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Simple Summary: In recent years many successful models have been developed to perform various
tasks in digital histopathology, yet, there is still a reluctance to fully embrace the new technologies
in clinical settings. One of the reasons for this is that although these models have achieved high
performance at the patch-level, their performance at the image-level can still be underwhelming.
Through this study, our main objective was to investigate whether integrating multiple extracted
histological features to the input image had potential to further improve the performance of classifier
models at the patch-level. Ideally, by achieving 100% accuracy at the patch-level, one can achieve
100% accuracy at the image-level. We hope that our research will entice the community to develop
new strategies to further improve performance of existing state-of-the-art models, and facilitate their
adoption in the clinics.

Abstract: Deep learning models have potential to improve performance of automated
computer-assisted diagnosis tools in digital histopathology and reduce subjectivity. The main
objective of this study was to further improve diagnostic potential of convolutional neural networks
(CNNs) in detection of lymph node metastasis in breast cancer patients by integrative augmentation
of input images with multiple segmentation channels. For this retrospective study, we used the
PatchCamelyon dataset, consisting of 327,680 histopathology images of lymph node sections from
breast cancer. Images had labels for the presence or absence of metastatic tissue. In addition, we used
four separate histopathology datasets with annotations for nucleus, mitosis, tubule, and epithelium
to train four instances of U-net. Then our baseline model was trained with and without additional
segmentation channels and their performances were compared. Integrated gradient was used to
visualize model attribution. The model trained with concatenation/integration of original input plus
four additional segmentation channels, which we refer to as ConcatNet, was superior (AUC 0.924)
compared to baseline with or without augmentations (AUC 0.854; 0.884). Baseline model trained
with one additional segmentation channel showed intermediate performance (AUC 0.870-0.895).
ConcatNet had sensitivity of 82.0% and specificity of 87.8%, which was an improvement in performance
over the baseline (sensitivity of 74.6%; specificity of 80.4%). Integrated gradients showed that models
trained with additional segmentation channels had improved focus on particular areas of the image
containing aberrant cells. Augmenting images with additional segmentation channels improved
baseline model performance as well as its ability to focus on discrete areas of the image.
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1. Introduction

Whether metastatic lesions are present in sentinel lymph nodes (SLN) is an important prognostic
marker for early-stage breast cancer [1]. Large tumor size and perivascular invasion are associated
with SLN involvement [2]. Therefore, the presence of metastatic tissue in SLN of breast cancer
patients often represents a disseminated disease associated with poor prognosis and limited treatment
options [3,4]. Since the status of SLN cannot be determined by clinical examination alone, SLN biopsies
are routinely performed on early-stage breast cancer patients and are assessed by clinical pathologists
for metastasis [1].

Accurate histopathological diagnosis empowers clinicians to recommend targeted treatment
options specific for each patient [5]. Such histopathological diagnoses often occur in a time-limited
setting during surgery, requiring a rapid classification of metastatic status, which greatly influences
intraoperative decisions made whether to proceed with invasive treatment options or not [5,6].
For example, SLN-positive patients are recommended to receive axillary lymph node dissection,
which is associated with significant permanent impairment [1]. However, detection procedures
conducted by pathologists are often time consuming and subjective [5,7]. For example, metrics such
as tumor cell percentage or quantification of fluorescent markers for estrogen receptor and/or HER-2
status are tasks that are often associated with inter-observer variability [8]. Furthermore, for the
task of micro-metastases detection under simulated time constraints, pathologists have shown an
underwhelming performance of 38% [3].

Whole-slide imaging systems have improved over the years, and are now capable of
producing digitized, high-resolution, giga-pixel whole-slide images (WSI) of histopathology slides [9].
Using this technology, histopathological assessments can be done on a computer screen rather than using
light microscopes. Digitization of workflow in pathology laboratories can reduce patient identification
errors and save time for both pathologists and laboratory technicians [8]. Digitization of WSI has
also enabled the development of automated computer-assisted diagnosis (CAD) platforms [9,10].
Automated computer-assisted diagnosis (CAD) has the potential to improve the speed and accuracy of
histopathological diagnoses as well as reducing subjectivity [5–8,10].

