Table 2.
Model | Number of Parameters (Trainable) | Number of Epochs Trained | Training Accuracy | Training Loss | Validation Accuracy | Validation Loss |
---|---|---|---|---|---|---|
Baseline | 4,772,220 | 50 | 95.25% | 0.1247 | 81.93% | 0.5657 |
Baseline + Augmentation | 4,772,220 | 50 | 93.82% | 0.1640 | 82.13% | 0.6210 |
VGG16 | 35,663,873 | 50 | 99.75% | 0.0081 | 79.00% | 2.9023 |
Baseline + Nucleus U-net | 4,772,261 | 50 | 95.85% | 0.1923 | 83.36% | 0.5808 |
Baseline + Mitosis U-net | 4,772,261 | 50 | 95.28% | 0.1236 | 83.97% | 0.4597 |
Baseline + Epithelium U-net | 4,772,261 | 50 | 95.23% | 0.1261 | 85.07% | 0.4045 |
Baseline + Tubule U-net | 4,772,261 | 50 | 96.02% | 0.1048 | 82.93% | 0.6176 |
ConcatNet (Baseline + all U-nets) | 4,772,384 | 50 | 95.90% | 0.1082 | 86.23% | 0.4357 |