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Abstract: Poly(lactic acid) (PLA) nanocomposites were synthesized by a solution blending and
coagulation method using alkylated graphene oxide (AGO) as a reinforcing agent. Turbiscan confirmed
that the alkylation of GO led to enhanced compatibility between the matrix and the filler. The improved
dispersity of the filler resulted in superior interfacial adhesion between the PLA chains and AGO basal
plane, leading to enhanced mechanical and rheological properties compared to neat PLA. The tensile
strength and elongation at break, i.e., ductility, increased by 38% and 42%, respectively, at the same
filler content nanocomposite (PLA/AGO 1 wt %) compared to nonfiller PLA. Rheological analysis of
the nanocomposites in the molten state of the samples was performed to understand the filler network
formed inside the matrix. The storage modulus increased significantly from PLA/AGO 0.5 wt %
(9.6 Pa) to PLA/AGO 1.0 wt % (908 Pa). This indicates a percolation threshold between the two filler
contents. A steady shear test was performed to examine the melt flow characteristics of PLA/AGO
nanocomposites at 170 ◦C, and the viscosity was predicted using the Carreau−Yasuda model.
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1. Introduction

Finding materials derived from natural resources has become an emerging issue to replace
the original fossil fuel resources because of recent global environmental problems caused by fossil
fuel-based plastics [1,2]. Among the synthetic plastics, poly(lactic acid) (PLA), which can also be
obtained from biobased materials, is nontoxic, biodegradable, and biocompatible, and is one of the most
well-known biodegradable polymers [3,4]. PLA can be applied in many industries, such as automotive
parts, food packaging, textiles, and medical devices [5,6]. On the other hand, its slow crystallization
rate, brittleness, and inherent mechanical properties are still insufficient for practical use. Therefore,
numerous attempts have been made to improve the physical characteristics of PLA, for example,
the addition of a plasticizer (i.e., poly(ethylene glycol) (PEG), tributyl citrate), or a nucleating agent,
such as boron nitride, calcium carbonate, and talc [7–11]. The incorporation of a nanofiller to the PLA
matrix is a significant solution for the various problems of PLA, such as clay [12], carbon nanotubes
(CNTs) [13], cellulose nanocrystals (CNCs) [14], and graphene [15]. Graphene is a two-dimensional
multilayered carbon material that has attracted enormous interest because of its large specific area,
superior strength, low density, and remarkable electrical and thermal characteristics [16].

The effectiveness of the filler generally comes from the physical cross-linking points between
the polymer matrixes. Hence, to achieve the maximum efficiency of the filler, the graphene sheets
must be dispersed homogeneously in the polymer matrix with improved interfacial adhesion with
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the polymer. Unfortunately, the graphene tends to agglomerate due to strong van der Waals
interactions and has poor compatibility with many polymers, leading to the poor performance of its
composites [17]. Therefore, hydroxyl-associated –OH, –O–(basal plane) and –COOH functionalized
graphene, called graphene oxide (GO), has been studied owing to its good dispersity in polar matrices
and its ease of functionalization [18,19]. Many studies have examined PLA/GO nanocomposites to
enhance the characteristics of PLA, such as crystallization [20], thermal resistance [21], fire resistance [22],
and mechanical behavior [23].

Some rheological studies of PLA/GO nanocomposites have recently been reported [24,25],
but extensive characterization has seldom been carried out. Rheological studies of nanocomposites are
crucial to proving the performance of polymeric nanocomposites derived by the interconnection and
dispersion state of the fillers in the polymer matrices in addition to managing their flow characteristics,
which are strongly associated with their processability. The rheological properties depend on the
filler size, shape, and surface chemistry. Thus, by combining the chemistry, morphology of the filler,
and rheological properties of the composite, the tester can obtain the valuable part during a new
process setup [26,27].