Advancements in computer vision, most notably deep learning, has enabled researchers
to extract more abstract features from large amounts of high-resolution medical images [6,11].
Therefore, high-resolution WSIs that contain complex features are suitable for application of deep
learning strategies using convolutional neural networks (CNNs) [12]. The Cancer Metastases in Lymph
Nodes Challenge 2016 (Camelyon16) found best algorithms to be performing significantly better
than pathologists with time constraints and comparable to pathologists without time constraints [3].
Lymph Node Assistant (LYNA), an algorithm developed by Google AI Healthcare [5], managed to
achieve 99.0% area under the curve in detection of micro- and macro-metastases from lymph node
blocks [10]. Furthermore, pathologists with assistance from LYNA achieved 100% specificity and
showed improved sensitivity over performance achieved by LYNA alone, which suggests the benefit
of human intervention in CAD and room for improvement [10].

Weights previously trained on large-scale datasets such as ImageNet [13] can be used to initiate
training of the model on a different task. Such strategy known as transfer learning have reportedly shown
to facilitate faster convergence and better prediction performance for CNNs in digital pathology [7,14].
For example, Nishio et al. [15] have shown that VGG16 [16] with transfer learning performed better
overall than same models trained without transfer learning. However, transfer learning does not
guarantee better performance, because performance of models trained with the same architecture and
pre-trained weights have been observed to differ greatly [4].

Data augmentation strategies, such as stain color normalization and morphological transformations
of the input images, are often employed for digital histopathology image analyses, to improve model
generalizability and robustness [12,17,18]. Algorithms such as WSI color standardizer (WSICS) [19] and
Stain Normalization using Sparse AutoEncoders (StaNoSA) [17] demonstrated that data augmentation
can improve performance of existing CAD systems for tasks such as necrosis quantification and
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nuclei detection, respectively. Therefore, we sought other data augmentation approaches to further
improve performance of existing CAD models in histopathology.

Pathologists look for histological features such as nuclei, mitotic figures, tissue types,
and multicellular structures such as tubules to make and justify their diagnoses. For example,
pixel-wise detection of cytological features such as epithelial cell nuclei, epithelial cell cytoplasm,
and the lumen were used for the higher-level tasks of gland segmentation and prediction of tumor grade
on the Gleason grading scheme in prostate cancer [20,21]. Another study showed that local descriptors
such as the distribution of cell nuclei was one of the most significant features used by a random
forest model to detect metastasis from digital pathology images [22]. Therefore, we investigated if we
could further improve the performance of baseline CNN models by providing multiple segmentation
channels of the input images with pixel-wise histological annotations of such features. Each of these
segmentation channels can be extracted by U-net, a CNN model designed for semantic segmentation
of biomedical images [23], which can then be integrated onto the original images depth-wise prior
to input into the baseline model. We hypothesized that training CNN models with additional
multiple segmentation channels will boost its performance over the baseline model. The specific
aims of this project were: (1) train and evaluate a baseline CNN model for detecting breast cancer
metastasis from digital histopathology images of lymph node sections using the PatchCamelyon
(PCam) dataset [12]; (2) train four instances of a U-net model for semantic segmentation of histological
features including the nucleus, mitotic figures, epithelium, and tubule using four independent datasets
curated previously [24]; (3) train and evaluate a second instance of the baseline model with additional
segmentation channels of images from the same test set to compare to the baseline model.

2. Results

2.1. Summary of Methods

We used PCam as our benchmark dataset to compare performance between models for detection
of metastases from patches of lymph node sections [12]. A CNN model with a repeated series of a
3 × 3 depth-wise convolution, batch normalization, and max pooling layers was used as the baseline
binary classifier, subsequently referred to as the ‘baseline’ model (Figure S1). To investigate how the same
baseline model would perform if given data integrated with additional segmentation channels, we used
U-net (Figure S2), a neural network architecture for biomedical image segmentation [23], along with four
independent histology datasets [24] to generate semantic segmentation masks for four histological features:
nucleus, mitotic figures, epithelium, and tubules (Figure S2). Therefore, for a given input, 4 U-nets,
pre-trained for semantic segmentation of four histological features, extracted different perspectives of the
input image, which were then concatenated to the original input image as additional channels depth-wise.
We trained the baseline model with original input image integrated with segmentation masks for each
histological feature separately, as well as altogether. Resulting integrated input image was given to the
baseline model for the binary classification problem. We also compared the performance of our models
against the baseline model trained with conventional data augmentation techniques, such as rotations,
shifts, and flips. Details on the model schematic can be referred to Section 4.2 and Figure 1, which we
subsequently refer to as ‘ConcatNet’.

