Internet at http://pubs.acs.org/.

HHS Public Access
Author manuscript
J Phys Chem B. Author manuscript; available in PMC 2020 October 31.

Published in final edited form as:
J Phys Chem B. 2016 February 11; 120(5): 926–935. doi:10.1021/acs.jpcb.5b11767.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/


optimal salt-bridges stabilize non-native folding intermediates, acting as kinetic traps. Tzul 

et al. have shown that computational optimization of surface charge-charge interactions for 

protein native structures results in faster folding kinetics, suggesting that electrostatic 

interactions normally give rise to some kinetic frustration. 16 Similarly, the Raleigh group 

has shown that a non-native salt-bridge likely forms in the unfolded state of NTL9, thus 

rationalizing the stabilizing effects of mutation K12M, which disrupts this interaction 17–19 

All of the above examples raise the question of how computational algorithms might address 

the problem of designing non-native salt-bridge interactions that may impact kinetics as well 

as thermodynamics.

Here, we explore how to use atomically-detailed molecular dynamics simulations along with 

Markov State Model (MSM) approached to assess the kinetic and thermodynamic 

consequences of salt-bridge mutations on folding. Recent advances in computing platforms, 

such as the specialized supercomputer Anton20, the world-wide distributed computing 

network Folding@Home21 and GPU-accelerated MD algorithms22–24, now make possible 

the study of folding processes on the millisecond timescale. Complementing these advances 

have been the development of software platforms such as MSMBuilder25 and EMMA26 to 

build sophisticated kinetic network models of conformational dynamics from large-scale 

simulation data, and extract meaningful biophysical information to help further guide future 

de novo design.27

As a model system, we examine how non-native salt-bridges effect the folding of a soluble 

alanine-based peptide (Fs peptide). In particular, we examine variants of the Fs peptide (Ac-

A5(AAARA)3A-Nme) where Arg residues have been mutated to Glu(Table 1), the folding 

and stability of which has been extensively studied by experiment28–31 and simulation.32. 

We chose this sequence because the (i, i + 5) pattern of charged residues are unable to form 

salt bridges in the native helical conformation, and can only form in non-native states.

To achieve the statistical sampling necessary to model the complete folding reaction for 

multiple sequences, we use extensive all-atom molecular dynamics simulations performed 

on the Folding@home distributed computing platform. We analyze the data using Markov 

State Model (MSM) approaches, in which a unified set of metastable states is used to model 

the conformational dynamics of all sequences. In the following sections, we first describe 

our use of a recently developed variational cross-validation method33 to select a set of model 

parameters to build very accurate MSMs for all eight different sequences. We then present 

an analysis of how folding mechanisms are affected by different salt-bridge mutations. In 

particular, we find that a salt-bridge interactions can greatly stabilize non-native helix-

bundle conformations, resulting in slower folding kinetics. Finally, towards developing tools 

for computational design, we present an unsupervised Bayesian method that is able to 

automatically identify the contacts that uniquely define the most important metastable 

conformational states comprising observed sequence differences. These results are steps 

toward automated simulation-based computational protein design.
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Methods

Molecular dynamic simulations

Molecular dynamics (MD) simulations of eight Fs peptide variants were performed using 

GROMACS 4.5.434 on the Folding@home distributed computing platform.21. These variants 

consisted of all possible Arg/Glu substitutions at positions R9, R14 and R19, which we will 

abbreviate as Fs-EEE, Fs-EER, Fs-ERE, Fs-ERR, Fs-REE, Fs-RER, Fs-RRE and Fs-RRR 

(Table 1). One hundred initial starting conformations were obtained by conformational 

clustering of previous simulation trajectories of wild type Fs peptide (unpublished), each 

threaded using UCSF Chimera to generate structures for the other seven sequence variants. 

Explicit-solvent simulations were then performed for all sequences using the AMBER 

ff99SB-ildn-nmr force field35 and TIP3P water model, with 8900 atoms in a (45Å)3 periodic 

box. Na+ and Cl− counter ions were added at 100 mM to neutralize charge. The simulations 

used stochastic dynamics (Langevin) integration at 300K using a 2 fs time step. Covalent 

hydrogen bond lengths were constrained using LINCS, and PME electrostatics were used 

with a non-bonded cutoff of 9 Å. The NVT ensemble was enforced using a Berendsen 

thermostat.

About 130 trajectories were simulated for each variant, with an average trajectory length of 

about 1 µs. The complete trajectory data set for all sequences represents over a millisecond 

of simulation time, with about 130 µs of total simulation data per sequence.

