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Abstract

Differentiable rendering is a technique to connect 3D scenes with corresponding 2D images. Since 

it is differentiable, processes during image formation can be learned. Previous approaches to 

differentiable rendering focus on mesh-based representations of 3D scenes, which is inappropriate 

for medical applications where volumetric, voxelized models are used to represent anatomy. We 

propose a novel Projective Spatial Transformer module that generalizes spatial transformers to 

projective geometry, thus enabling differentiable volume rendering. We demonstrate the usefulness 

of this architecture on the example of 2D/3D registration between radiographs and CT scans. 

Specifically, we show that our transformer enables end-to-end learning of an image processing and 

projection model that approximates an image similarity function that is convex with respect to the 

pose parameters, and can thus be optimized effectively using conventional gradient descent. To the 

best of our knowledge, we are the first to describe the spatial transformers in the context of 

projective transmission imaging, including rendering and pose estimation. We hope that our 

developments will benefit related 3D research applications. The source code is available at https://

github.com/gaocong13/Projective-Spatial-Transformers.

1 Introduction

Differentiable renderers that connect 3D scenes with 2D images thereof have recently 

received considerable attention [15,7,14] as they allow for simulating, and more importantly 

inverting, the physical process of image formation. Such approaches are designed for 

integration with gradient-based machine learning techniques including deep learning to, e.g., 

enable single-view 3D scene reconstruction. Previous approaches to differentiable rendering 

have largely focused on mesh-based representation of 3D scenes. This is because compared 

to say, volumetric representations, mesh parameterizations provide a good compromise 

between spatial resolution and data volume. Unfortunately, for most medical applications the 

3D scene of interest, namely the anatomy, is acquired in volumetric representation where 

every voxel represents some specific physical property. Deriving mesh-based representations 

of anatomy from volumetric data is possible in some cases [2], but is not yet feasible nor 

desirable in general, since surface representations cannot account for tissue variations within 

one closed surface. However, solutions to the differentiable rendering problem are 

particularly desirable for X-ray-based imaging modalities, where 3D content is reconstructed 
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from – or aligned to multiple 2D transmission images. This latter process is commonly 

referred to as 2D/3D registration and we will use it as a test-bed within this manuscript to 

demonstrate the value of our method.

Mathematically, the mapping from volumetric 3D scene V to projective transmission image 

Im can be modeled as Im = A(θ)V, where A(θ) is the system matrix that depends on pose 

parameter θ ∈ SE(3). In intensity-based 2D/3D registration, we seek to retrieve the pose 

parameter θ such that the image Im simulated from V is as similar as possible to the acquired 

image If:

min
θ

L(If, Im) = min
θ

L(If, A(θ)V ), (1)

where L is the similarity function. Gradient decent-based optimization methods require the 

gradient ∂ℒ
∂θ = ∂ℒ

∂A(θ) ⋅ ∂A(θ)
∂θ  at every iteration. Although the mapping was constructed to be 

differentiable, analytic gradient computation is still impossible due to excessively large 

memory footprint of A for all practical problem sizes1. Traditional stochastic optimization 

strategies are numeric-based methods, such as CMA-ES [4]. Since the similarity functions 

are manually crafted, such as mutual information (MI) [16] or normalized cross correlation, 

these methods require an initialization which is close to the global optimum, and thus suffer 

from a small capture range. Recent deep learning-based methods put efforts on learning a 

similarity metric or regressing the pose transformation from the image observations (If, Im) 

to extend the capture range [19] [8] [6]. Several researchers proposed reinforcement learning 

paradigms to iteratively estimate a transformation [18] [11] [13]. However, these learning-

based methods only trained on 2D images with no gradient connection to 3D space. Spatial 

transformer network (STN) [9] has been applied on 3D registration problems to estimate 

deformation field [12] [1]. Yan et al. proposed perspective transformer nets which applied 

STN for 3D volume reconstruction [26]. In this work, we propose an analytically 

differentiable volume renderer that follows the terminology of spatial transformer networks 

and extends their capabilities to spatial transformations in projective transmission imaging. 

Our specific contributions are:

• We introduce a Projective Spatial Transformer (ProST) module that generalizes 

spatial transformers [9] to projective geometry. This enables volumetric 

rendering of transmission images that is differentiable both with respect to the 

input volume V as well as the pose parameters θ.

• We demonstrate how ProST can be used to solve the non-convexity problem of 

conventional intensity-based 2D/3D registration. Specifically, we train an end-to-

end deep learning model to approximate a convex loss function derived from 

geodesic distances between poses θ and enforce desirable pose updates ∂L
∂θ  via 

double backward functions on the computational graph.