2.2. Training and Validation of the Models

As shown in Table 1, each of the U-net models was trained to reach sufficient validation accuracies for
segmenting the nucleus (96.55%), mitosis (95.44%), epithelium (82.92%), and tubule (84.64%), respectively.
Figure S3 showed the records of training and validation accuracies for U-net models across different
training epochs, which motivated us to select different epochs for each of the U-net models shown
in Table 1.
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Table 1. Results on the training of U-net models.

Feature Epochs Training
Accuracy

Train
Dice Coefficient

Valid
Accuracy

Valid
Dice Coefficient

Nucleus 50 0.9424 0.9751 0.9655 0.9845
Mitosis 1000 0.7734 0.8004 0.9544 0.8004

Epithelial 300 0.7951 0.9114 0.8291 0.8532
Tubule 1000 0.9598 0.9455 0.8464 0.9399

The baseline CNN model was trained for 50 epochs reaching validation accuracy of 81.93% and
lowest validation loss of 0.5657 when its training accuracy was 95.25% and training loss was 0.1247.
We also trained the baseline CNN model with conventional data augmentations, which resulted in a
slightly lower performance than the baseline without data augmentations.

VGG16 model with pre-trained weights from ImageNet dataset was trained as an example of a
conventional transfer learning strategy. VGG16 converged at higher training accuracy of 99.75% but
showed lower validation accuracy of 79.00%, characteristic of overfitting. Note that because a different
preprocessing function was used for VGG16, its loss values should not be compared directly with
other models.

In comparison, we trained the baseline model with input data integrated with additional semantic
segmentations of various histological features, which is referred to as, ConcatNet. ConcatNet was
also trained for 50 epochs and it reached validation accuracy of 86.23% and validation loss of
0.4357 when its training accuracy was 95.90% and training loss was 0.1082. Other models trained
with one additional segmentation channel also converged to similar training accuracies and loss
values (Table 2). As intended, the total number of parameters increased with number of additional
segmentation channels; however, the number of trainable parameters were held relatively constant
with increase of only 41 trainable parameters for each additional perspective. This increase occurred in
the first depth-wise separable convolutional layer following the concatenation layer that increased
the depth dimension of the input image for each additional perspective. This increase by 41 is
due to the first depth-wise convolution layer consisting of two separate sets of convolutional filters.
In other words, for input image of size 96 × 96 × n, where n is the number of color channels in the
original image, plus each additional segmentation channel concatenated to the image: (1) n kernels of
size 3 × 3 pixels, resulting in 9 additional trainable parameters; and (2) 32 kernels of size 1 × 1 × n,
resulting in 32 additional trainable parameters.
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Table 2. Results on the training and validation sets for models evaluated.

Model
Number of
Parameters
(Trainable)

Number
of Epochs
Trained

Training
Accuracy

Training
Loss

Validation
Accuracy

Validation
Loss

Baseline 4,772,220 50 95.25% 0.1247 81.93% 0.5657
Baseline + Augmentation 4,772,220 50 93.82% 0.1640 82.13% 0.6210

VGG16 35,663,873 50 99.75% 0.0081 79.00% 2.9023
Baseline + Nucleus U-net 4,772,261 50 95.85% 0.1923 83.36% 0.5808
Baseline + Mitosis U-net 4,772,261 50 95.28% 0.1236 83.97% 0.4597

Baseline + Epithelium U-net 4,772,261 50 95.23% 0.1261 85.07% 0.4045
Baseline + Tubule U-net 4,772,261 50 96.02% 0.1048 82.93% 0.6176

ConcatNet (Baseline + all U-nets) 4,772,384 50 95.90% 0.1082 86.23% 0.4357

2.3. Model Performance on the Test Set

Performance of all models on the test sets were visualized as confusion matrices as shown in
Figure S4. The baseline model, performed well in identifying the negative samples with specificity
of 80.4% but suffered from a relatively poor sensitivity of 74.6%, resulting in accuracy of 76.4% on
the test set. In contrast, ConcatNet performed even better than baseline in identifying both negative
(specificity 87.8%) and positive (sensitivity 82.0%) samples, resulting in accuracy of 84.1% on the same test set.
Therefore, ConcatNet, which was trained with additional segmentation channels, consistently performed
better on both validation and test set images than the baseline.