Time structure based Independent Component Analysis (tICA)

tICA is a dimensionality reduction technique in which protein coordinates are projected to a 

subspace representing the degrees of freedom along which the slowest motions occur. 36,37 

Thus, the tICA subspace is ideal for kinetic-based clustering of molecular conformations, for 

the construction of Markov State Models (see below). The tICA components (tICs) can be 

found as the set of uncorrelated vectors α that maximize the objective function

α Cτ α
α Σ α , (1)

subject to the constraint that each component have unit variance (i.e. αi Σ αi = 1). Here, Cτ 

is a time-lagged correlation matrix (TLCM) of elements Cij = αi t − αi αj t + τ − αj , and 

Σ is the covariance matrix (CM) of elements Σij = αi t − αi αj t − αj . The set of tICA 

components α can be found variationally by solving the generalized eigenvalue problem 

Cτ α = λ Σ α .

Although the tICA approach is linear (i.e. the tICA components are, by definition, linear 

combinations of the input coordinates), it can be extended to account for nonlinearity by 

using the so-called “kernel trick” in which the original coordinates are projected into an even 

higher-dimensional basis of nonlinear functions. 38 In practice, projection to pairwise 

distance coordinates has been found to work very well for constructing MSMs,36 and here 

we similarly construct the time lagged correlation matrix (TLCM) and covariance matrix 

(CM) using Cα + Cβ atom pair distances for all residues. Previous studies have also shown 
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that the TLCM is not sensitive to the lag time39, and following this work, choose τ = 5 ns as 

the lag time to build the TLCM. The number of tICA components used for conformational 

clustering is a free parameter that we select according to the results of a variational cross-

validation method described below.

Markov State Models

Markov State Models (MSMs) are kinetic network models of conformational dynamics, 

comprising many metastable states connected by kinetic transition rates. 40 MSMs have been 

widely used to analyze molecular simulation data due to several key advantages. Most 

importantly, MSMs enable long-timescale dynamics and equilibrium properties to be 

modeled from ensembles of much shorter trajectories.39,41–43. When combined with 

adaptive sampling techniques, MSMs can also help guide simulations to achieve converged 

sampling.44–46 Moreover, coarse-graining of metastable states, combined with pathway flux 

analysis, has been used to extract a great deal of human-understandable information about 

molecular mechanisms of conformational change and molecular association.47–49

Theory.—MSM metastable states are defined using a discrete partitioning of the 

configuration space into K metastable regions, typically through the use of conformational 

clustering algorithms. Once metastable states are suitable defined, transition probabilties Tji
τ

from state i to state j in time τ are estimated from transitions observed in the simulation 

trajectories. In the case that transitions are Markovian (a good approximation given a 

sufficiently long lag time τ ), the eigenvalues and eigenvectors of T(τ), the matrix of inter-

state transition rates, provide a complete description of conformational dynamics. 41,50,51 

Starting from an initial distribution of state populations p(0), the complete time evolution of 

the system is given by

p t = ∑
n

ϕn
L p 0 ϕn

Re−t/τn
(2)

where ϕn
L and ϕn

R are the left and right eigenvectors of T(τ), and τn are the so-called implied 

timescales corresponding to each eigenmode relaxation, defined as τn = −τ/(ln µn), where µn 

are the eigenvalues of T(τ). Equilibrium populations (the stationary state) are given by the n 

= 0 eigenvector ϕ0
R, for which τ0 = ∞.

MSM construction.—We used the MSMBuilder 3.0 software package to build over 300 

MSMs, each using different hyper-parameters. Hyper-parameters included the number of 

tICA components, the lagtime used to construct the TLCM, the number of MSM states, and 

the clustering method used to define MSM states. We denote these as “hyper-parameters” to 

distinguish them from the MSM parameters (i.e. the transition rates). Each MSM was scored 

using a variational cross-validation method (described below) to select the best model.

The Bayesian agglomerative clustering engine (BACE) algorithm52 was used to coarsegrain 

MSM microstates into macrostate models. Macrostate committor values and folding 

pathway fluxes were computed using Transition Path Theory (TPT), as described else-

where.42,53
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GMRQ scores.—In order to correctly extract useful information from the simulations, 

hyper-parameters need to be carefully selected to construct the most accurate MSM possible. 