1It is worth mentioning that this problem can be circumvented via ray casting-based implementations if one is interested in ∂L/∂V but 
not in ∂L/∂θ [25].
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2 Methodology

2.1 Projective Spatial Transformer (ProST)

Canonical projection geometry—Given a volume V ∈ ℝD × W × H with voxel size vD × 

vW × vH, we define a reference frame Fr with the origin at the center of V. We use 

normalized coordinates for depth (DvD), width (WvW) and height (HvH), so that the points 

of V are contained within the unit cube (d, w, h) ∈ [−1, 1]3. Given a camera intrinsic matrix 

K ∈ ℝ3 × 3, we denote the associated source point as (0, 0, src) in Fr. The spatial grid G of 

control points, shown in Fig. 1-(a), lies on M × N rays originating from this source. Because 

the control points in regions where no CT voxels exist will not contribute to the line integral, 

we cut the grid point cloud to a cone-shape structure that covers the exact volume space. 

Thus, each ray has K control points uniformly spaced within the volume V, so that the 

matrix G ∈ ℝ4 × (M ⋅ N ⋅ K) of control points is well-defined, where each column is a control 

point in homogeneous coordinates. These rays describe a cone-beam geometry which 

intersects with the detection plane, centered on (0, 0, det) and perpendicular to the z axis 

with pixel size pM × pN, as determined by K. The upper-right corner of the detection plane 

is at ( pMM
vW W , pNN

vHH , det).

Grid sampling transformer—Our Projective Spatial Transformer (ProST) extends the 

canonical projection geometry by learning a transformation of the control points G. Given θ 
∈ SE(3), we obtain a transformed set of control points via the affine transformation matrix 

T(θ):

GT = T (θ) ⋅ G, (2)

as well as source point T(θ) · (0, 0, src, 1) and center of detection plane T(θ) · (0, 0, det, 1). 

Since these control points lie within the volume V but in between voxels, we interpolate the 

values GS of V at the control points:

GS = interp(V , GT), (3)

where GS ∈ ℝM × N × K. Finally, we obtain a 2D image I ∈ ℝM × N by integrating along 

each ray. This is accomplished by “collapsing” the k dimension of GS:

I(m, n) = ∑
k = 1

K
GS

(m, n, k)
(4)

The process above takes advantage of the spatial transformer grid, which reduces the 

projection operation to a series of linear transformations. The intermediate variables are 

reasonably sized for modern computational graphics cards, and thus can be loaded as a 

tensor variable. We implement the grid generation function using the C++ and CUDA 

extension of the PyTorch framework and embed the projection operation as a PyTorch layer 

with tensor variables. With the help of PyTorch autograd function, this projection layer 

enables analytical gradient flow from the projection domain back to the spatial domain. Fig. 
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1 (c) shows how this scheme is applyied to 2D/3D registration. Without any learning 

parameters, we can perform registration with PyTorch’s powerful built-in optimizers on 

large-scale volume representations. Furthermore, integrating deep convolutional layers, we 

show that ProST makes end-to-end 2D/3D registration feasible.

2.2 Approximating Convex Image Similarity Metrics

Following [3], we formulate an intensity-based 2D/3D registration problem with a pre-

operative CT volume V, Digitally Reconstructed Radiograph (DRR) projection operator P, 

pose parameter θ, a fixed target image If, and a similarity metric loss LS:

min
θ ∈ SE(3)

LS If, P (V ; θ) . (5)

Using our projection layer P, we propose an end-to-end deep neural network architecture 

which will learn a convex similarity metric, aiming to extend the capture range of the 

initialization for 2D/3D registration. Geodesic loss, LG, which is the square of geodesic 

distance in SE(3), has been studied for registration problems due to its convexity [23] [17]. 

We take the implementation of [20] to calculate the geodesic gradient 
∂LG(θ, θf)

θ , given a 

sampling pose θ and a target pose θf. We then use this geodesic gradient to train our 

network, making our training objective exactly the same as our target task – learning a 

convex shape similarity metric.

Fig. 2 shows our architecture. The input includes a 3D volume: V, a pose parameter: θ ∈ 
SE(3) and a fixed target image: If. All blocks which contain learnable parameters are 

highlighted with a red outline. The 3D CNN is a skip connection from the input volume to 

multi-channel expansion just to learn the residual. Projections are performed by projection 

layer with respect to θ, which does not have learnable parameters. The projected moving 

image Im and the fixed image If go through two encoders, which are the same in structure 

but the weights are not shared, and output embedded features em and ef. Our network 

similarity metric LN is the mean squared error of em and ef. We will then explain the design 

from training phase and application phase separately.