In this study, alkylated graphene oxide (AGO) was synthesized for use as an effective filler,
which was aimed at improving compatibility and interfacial adhesion with the polymer, PLA [28].
With AGO dispersed in the CHCl3 solvent, the PLA/AGO nanocomposite was fabricated by
solution blending and the widely known coagulation method [29,30]. The AGO could be dispersed
homogeneously in the PLA matrix because of its increased hydrophobicity and enhanced interfacial
adhesion of the PLA chains on the AGO surface, meaning increased compatibility with PLA. Such effects
have led to PLA/AGO nanocomposites with enhanced mechanical strength and toughness. In particular,
a 42% increase in tensile strength and a 38% increase in elongation at break was observed at the UTM
test of the PLA/AGO (1 wt %) nanocomposite. In addition, dynamic and steady shear rheological
tests were addressed in the study. The internal network structure of the filler with the PLA and the
relationship with the rheological measurement are discussed.

2. Experimental

2.1. Materials and Synthesis

The biodegradable PLA (grade 2003D, Mw = 157,503 Da) purchased from Nature Works LLC
(Minnetonka, Minnesota) had a melting temperature, density, and melt index between 145 to 160 ◦C,
1.24 g/cc, and 6 g/10 min, respectively. The PLA pellets were kept in a vacuum oven before being used in
solution melt blending. Graphene oxide (GO) (grade ABX-ADCP-GO) in the form of acidic 25% aqueous
dispersion [31] was purchased from Angstron Materials (Dayton, OH, USA). The 1-Methoxy-2-propanol
(called propylene glycol methyl ether) (PGME) and octylamine were acquired from Sigma-Aldrich
(St. Louis, MO, USA). Chloroform (CHCl3), which is used as a solution blending solvent, was supplied
by Daejung Chem. (Busan, South Korea). All products were used without further treatment.

For the alkylation of GO, 200 mg of GO was dispersed in PGME for 30 min. The solution was
transferred to a three-neck reactor and set to 80 ◦C. Octylamine was then added dropwise to the
solution and stirred for 24 h. The surface-alkylated GO (AGO) was centrifuged at 4 ◦C to eliminate the
unreacted octylamine. The solvent was changed to CHCl3 to make the mother solution of AGO/CHCl3
0.2 wt %.

PLA/AGO nanocomposite was synthesized using the following process. The AGO/CHCl3 solution
was dispersed in a CHCl3 solvent and 5 g of PLA to make the PLA/AGO nanocomposite with
diverse contents (neat, 0.1, 0.3, 0.5, 1.0, and 2.0 wt %). The total CHCl3 weight was fixed to 100 g.
Solution blending was performed at 45 ◦C until the PLA and AGO were blended homogeneously.
After blending, the PLA/AGO composite was precipitated in methanol using a coagulation method [29].
The resulting composite was dried in a vacuum oven at 30 ◦C for three days to eliminate the remaining
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CHCl3 and methanol. The same procedure was performed using the GO filler, making PLA/GO 1 wt %
composite for comparison. Scheme 1 presents the overall experimental procedure.
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Scheme 1. Overall schematic diagram from alkylation of graphene oxide (GO) sheet to processing
PLA/AGO nanocomposite.

The alkylation of GO was performed by adding octylamine to the dispersion of GO and PGME.
The amine group reacted with the epoxide group via an SN2 reaction, which was positioned at the
basal plane of GO. After the reaction, the AGO dispersion was washed several times by centrifugation.
The next step was the solution blending of the filler (AGO) and polymer resin (PLA). Five grams of
PLA and a certain amount of AGO were dispersed in CHCl3 at 45 ◦C. After one hour, a mixture of
thread-like precipitate was obtained by the coagulation method using methanol. The PLA/AGO was
spread and dried in a vacuum oven for three days to eliminate the remaining CHCl3 solvent. PLA/AGO
nanocomposites with different contents of AGO filler were injection molded using a minimax molder.
Subsequently, an isothermal crystallization process was performed at 70 ◦C for one hour.