Here, we use the recently developed GMRQ (generalized matrix Rayleigh quotient) method 

to select the optimized set of hyper-parameters for MSMs.33

Briefly, the objective of the GMRQ method is to find MSM hyper-parameters (metastable 

state definitions, lag times, etc.) such that projection of the observed dynamics to the 

discrete metastable state space maximizes the same objective function as the tICA method 

(Equation 1). In the discrete-state basis defined by the metastable state definitions, this 

objective function is known as a “generalized matrix Rayleigh quotient”. To avoid over-

fitting to the observed transition data, a cross-validation approach is used in which a portion 

of the data is used to training the model, and the remaining data is used for testing the 

model. In the results below, we report the mean cross-validation value of the generalized 

matrix Rayleigh quotient (along with it’s estimated uncertainty) as the “GMRQ score”. 

Unlike other methods for validating MSM models (such as the Chapman-Kolmogorov test), 

the GMRQ method is extremely useful as it allows one to make quantitative, statistically 

significant comparisons across all models, even those built using different numbers of 

metastable states. We thus choose the model with the highest GMRQ score as the best model 

for subsequent analysis.

Surprisal analysis

Previously, we presented a surprisal metric based analysis to quantify differences in 

transition counts between two different kinetic network models.45 Here, we extend the 

original two-model surprisal analysis to a multi-model surprisal analysis of K different 

kinetic network models, each sharing the same definition of metastable states, but different 

numbers of observed transitions. The surprisal value si for a state i can be thought of as a 

relative entropy metric estimated from the observed outgoing transition counts, for the case 

where transition counts from all K models are combined, versus if we consider each model 

separately:

si = Hi
comb − ∑

k = 1

K Ni
k

Ni
totalHi

k
(3)

where

Hi
comb = ∑

j

M
−

∑k = 1
K nijk

Ni
total ln

∑k = 1
K nijk

Ni
total (4)

and

Hi
k = ∑

j

M
−

nijk

Ni
k ln

nijk

Ni
k (5)
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are entropies estimated from the observed transition counts. Here, nijk  is the number of 

transition counts from state i to state j observed for model k, Ni
k is the total number of 

outgoing transition counts from state i in model k, and Ni
total = ∑k = 1

K Ni
k is the total 

number of transitions counts from state i across all models.

We have shown previously45 that the Jenson-Shannon divergence,

JS = Hcomb − ∑
k = 1

K
pkHk, (6)

of a collection of K MSMs defined by transition matrices T(k) with stationary state 

populations πi
k , can be closely approximated using surprisal metrics, by giving all the 

models equal weight.(i.e., pk = 1/K) and assuming that the perturbations are small that the 

state equilibrium population are approximately equal to each other across all models(i.e., 

πi1 ≈ πi2 ≈ πi3… ≈ πiK), we had the final approximation of JSD as

JS T1, T2, …, TK = ∑
i

M
πisi (7)

Bayes factor analysis

In order to identify the key contacts defining each metastable state, here we develop a Bayes 

factor method to calculate the importance of an interresidue contact in a particular state. 

Consider two sets of interesidue contacts {cij} and {cij}*. The variables cij are contact 

indicator variables, such that cij = 1 if a contact is present between residues i and j, and t cij 

= 0 otherwise. We define the Bayes factor BF to be the ratio of probabilities that the 

structure is in state k given the set of contacts {cij} versus the set of contacts {cij}*.

BF = P k cij
P k cij * (8)

Suppose the two sets of contacts only differ by a single contact, cmn, that is formed in the 

first set of contacts, and not formed in the second set. If we assume that each contact is 

statistically independent, such that P k cij = ∏ij P k cij , then cancellation of terms and 

application of Bayes’ Theorem results in:

BFk cmn = P k cmn = 1
P k cmn = 0 = P cmn = 1 k P cmn = 0

P cmn = 0 k P cmn = 1 (9)

This final form of the Bayes factor (Eq. 9) can be thought as the statistical over-

representation of contact cmn in state k, and hence a measure of its importance in uniquely 

defining the structural features of that state. (Of course, we note that the Bayes Factor 
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formula presented here can apply to any other structural feature as well; here we consider 

only inter-residue contacts.)