We examined receiver operating characteristic (ROC) curves for all models we trained in this study,
as shown in Figure 2. ConcatNet had the highest AUC of 0.924 for the test set, whereas the baseline
model had the lowest AUC of 0.85. Other models that were trained with only one additional
segmentation channel had AUC in between the baseline and ConcatNet (AUC 0.870–0.895), which was
consistent with what was observed from confusion matrices. Baseline model trained with data
augmentations showed similar performance to models with only one additional segmentation channel
(AUC = 0.884). The numerical results of predictions on the test set are collectively shown in Table 3.
By using the integrated gradients (IG) algorithm [25,26], we sought to examine how the models were
interpreting the images; in other words, whether they were directing attention to those pixels containing
metastatic cancer cells. As a baseline image for IG algorithm, we used a blank image filled with
zero-pixel values. In the explanation of the original input image generated by IG algorithm, red pixels
signify regions with positive attribution, where higher pixel intensity (moving away from baseline of 0)
contributes to an increasing in the prediction score towards a positive label (containing metastatic cells).
Similarly, blue pixels show regions with negative attribution, where higher pixel intensity contributes
to a negative label (not containing any metastatic cells); or conversely, lower pixel intensity towards
the baseline of 0 causes the prediction score to increase. White pixels seemingly do not contribute to
the models’ prediction scores.

The combination of both red and blue pixels indicates those regions of interest that are regarded
as highly important for the model in assigning a class label to the entire image [27,28]. As a result,
we observed that in the explanations by IG, there was a tendency for pixels containing cell nuclei to
be associated with negative attribution (blue) because they were consistently represented by darker
blue hematoxylin dye, whereas pixels containing the cytoplasm and cell junctions were associated
with positive attribution (red) because they were consistently represented by lighter pink eosin dye.
Figure 3A shows an example of this bias, which should be verified by clinical pathologists.
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Figure 2. Receiver Operating Characteristic (ROC) curves for all models evaluated on the test set.
Dotted line indicates AUC = 0.5.

Table 3. Results on the test set for models evaluated.

Model Sensitivity Specificity Accuracy AUC

Baseline 74.6% 80.4% 76.4% 0.854
Baseline + Augmentation 80.2% 81.4% 78.8% 0.884

VGG16 75.3% 82.6% 76.5% 0.862
Baseline + Nucleus U-net 75.4% 86.6% 77.7% 0.887
Baseline + Mitosis U-net 74.2% 86.9% 79.9% 0.882

Baseline + Epithelium U-net 80.0% 82.3% 79.3% 0.895
Baseline + Tubule U-net 76.1% 86.9% 76.1% 0.870
ConcatNet (+all U-nets) 82.0% 87.8% 84.1% 0.924

Figure 3B shows that training the model with one or more additional segmentation channels
enabled the neural network to shift focus to those pixels more likely to contain malignant cells as
compared to the baseline model which seemed to have a rather spread out focus that spanned across
the entire image. Better focus, however, did not necessarily indicate better decisions made by the model.
With regards to the input image in Figure 3B, only ConcatNet was able to assign a correct positive label
to the image, whereas all other models including the baseline incorrectly assigned a negative label.
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models evaluated as compared to the original input image shown on the left. Red is positive attribution
towards classification and blue is negative attribution towards classification. Scale bars (black) are
shown for 10 microns (10 µm). Original (input) image for (A) shows a benign tissue section while
original image for (B) contains malignant tumor cells.