Training phase—The goal of training is to make the gradient of our network error 

function w.r.t. pose parameter, 
∂LN

∂θ , close to the geodesic gradient 
∂LG
∂θ . The blue arrows in 

Fig. 2 show the forward pass in a single iteration. The output can be written as LN(ϕ; V, θ, 

If), where ϕ are the network parameters. We then apply back-propagation, illustrated with 

pink arrows in Fig. 2. This yields 
∂LN

∂θ  and 
∂LN
∂ϕ . Assuming LN is the training loss, ϕ would 

normally be updated according to lr ⋅
∂LN
∂ϕ , where lr is learning rate. However, we do not 

update the network parameters during the backward pass. Instead we obtain the gradient and 

calculate a distance measure of these two gradient vectors, Mdist(
∂LN

∂θ , ∂LG
∂θ ), which is our 

true network loss function during training. We perform a second forward pass, or “double 
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backward” pass, to get 
∂Mdist

∂ϕ  for updating network parameters ϕ. To this end, we formulate 

the network training as the following optimization problem

min
ϕ

Mdist
∂LN(ϕ; V , θ, If)

∂θ , ∂LG(θ, θf)
∂θ . (6)

Since the gradient direction is the most important during iteration in application phase, we 

design Mdist by punishing the directional difference of these two gradient vectors. 

Translation and rotation are formulated using Eq. 7-9

v1
t , v1

r = ∂LN(ϕ; V , θ, If)
∂θ trans, rot

; v2
t , v2

r = ∂LG(θ, θf)
∂θ trans, rot

(7)

Mdist
trans = ‖

v1
t

‖v1
t‖

−
v2

t

‖v2
t‖

‖2, Mdist
rot = ‖

v1
r

‖v1
r‖

−
v2

r

‖v2
r‖

‖2
(8)

Mdist = Mdist
trans + Mdist

rot , (9)

where the rotation vector is transformed into Rodrigues angle axis.

Application phase—During registration, we fix the network parameters ϕ and start with 

an initial pose θ. We can perform gradient-based optimization over θ based on the following 

back-propagation gradient flow

∂LN
∂θ = ∂LN

∂Im
⋅ ∂Im

∂GS
⋅ ∂GS

∂GT
⋅ ∂GT

∂T (θ) ⋅ ∂T (θ)
∂θ . (10)

The network similarity is more effective when the initial pose is far away from the 

groundtruth, while less senstive to local textures compared to traditional image-based 

methods, such as Gradient-based Normalized Corss Correlation (Grad-NCC) [21]. We 

implement Grad-NCC as a pytorch loss function LGNCC, and combine these two methods to 

build an end-to-end pipeline for 2D/3D registration. We first detect the convergence of the 

network-based optimization process by monitoring the standard deviation (STD) of LN. 

After it converges, we then switch to optimize over LGNCC until final convergence.

3 Experiments

3.1 Simulation study

We define our canonical projection geometry following the intrinsic parameter of a Siemens 

CIOS Fusion C-Arm, which has image dimensions of 1536 × 1536, isotropic pixel spacing 

of 0.194 mm/pixel, a source-to-detector distance of 1020 mm. We downsample the detector 

dimension to be 128 × 128. We train our algorithm using 17 full body CT scans from the 

NIH Cancer Imaging Archive [22] and leave 1 CT for testing. The pelvis bone is segmented 

using an automatic method in [10]. CTs and segmentations are cropped to the pelvis cubic 
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region and downsampled to the size of 128 × 128 × 128. The world coordinate frame origin 

is set at center of the processed volume, which is 400 mm above the detector plane center.

At training iteration i, we randomly sample a pair of pose parameters, (θi, θf
i ), rotation from 

N(0, 20) in degree, translation from N(0, 30) in mm, in all three axes. We then randomly 

select a CT and its segmentation, VCT and VSeg. The target fixed image is generated online 

from VCT and θf
i  using our ProST. VSeg and θ are used as input to our network forward pass. 

The network is trained using SGD optimizer with a cyclic learning rate between 1e-6 and 

1e-4 every 100 steps [24] and a momentum of 0.9. Batch size is chosen as 2 and we trained 

100k iterations until convergence.