To compute Bayes factors in practice, we estimate probabilities from the frequencies of 

contacts N observed in the simulation trajectory data, using P cmn = 1 k =
N cmn = 0 k

Ntotal
, 

P cmn = 1 =
N cmn = 1

Ntotal
, and setting P cmn = 0 k = 1 − P cmn = 1 k , 

P cmn = 0 = 1 − P cmn = 1 . In order to avoid a zero-valued denominator in the Bayes 

factors, unobserved contacts are given a single pseudocount, N (cim = 1|k) = 1. Since Ntotal is 

a very large number, this approximation does not affect the results. In our analysis below, we 

compute Bayes factors for contacts separated by three or more residues, |i − j| ≥ 3, and 

define a contact formed if the any pair of non-hydrogen atoms between two residues are 

closer than 4 Å.

Results

Simulation data sets

Extensive all-atom MD simulations were performed as described in Methods. Before 

building MSMs, we first discarded some short trajectories shorter than 10 ns. The total 

simulation time for each sequence used for building MSMs is around 130 µs. In the 

following sections, we refer to the combined data set of all sequences as the “combined” 

data set, and data sets containing only one sequence as “individual” data sets.

Construction of optimal Markov State Models

We tested the performance of two different clustering algorithms, k-means and k-centers, 

used with three different distance metrics: rmsd, dihedral-angle rmsd, and tICA distance. 

First, we tried to build a series of MSMs using the combined simulation data from all eight 

different sequences. We varied the number of tICA components, the lag time used to build 

the MSMs, the cluster method, and the number of microstates of the MSM. For each model, 

8-fold cross-validation was used to calculate the GMRQ scores, leaving out the data of each 

sequence for test data to compute the GMRQ score, and using the remaining data to train the 

model. To avoid memory overflow from clustering such a large data set, we use one 

hundredth of the data for clustering, and assigned the rest of the data using the generated 

cluster centers.

The results of these efforts are summarized in Figure 1. The model with the highest GMRQ 

score is a 1200-microstate MSM built using k-means clustering over 8 tICA components and 

a tICA lag time of 5 ns. This model was chosen as the best model, and used for analysis in 

further sections. That said, several models had scores very similar to the largest score, within 

sampling error. A possible reason for such similarity in scores is that we are in a data-rich 

regime. To test this idea, we calculated 5-fold cross-validated GMRQ scores for the 

individual data sets corresponding to each sequence. Indeed, unlike the combined data set, 

the GMRQ scores of individual data sets tend to reach the maximum at less states with only 

a few exceptions (data not shown).
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Using the optimized parameters described in previous section, a 1200-microstate MSM was 

constructed from all the combined data sets, with an MSM lag time of 5 ns. MSMs for each 

individual data set were built using the same metastable state definitions and lag times by 

using only the observed transition counts from each individual data set. Because the model 

hyper-parameters and metastable state definitions are the same, the conformational dynamics 

for each sequence can be directly compared.

However, because of finite sampling, and sequence-dependent differences in the free energy 

landscape, each individual data set does not populate the full set of 1200 microstates. Using 

the Bayesian agglomerative clustering engine (BACE) lumping algorithm,52 we further 

coarse-grained this model into a macrostate MSM having 40 states, the maximum number of 

states found for which all macrostates are populated by all sequences. The 40-macrostate 

model is a more comprehendible description of folding mechanisms, yet predicts implied 

timescales similar to the microstate model (see Figure 2). Chapman-Kolmogorov tests of 

state residence probabilities for the 40-macrostate model furthermore suggest that the 

macrostate model is very good (Figure S5). We also compare the implied timescales 

between the 40-macrostate model and 1200-microstate model built from each individual data 

set (Figure S4). The trend of implied timescales are very similar to each other within error 

bars.

We note that the number of tICA components used to build the microstate MSM strongly 

influences the quality of the macrostate model. Whereas clustering using only 2 tICA 

components (a poor model, as judged by GMRQ score) allowed us to build a 230-macrostate 

model in which all states are populated by all sequences, using 8 tICA components (the best 

model according to the GMRQ score) resulted in only 40 such states. In the former, the large 

number of populated macrostates is an artifact due to the overlap of metastable states when 

projected to only two tICA dimensions.

Non-native salt-bridges alter the folding kinetics of Fs-peptide variants

The slowest implied timescales for each individual macrostate model were computed using 

10-fold cross-validation to account for uncertainty due to finite sampling. The results show 

that, for all sequences, the slowest relaxation timescale is clearly separated from the rest, 

indicating apparent two-state folding (Figure 2). We note that macrostate MSM implied 

timescales are accelerated compared to the implied timescales obtained for microstate 

MSMs. This is an expected artifact of coarse-graining, which arises because macrostate 

MSM eigenvectors are poorer discrete-state approximations of the true continuous-space 

eigenvectors. 54 To examine the severity of this coarse-graining artifact, we compare implied 

timescales for microstate and macrostate MSMs built from the combined data set (Figure 2, 

right panel). While macrostate coarse-graining decreases the number of states considerably 

from 1200 to 40, the slowest implied timescale only decreases from ∼360 ns to ∼240 ns, 

which is less than a fifth of an order of magnitude. We conclude that coarse-graining 

artifacts are not very severe. Regardless, each individual macrostate MSM is similarly 

affected by such coarse-graining artifacts, and thus remain comparable.