3. Discussion

Deep neural networks were inspired by the organization of the human visual cortex [29].
By designing a model which mimics the human brain, researchers were able to gain significant
advances in various fields, notably in computer vision and CAD [5,6,30,31]. Likewise, the central
motivation of this study was to modify a model to mimic how a pathologist sees a histology
image and assess the model’s performance. In the eyes of a pathologist, histological features like
cell nuclei, cell type, cell state, and multicellular structures are recognized naturally, which all
contribute to the pathologist’s ability to recognize malignancy from a given histology image [21].
Objective and quantitative segmentation of histologic primitives such as the nuclei and glandular
structures is one of the major interests of digital pathology [11]. Accordingly, we extracted multiple
segmentation channels that captured such histological features, which were used to augment input
images during the training phase. As previously demonstrated by the whole-slide image color
standardizer (WSICS) algorithm, which reduced the effects of stain variations and further improve
performance of a CAD system by incorporating spatial information, we incorporated the spatial
information of histological structures to improve our model’s classification performance [19].

For our problem of detecting metastatic cells from digital histopathology images of sentinel lymph
node sections extracted from breast cancer patients, we observed improvements in both sensitivity
and specificity when the models were provided with one or more additional segmentation channels.
Deep neural networks and features generated by these models have been criticized for their lack of
interpretability [11]. However, we also showed that through the IG algorithm [25] that the models
trained with additional segmentation channels were able to establish regions of interest containing
malignant-looking cells or structures when the baseline model could not.

Our findings suggest that even for models of CAD with considerably high predictive performance,
their performance can be further improved by augmenting input images with multiple additional
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segmentation channels. Diagnostic errors are expensive both for the patient and the healthcare
system because false positive results can lead to unnecessary calls for additional diagnostic tests
or treatments on a healthy individual, and false negative results can lead to a lack of care for
patients who need early medical intervention [32,33]. Furthermore, both types of errors can lead
to potential litigations. Therefore, it is important to consider our method of data augmentation to
further improve the performance of existing CAD tools and those in development. However, it should
be noted that although the IG algorithm was able to visualize the differences in feature attribution
between models, we still do not have a clear understanding as to why some models have focused
appropriately on regions containing malignancy and yet made incorrect decisions on some of the images.
Nonetheless, proper focus and extraction of regions of interest can potentially relieve the burden
of pathologists, who serve majority of their time scanning benign areas without malignancy [21].
Moreover, the ability of automated CAD tools to speedily and objectively quantify histopathological
features such as tumor cell percentage and disease grade is much needed [8].

Many of our predecessors in digital histopathologic image analysis have used transfer learning
techniques, mostly by using weights from CNN architectures pre-trained on large generalized image
datasets such as ImageNet [13], to reduce training time and to benefit from potential performance
benefits [7,14,15,34]. Although there was a significant reduction in training time, the performance
results were highly variable, even with the same pre-trained CNN architectures [4]. In our study,
we observed that VGG16 with transfer learning performed better than the baseline, albeit with
substantially higher number of parameters. Our approach to augment the training phase of CNN
models can also be seen as a method of transfer learning, albeit different from our predecessors in that
(1) we transferred knowledge gained from the same type of images, specifically from histopathology;
and (2) rather than transferring only the weights, we used entire pre-trained networks in parallel
to extract new segmentation channels from the same input image [34]. These two key differences
potentially contributed to the improvements in performance benefits that were observed in this study,
including convergence at lower loss value and increased generalizability to unseen data, with little
additional computational cost to the classifier models.

However, a major limitation of this study was that the annotated histology images used to train
the U-nets were not from the same tissues. For example, the nuclei and tubule segmentation datasets
were images from colorectal cancer patients [35] whereas the epithelium and mitosis segmentation
datasets were images from breast cancer patients [24]. Furthermore, our main benchmark dataset,
PCam, consisted of images from sentinel lymph node sections [3,12]. Training the U-nets and the
subsequent baseline model with a single dataset with multiple annotations for nuclei, mitotic figures,
multicellular structures, and other histological features has potential to improve model performance
even further.

4. Materials and Methods

This project was retrospective; we used histopathology datasets that were publicly available
online to train the CNN models. Patient information or clinical features were neither necessary nor
used for this project.