We performed the 2D/3D registration application by randomly choosing a pose pair from the 

same training distribution, (θR, θf
R). Target fixed image is generated from the testing CT and 

θf
R. We then use SGD optimizer to optimize over θR with a learning rate of 0.01, momentum 

of 0.9 for iteration. We calculate the STD of the last 10 iterations of LN as stdLN, and set a 

stop criterion of stdLN < 3 × 10−3, then we switch to Gradient-NCC similarity using SGD 

optimizer with cyclic learning rate between 1e-3 and 3e-3, and set the stop criterion, 

stdLNCC < 1 × 10−5. We conduct in total of 150 simulation studies for testing our algorithm.

3.2 Real X-ray study

We collected 10 real X-ray images from a cadaver specimen. Groundtruth pose is obtained 

by injecting metallic BBs with 1 mm diameter into the surface of the bone and manually 

annotated from the X-ray images and CT scan. The pose is recovered by solving a PnP 

problem [5]. For each X-ray image, we randomly choose a pose parameter, rotation from 

N(0, 15) in degree, translation from N(0, 22.5) in mm, in all three axes. 10 registrations are 

performed for each image using the same pipeline, resulting in a total of 100 registrations.

4 Results

We compared the performance of four methods, which are Grad-NCC with SGD optimizer 

(GradNCC SGD), Grad-NCC with CMA-ES optimizer (GradNCC CMAES), Net only, and 

Net+GradNCC. The registration accuracy was used as the evaluation metric, where the 

rotation and translation errors are expressed in degree and millimeter, respectively. The 

coordinate frame Fr are used to define the origin and orientation of the pose. In Fig. 3, both 

qualitative and quantitative results on the testing data are shown. Numeric results are shown 

in Table 1. The Net+GradNCC works the best among comparisons in both studies.

5 Discussion

We have seen from the results that our method largely increases the capture range of 2D/3D 

registration. Our method follows the same iterative optimization design as the intensity-

based registration methods, where the only difference is that we take advantage of the great 

expressivity of deep network to learn a set of more complicated filters than the conventional 

hand-crafted ones. This potentially makes generalization easier because the mapping that 

our method needs to learn is simple. In the experiment, we observed that the translation 

Gao et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



along the depth direction is less accurate than other directions in both simulation and real 

studies, as shown in Fig. 3, which we attribute to the current design of the network 

architecture and will work on that as a future direction.

6 Conclusion

We propose a novel Projective Spatial Transformer module (ProST) that generalizes spatial 

transformers to projective geometry, which enables differentiable volume rendering. We 

apply this to an example application of 2D/3D registration between radiographs and CT 

scans with an end-to-end learning architecture that approximates convex loss function. We 

believe this is the first time that spatial transformers have been introduced for projective 

geometry and our developments will benefit related 3D research applications.
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Fig. 1. 
(a) Canonical projection geometry and a slice of cone-beam grid points are presented with 

key annotations. The green fan covers the control points which are used for further reshape. 

(b) Illustration of grid sampling transformer and projection. (c) Scheme of applying ProST 

to 2D/3D registration.
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Fig. 2. 
DeepNet Architecture. Forward pass follows the blue arrows. Backward pass follows pink 

arrows, where gradient input and output of ProST in Eq. 10 are highlighted with pink border.
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Fig. 3. 
The top row shows qualitative examples of Net+GradNCC, Net only, GradNCC only 

convergence overlap, for simulation and real X-ray respectively. The middle is the 

registration error distribution of simulation. The bottom is the distribution for real X-ray 

experiments. x, y and z-axis correspond to LR, IS and AP views.
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Table 1.

Quantitative Results of 2D/3D Registration

Simulation Study Real X-ray Study

Translation Rotation Translation Rotation

Initialization 41.57 ± 18.01 21.16 ± 9.27 30.50 ± 13.90 14.22 ± 5.56

GradNCC SGD mean 41.83 ± 23.08 21.97 ± 11.26 29.52 ± 20.51 15.76 ± 8.37

median 38.30 22.12 26.28 16.35

GradNCC CMAES mean 40.68 ± 22.04 20.16 ± 9.32 25.64 ± 12.09 14.31 ± 6.74

median 37.80 20.63 23.87 13.80

Net
mean 13.10 ± 18.53 10.21 ± 7.55 12.14 ± 6.44 13.00 ± 4.42

median 9.85 9.47 11.06 12.61

Net+ GradNCC mean 7.83 ± 19.8 4.94 ± 8.78 7.02 ± 9.22 6.94 ± 7.47

median 0.25 0.27 2.89 3.76
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