A comparison of macrostate MSM implied timescales for each sequence reveals a striking 

difference in folding rates for Fs-EEE (∼180 ns) versus Fs-ERE (∼400 ns), more than 
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doubling the folding time due a mutation of a single residue. Even though a doubling in 

relaxation timescales may not appear to be a dramatic difference, our results clearly show 

that we can quantitatively predict such differences, which are significant within error. 

Indeed, the magnitude of these differences are comparable to those measured in 

experimental studies.15 To investigate the structural interactions responsible for this 

difference, we examined the projection of the trajectory data to the 2D landscape defined by 

the largest two tICA components, tIC1and tIC2.

tICA landscapes reveal helix-bundle “trap” states involved in the slowest relaxations

The 2D tICA projection reveals the presence of metastable states visible as distinct regions 

of population density, also distinguished by the locations of the 40 macrostate cluster 

centers, which overlap well with these regions (Figure 3). tIC1 represents the degrees of 

freedom over which the slowest conformational transition (i.e. folding) occurs, and indeed, 

native-like macrostates (helical structures) are found on the right side of of the tICA 

projection, while non-native structures are found on the left side. tIC2 separates two broad 

kinds of non-native structures; located in the lower half of the tICA projection is a collection 

of non-helical and helix-bundle states, while the top left is distinctly dominated by a specific 

helix-bundle conformation (macrostate 20). This helix-bundle state is the most distant from 

native helical states along the tIC1 component, indicating its importance in determining the 

overall folding time. It is most populated in the slowest-folding Fs-ERE system, and least 

populated in the fastest-folding Fs-EEE system. It is worth noting that, unlike the tICA 

projections, projections of simulation trajectory data to Rg (radius of gyration) vs. RMSD 

coordinates produces remarkably similar landscapes that provide little, if any, insight into 

important metastable states (Figure S1).

Close inspection of the helix-bundle macrostate 20 reveals the structural mechanism of 

stabilization for Fs-ERE: The guanidinium group on the side chain of R14 makes strong 

hydrogen bonding interactions with the backbone carbonyl of A8 in the turn region, as well 

as more transiently with the backbone carbonyl of A5, acting to cap the C-terminus of the 

preceding helix (Figure 3b). Comparison of the tICA landscapes and implied timescales for 

all eight sequences suggest that residue 14 is a “gatekeeper” residue for both structure and 

dynamics. The four sequences having the slowest implied timescales (see Figure 2) all have 

an R14 residue, whereas the fastest implied timescales are for sequences having an E14 

residue. The tICA landscapes for these two groups are strikingly different with respect to 

macrostate 20, which is significantly populated in all sequences having an R14 residue, and 

nearly absent in sequences having E14 residue.

Of the sequences having an E14 residue, a further dichotomy can be established. Sequences 

with an R9 residue (Fs-REE and Fs-RER) have slower implied timescales than those having 

an E9 residue (Fs-EEE and Fs-EER). The tICA landscapes show that the former group has 

significant population for macrostate 11, while the latter group does not. Inspection of 

conformations from macrostate 11 show a structured C-terminal helix and a turn stabilized 

by a salt bridge between R9 and E14.

To determine the roles of particular macrostates in determining the slowest relaxations, we 

examined the eigenvectors ϕn of the 40-macrostate MSM transition matrix (Figure S2). For 
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all eight sequences, the eigenvector ϕ0 corresponding to the equilibrium populations shows 

macrostate 13 (a folded helix) to have the largest population. The eigenvector ϕ1 corresponds 

to population flux on the folding timescale; positive components represent macrostates of 

outgoing population flux (i.e. the most important unfolded states), and negative components 

represent incoming flux (i.e. folded states). For all sequences, the largest negative 

component of ϕ1 is native macrostate 13, but the positive components differ greatly. The four 

slowest-folding sequences, all of which contain R14, show macrostate 20 as dominating the 

positive components. Thus, unlike what we would we expect with diffusive folding from 

multiple states, we see that the slowest folding relaxation is predominated by flux from 

macrostate 20, which acts a kinetic “trap” to control the folding rate. For the other four 

sequences (containing E14), helix-bundle states (macrostates 20 and 2) compose the main 

kinetic traps.