4.1. Datasets

For the main benchmarking dataset, we used the PatchCamelyon (PCam) dataset of digital
histopathology images of lymph node sections from breast cancer patients [3]. PCam consists of 327,680
images divided into training (80%: 262,144), validation (10%: 32,768), and test (10%: 32,768) sets.
The separation strategy was used because each of the data sets carried sufficient number of samples
to train, validate, and test models in a robust manner as done by others as well [3,12,31]; hence, we did
not employ k-fold cross validation approaches. Images 96 × 96 pixels in size with 3 channels
representing the RGB (red, green, blue) color, are non-duplicated segments of the Camelyon16
dataset at 40× apparent magnification. Images from PCam are associated with a binary label for
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the presence (1) or absence (0) of metastatic breast cancer tissue in the center 32 × 32-pixel area of
the image. All subsets of the PCam dataset consisted of an equal proportion of positive (1) and
negative (0) samples; i.e., training set contained 131,072 images for each class (positive and negative),
whereas the validation and test sets each contained 16,384 images in each class.

Datasets used to train our U-net models for segmentation/detection of mitotic figures, epithelium
and tubule from digital histology images were obtained online from a previous study, accessible at
http://www.andrewjanowczyk.com/deep-learning/ [24]. Dataset for mitosis detection contains 311
images of size 2000 × 2000 at 40× selected from 12 breast cancer patients and the ratio of positive to
negative pixels was around 1:6664. Dataset for epithelium segmentation contains 42 images of size
1000 × 1000 at 20× selected from estrogen receptor-positive breast cancer patients and the ratio of
positive to negative pixels was around 1:2. Dataset for tubule segmentation contains 85 images of size
775 × 522 at 40× from colorectal cancer patients and the ratio of positive to negative pixels was 1:1.13.
Each image in the mitosis, epithelium and tubule datasets were associated with ground truth mask
images with pixel-wise annotations for mitosis, epithelium, and tubule respectively.

Our cell nuclei dataset, CRCHistoPhenotypes, consisting of 100 digitized H&E (Hematoxylin and eosin)
stained histopathology images of colorectal adenocarcinomas, was downloaded from University of Warwick
website [35]. Each image is a non-overlapping patch of size 500 × 500 pixels cropped from 10 WSIs at 20×
optical magnification. Center pixel coordinates for a total of 29,756 cell nuclei were annotated and validated
by a pathologist. In its original form this dataset suffers from class imbalance because cell nuclei annotations
were significantly outnumbered by non-nuclei pixels (1:840). We resolved this problem by training multiple
instances of U-net on mask images with annotations expanded by n pixels (i.e., morphological dilation
of label masks images). We selected U-net trained with nucleus annotations expanded by 5 pixels as the
model predicted blank images when the label pixels were expanded by only 0–3 pixels, and it produced
results most representative of actual nuclear area depicted in the original input images with the highest
validation accuracy. After dilation of label masks, the ratio of nuclei to non-nuclei pixels was around 1:6.

We pre-processed each of the datasets to match the resolution of our benchmark dataset,
PCam, with apparent magnification of 40× and image size 96 × 96 × 3.

4.2. Deep Learning Models

We implemented all of our deep learning models on Keras API (version 2.4.0) with TensorFlow
(version 2.3.0) backend using the Python programming language (version 3.6.9).

For the semantic segmentation of histological features, we implemented the U-net architecture
obtained from [36] as shown in Figure S2. We trained four instances of the U-net model on the four
different datasets described above to segment for cell nuclei, mitotic figures, epithelium, and tubules.
In order to ensure portability of our model for subsequent analyses on the PCam dataset,
we pre-processed each of the four feature datasets by cropping and rescaling to image size 96 × 96 and
apparent magnification of 40×, to match the resolution of the PCam dataset. Each U-net model was
trained with batch size of 1, the Adam optimizer with Nesterov momentum [37] with initial learning
rate of 1 × 10−5, and binary cross-entropy loss function. However, due to the highly imbalanced nature
of the ‘mitosis’ dataset, we used weighted binary cross-entropy loss function to train the U-net model
for this dataset. Accuracy (ACC) and dice similarity coefficient (DSC) [38] were used as metrics for
the segmentation task, with accuracy defined as the percentage of pixels that are correctly classified
(pixel accuracy) and dice coefficient computed according to the following formula:

DSC =
2|X ∩ Y|
|X|+ |Y|

(1)

where X and Y represent two samples—in our case the predicted segmentation mask and the
actual mask.