To verify that these macrostates are indeed off-pathway kinetic traps, we computed the 

folding flux along macrostate folding pathways using Transition Path Theory (TPT).42,53 

For this anaylsis, macrostate 4 was chosen as the unfolded (source) state, as it is the 

macrostate with the lowest average number of helical residues as the source state; and 

macrostate 13 was chosen as the folded (sink) state, as it is the macrostate with the lowest 

conformational free energy (i.e. highest equilibrium population). The ten folding pathways 

with the largest folding fluxes are shown for all sequences in Figures 3 and S3. Across all 

eight sequences, the top pathways comprise a family of similar folding paths sharing many 

common intermediate states, each involving only three to five steps. A clearer picture of 

these pathways are shown in Figure S3, plotted as a function of the number of helical 

residues. None of the top ten pathways for any sequence passes through any of the “trap” 

macrostates, indicating that the traps must be off-pathway. The shape of the population 

density on the 2D tICA landscape is also consistent with this finding.

Automatic detection and analysis of metastable states most affected by mutations

A key challenge in using Markov State Model approaches for computational protein design 

is to develop methods by which the effects of sequence mutations on state populations and 

folding kinetics can be automatically detected and evaluated. In the model system studied 

here, we have designed sequence mutations with clear expectations about how salt-bridge 

properties may change. In general, though, the effects of mutations may be quite non-

intuitive, and rationalizing their underlying mechanism may be difficult without help from 

computer algorithms.

Which conformational states have equilibrium populations that are most sensitively 

perturbed by mutations? To answer this, we computed the Jensen-Shannon divergence of 

population distributions projected onto the 2D tICA landscape defined by x = (tIC1, tIC2):

JSpops = H ∑
k = 1

K
pkρk x − ∑

k = 1

K
pkH ρk x (10)

where ρk x = Nk x /∑x Nk x  is the probability density of trajectory snapshot counts Nk(x) 

for sequence k at position x on the tICA landscape, and pk = 1/K (K = 8 sequences).
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In practice, since JSpops is calculated by partitioning the tICA landscape into discrete bins x, 

we plot the contribution of each bin to the Jensen Shannon divergence to visualize which 

conformational states show the greatest variation in equilibrium populations across all 

sequence mutants (Figure 4). A similar calculation of JSpops was performed whereby we 

calculated the contributions of each macrostate. The results show that particular MSM 

macrostate conformations coincide well with regions of the tICA landscape that contribute 

most to the JSpops. Consistent with our analysis above, the greatest contribution comes from 

the helix-bundle “trap” macrostate 20. Other significant macrostates, such as macrostate 11, 

are similarly detected in an automatic fashion.

Bayes Factor analysis.—Once important macrostates are identified, can we 

automatically discern the structural features that uniquely define each macrostate 

conformation? To do this, we employed a Bayes Factor analysis of inter-residue contacts, as 

described in Methods. Shown in Figure 4 are the results of this analysis for selected 

macrostates (from the ten which that contribute most to JSpops). In all cases, the computed 

Bayes Factors recapitulate the important inter-residue contacts previously found by visual 

inspection. Moreover, the Bayes Factor analysis gives a quantitative ranking of the 

uniqueness of discovered contacts. We find that the largest Bayes Factors are for contact 

(8,13) in macrostate 2 and contact (8,14) in macrostate 20. The large values of the Bayes 

Factors for these contacts reflect how unique they are with respect to other macrostates. 

Mutations that specifically perturb such contacts can thus have large effects on the 

populations of these macrostates.

Surprisal analysis.—In previous work, we developed surprisal metrics to quantify how 

MSM dynamics are perturbed by sequence mutations.45 This surprisal analysis is based on 

the Jensen-Shannon divergence of MSM transition rates, as opposed to state populations. To 

examine the different kinds of information these two approaches give (i.e. JS vs. JSpops), we 

performed a surprisal analysis on the 40-macrostate MSM (Figure 5).

As described in Methods, the Jensen-Shannon divergence of a collection of MSMs can be 

estimated as a sum of contributions, JS = ∑i πisi, where πi is the average population of 

macrostate i across all sequences, and si is the surprisal for macrostate i (i.e. the Jensen-

Shannon divergence of outgoing transition counts across all sequences). Figure 5a shows a 

(log-scale) scatter plot of si versus πi values for each macrostate, along with estimated 

uncertainties due to finite sampling. From this plot, it is clear that some macrostates (such as 

the native state, macrostate 13), while not having very surprising differences in outgoing 

transition rates, nevertheless contribute significantly to the JS because of their large 

equilibrium populations. Other, less populated macrostates, contribute to the JS due to large 

differences in outgoing transition rates.

We further examine the ten macrostates which contribute most to the JS by showing their 

locations superimposed on a tICA landscape plot of the contributions to JSpops. (Figure 5b). 

The plot reveals that these macrostates tend to be located between regions of high 

population, as one might expect for states bridging local basins on the folding landscape. 

Like local “transition states”, these macrostates show the largest changes in outgoing 
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transition rates in response to sequence mutations. Particular states that contribute 

significantly are macrostate 30, which is located along the predominant folding pathways, 

and macrostate 28, which bridges the important “trap” conformations in macrostate 20 and 

macrostate 11. As discussed elsewhere, improved sampling of these states would help to 

efficiently converge the JS metric, as part of a surprisal-baed adaptive sampling algorithm.45

Discussion

The prediction of slower folding kinetics for Fs-ERE compared to Fs-EEE (or more 

generally, any sequence containing R14 versus those that do not) is reminiscent of 

experimentally observed changes in folding rates as a function of pH, which suggest that as 

the propensity for opposite charge-pairing increases, the folding rate becomes slower15,55,56. 

Recently, Chung et al. published a joint single-molecule FRET and molecular simulation 

study of the designed helix-bundle protein α3D, which showed a remarkable increase in 

folding rate at low pH; an effect which the authors could only ascribe to non-native salt 

bridges between helices.56 Anomalous diffusion in protein folding had previously been 

interpreted in terms of internal friction57,58; this study firmly establishes that non-native salt-

bridges can add to internal friction by increasing the roughness of the energy landscape.

Our simulation study reaches similar conclusions about the role of salt-bridge interactions in 

slowing helix folding rates. Here, the microscopic detail provided by molecular simulations 

allow us to make additional predictions about specific non-native conformations that 

contribute to slower kinetics. In light of recent time-resolved IR studies of salt-bridge 

perturbations to helix folding15,59, our predictions about the role of non-native salt-bridges 

on Fs peptide should be highly testable.

We must be careful to note the usual caveats about the ability of molecular forcefields to 

make accurate predictions about such fine details as the populations of non-native states. 

That said, several factors contribute to the confidence of our predictions. First, because of 

the large amount of simulation data made possible by distributed computing, our predictions 

are not necessary limited by finite sampling effects. Second, we note that AMBER ff99SB-

ildn-nmr, the force field used in this study, is highly accurate at predicting experimental 

NMR data, much of which include chemical shifts and coupling constants for alanine-based 

peptides.60 Indeed AMBER ff99SB-ildn-nmr was parameterized expressly to best reproduce 

NMR experimental data.35

Furthermore, the technique of using combined data to build MSMs relys on one assumption 

that for sequences with only small differences (only several different residues), the 

metastable states are the same or at least very similar to each other. It is true that different 

sequences will have different states if we cluster the protein folding conformation very 

finely and in practice, we did observe that for the 1200-micro states model, different 

sequence occupy different subset of the states. This is the reason that we need to coarse 

grain the micro states model to macro states model. Once coarse-grained, the assumption 

will most likely to be valid. In this work, we use BACE as the lumping method to build the 

macrostate model. We did not test other lumping algorithms such as the Nystrom 

algorithm61 which has been shown to be one the best lumping algorithms available.62

Zhou and Voelz Page 12

J Phys Chem B. Author manuscript; available in PMC 2020 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, we note that Chung et al. suggest that α3D exhibits such a dramatic increase in 

folding rate at low pH in part because it is a protein rationally designed for high stability, not 

for fast folding.56 Our computational results suggest that simulation-based modeling with 

automated algorithms like the kind were present here could help to optimize salt-bridge 

interactions for both stability and folding kinetics of designed proteins such as α3D. The 

ability to computationally design kinetics as well as stability could be useful for controlling 

many properties, for example, aggregation propensity.63

Conclusion

Using variants of the Fs-peptide as a model system, we have used Markov State Model 

approaches to clearly show that non-native salt-bridge interactions can have significant 