The level of difficulty for each segmentation tasks varied, so we trained the U-nets with different
number of epochs accordingly by observing the trends during the training phase and selected the

http://www.andrewjanowczyk.com/deep-learning/
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number of epochs where each of the U-net models trained to reach sufficient validation metrics; refer
to Figure S2.

For the baseline binary classifier, we adapted a simple sequential CNN model originally proposed
for detecting invasive ductal carcinoma from breast cancer histopathology images as baseline model,
with no additional segmentation channels [39]. The architecture of the baseline model consists of
several repeats of 3 × 3 depth-wise convolutional layers followed by batch normalization and max
pooling layers (Figure S1). The final layer of the baseline model was modified to contain only one node
with sigmoid activation function, which was interpreted as the predicted likelihood that the input
image contains metastatic cells. The baseline model was trained with batch size 32, the Adam optimizer
with learning rate of 1 × 10−4, and binary cross entropy loss function for 50 epochs without any further
data augmentations on the PCam training dataset. We also trained the baseline model with random
data augmentations such as width shifts [−0.25, +0.25) height shifts [−0.25, +0.25), rotations (0–180◦),
horizontal flips, and vertical flips, otherwise using the same hyperparameters.

For the VGG16 model with transfer learning, we used VGG16 model [16] in Keras loaded with
weights from training on the ImageNet dataset for the 1000-class classification task [13]. We froze the
convolutional layers but made the top fully connected layers trainable as well as changing the classifier
layer to a sigmoid activation function with one node since our task was for binary classification. We used
the ‘preprocess_input’ function to preprocess input images from RGB to BGR, then zero-centering
all channels with respect to the ImageNet dataset without scaling. Table S1 summarized model
hyperparameters used to train all models in this paper.

To provide our baseline model with additional segmentation channels, we included the outputs
from four pre-trained U-net models as inputs. Specifically, before the first convolutional layer we
added a layer to concatenate outputs from U-net models as four additional channels along with the
original image; hence, we referred to the new CNN architecture as ConcatNet. A visual representation
of our proposed model is shown in Figure 1. ConcatNet was trained with the same hyperparameters as
compared to the baseline on the PCam training dataset. We also trained four additional instances of the
baseline model with only one additional segmentation channel and benchmarked their performance.

4.3. Performance Benchmarking

To keep track of the model during its training phase, we used the validation set from PCam that
does not contain images from the training set to monitor its performance. The 32,768 images of the
PCam test set which were not shown to the models previously during training were used to benchmark
model performance. Given an input image from the test set, models predicted the likelihood of whether
each input image contained metastatic tumor cells or not. Confusion matrices and receiver operating
characteristic (ROC) curve were used as measures of model performance. For calculation of model
metrics of the test set in Table 3, we computed the Youden Index (J) [40] using predictions from the
models to determine the optimal cut-point for prediction outputs with the following formula:

J = sensitivity + speci f icity− 1 (2)

Integrated gradients (IG) algorithm [25] was used to visualize differences in interpretations of the
same input image between models.

5. Conclusions

In summary, we demonstrated that improvements were made in both sensitivity and specificity
when deep learning models were trained with additional segmentation channels of input images.
IG analysis suggested that these additional segmentation channels help the models to orient their
attention to specific regions of the image containing malignancies, although we found examples where
better focus did not necessarily lead to correct classification. However, further analyses should be
repeated using larger datasets with better resolutions and deeper models in the future to investigate if
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our results can be replicated under those circumstances. Interpretation of deep learning models still
remains a challenge and presents room for improvements.

Furthermore, the feature segmentation pipeline using U-net can be extended to segment other,
more complex histological features such as different tumor tissues, inflammation, and necrosis,
among many others. We demonstrate that data augmentation with prior extracted features have
potential to further improve the performance of CAD tools in digital histopathology and other
tasks in medical image analyses, in which even small improvements in performances has significant
implications for the patient’s clinical outcomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/2934/s1,
Figure S1: Architecture of baseline model used in this study, Figure S2: U-net structure for image segmentation,
Figure S3: Record of training and validation accuracies across epochs for U-nets trained for semantic segmentation,
Figure S4: Confusion matrices for models evaluated on the test set, Table S1: Model hyperparameters.
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