effects on folding kinetics. Through the combined use of large-scale conformational 

sampling made possible by distributed computing, and tICA-based approaches to MSM 

construction, we have dissected the mechanism by which non-native salt-bridges can affect 

helix folding in exquisite detail. Across the Arg/Glu variants we examined, we find that R14 

acts as a gatekeeper, controlling the formation of a helix-bundle “trap” conformation that 

dictates the overall folding timescale. In addition, we present a number of new analytical 

tools that enable the automatic detection and analysis of conformational states most sensitive 

to perturbation by mutations. We consider these new approaches to be progress toward 

simulation-based computational protein design.
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Figure 1: 
A comparison of the maximum GMRQ scores of Markov State Models built using various 

hyper-parameters. Error bars denote uncertainties estimated by cross-validation. Circled in 

red is the set of hyper-parameters yielding the highest GMRQ score, which we used 

henceforth for all subsequent MSM construction and analysis.
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Figure 2: 
Implied timescale spectra of 40-macrostate MSMs for all eight protein sequences. Shown 

are the ten slowest timescales with error bars denoting uncertainties estimated from ten-fold 

cross-validation. Dashed lines are to guide the eye. For all sequences, the slowest timescale 

is well-separated from the rest, indicative of two-state helix folding. Sequences containing 

R14 (Fs-ERE, ERR, RRE and RRR) have slower folding times than those containing E14, 

with the greatest difference seen for Fs-EEE (~180 ns) versus Fs-ERE (~400 ns). On the 

right (gray panel) is shown a comparison of implied timescales for 1200-microstate and 40-

macrostate MSMs built from the combined sequence data. Only a slight acceleration in 

timescales is seen in the macrostate model, indicating very modest artifacts due to coarse-

graining.
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Figure 3: 
The tICA landscapes of all eight sequences reveal the importance of metastable states with 

non-native salt-bridges. (a) For each sequence is shown a population density heat-map of 

simulation snapshots projected to the 2D tICA landscape defined by components tIC1 and 

tIC2. Open circles denote the cluster center of each of the 40 macrostates. Superimposed on 

the tICA landscape are pathways showing the ten highest-flux routes from an unstructured 

macrostate to the native folded state, with the highest-flux path displayed using a black bold 

line. Macrostates that participate in these pathways are labeled by macrostate index. (b) 

Representative structures of key macrostates stabilized by non-native salt-bridges 

(macrostates 11 and 20), and the native-state macrostate 13. The corresponding regions of 

the tICA landscape for these macrostates are circled and labeled.
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Figure 4: 
Automatic detection and analysis of important metastable states. A heat-map showing the 

largest contributions to JSpops clearly identifies regions of conformational space coinciding 

with metastable states whose populations are most affected by sequence mutations. Contact 

maps show computed Bayes Factors for all contacts within selected macrostates. Contacts 

with large Bayes Factor values are those that uniquely define each macrostate. In all cases, 

computed Bayes Factors recapitulate the important inter-residue contacts otherwise found by 

visual inspection (see Figure 3).
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Figure 5: 
Multi-model surprisal analysis for the eight Fs peptide sequences. (a) A (log-scale) scatter 

plot of si versus πi values for each macrostate. Error bars denote estimated uncertainties in si 

due to finite sampling. Diagonal lines correspond to contours where the JS value is constant, 

with red index labels marking the ten macrostates with the largest contributions to the JS. (b) 

The location of these macrostates on the JSpops tICA landscape show that they tend to lie 

between macrostates whose equilibrium populations are sensitively perturbed by sequence 

mutations.
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Table 1:

Simulation trajectory data for Fs peptide sequence variants.

Abbreviation Sequence Simulation time (µs)

Fs-EEE Ace-A5AAAEAAAAEAAAAEAA-Nme 124.6

Fs-EER Ace-A5AAAEAAAAEAAAARAA-Nme 126.0

Fs-ERE Ace-A5AAAEAAAARAAAAEAA-Nme 134.7

Fs-ERR Ace-A5AAAEAAAARAAAARAA-Nme 138.5

Fs-REE Ace-A5AAARAAAAEAAAAEAA-Nme 138.5

Fs-RER Ace-A5AAARAAAAEAAAARAA-Nme 136.8

Fs-RRE Ace-A5AAARAAAARAAAAEAA-Nme 139.2

Fs-RRR (wild type) Ace-A5AAARAAAARAAAARAA-Nme 139.4
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