2.2. Characterization

The dispersion stability of AGO in CHCl3 solvent was analyzed using a Turbiscan (Classic MA2000,
Formulaction, Toulouse, France). The equipment was used for two days at room temperature. Before the
solution was placed into the measurement cell, both GO and AGO were blended with CHCl3 by 0.2 wt %,
homogenized for 3 min. The alkylated functional group was confirmed by Fourier transform infrared
(FT-IR) (VERTEX 80 V, Bruker, Ettlingen, Germany) spectroscopy. GO and AGO powder were ground
with KBr powder at a 1:200 weight ratio and pelletized to a disk-type sample. The pellet was dried in a
vacuum oven for one day. The morphology of the PLA/AGO nanocomposite with different contents
of AGO filler was analyzed by transmission electron microscopy (TEM) (Philips CM200, Eindhoven,
The Netherlands). The sample was cut into 100 nm thick pieces via ultra-microtoming. The microtomed
samples were floated on the water and then put on the copper grid using tweezers. They were finally
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dried in a dry oven before TEM testing. Differential scanning calorimetry (DSC) (DSC 200F3, NETZSCH,
Selb, Germany) was carried out in a nitrogen atmosphere. Both temperature and heat flow were
calibrated using indium. The DSC trace cycle was acquired by heating and cooling (two cycles)
at a heating rate of 10 ◦C/min from 25 to 210 ◦C. X-ray diffraction (Pro MRD, Malvern Panalytical
Ltd., Eindhoven, The Netherlands) was conducted over the scan range of 5◦−60◦ 2θ at a scan rate of
1◦/min using Cu Ka radiation. The dried PLA/AGO blend was processed using an injection molding
machine (Minimax molder, LabCamp, Paju, Korea) under 90 rpm at 190 ◦C, and ASTM D638 Type 5
dog-bone specimens were received. Universal tensile testing (Instron 5569, Instron, Norwood, MA,
USA) was performed at 25 ◦C with an extension rate of 1 mm/min and a load cell of 1 kN and a gauge
length of 10 mm. Viscoelasticity and flow properties of the PLA/AGO nanocomposites were tested
using a rotational rheometer (MCR 102, Anton-Paar, Graz, Austria) at 170 ◦C with a parallel-plate
(PP20) device. The steady, simple shear measurement was plotted as the shear stress versus shear rate
from 0.01 to 1 s−1. In the dynamic oscillatory shear experiment, the strain was fixed to 0.01, and the
angular frequency was varied from 0.1 to 500 rad/s.

3. Results and Discussion

Material Property

Turbiscan, which detects the light transmittance through the sample solution, was used for two
days to compare the dispersion stability of AGO and GO in the CHCl3 solvent. The transmittance
was converted to the sedimentation ratio, as plotted in Figure 1. The AGO solution merely settled
(3.8% transmission at 2800 min) compared to the GO solution (93% transmission at 2800 min). This was
attributed to the different surface properties of GO and AGO. The alkylated surface of AGO makes
the graphene sheet more hydrophobic, and the alkyl chain protects the graphene sheet to prevent
agglomeration. On the other hand, GO agglomerates owing to the strong, attractive interactions
(i.e., van der Waals and hydrogen bonding), causing flocculation and disturbance of the dispersion
stability of the solution. Moreover, the mere settlement of AGO can be an indirect message that AGO
has a similar solubility parameter with CHCl3, which will have a positive effect when solution blending
with PLA, and which confirms CHCl3 as a good solvent.
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Figure 1. Change in transmission (%) as a function of time of GO (solid), AGO (dot) in CHCl3 solution
(0.2 wt %).

Alkylation of the GO surface was also estimated by FT-IR spectroscopy from 400 to 4000 cm−1.
Figure 2 shows the FT-IR spectrum of AGO and GO as a solid and dotted line, respectively. The IR
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characteristic peaks of GO were observed at 1733 cm−1 (C=O stretching vibration), 1610 cm−1

(aromatic ring C=C), 1398 cm−1 (carboxyl C−OH stretching), and 1058 cm−1 (alkoxy C−O stretches) [32].
In addition, the wideband at 3450 cm−1 was attributed to hydroxyl groups. On the other hand, new peaks
for the CH2 and CH3 stretching vibrations in 2920 and 2850 cm−1, respectively, were observed when the
octyl chain was substituted on the GO surface. Hence, the alkyl chain has been substituted successfully
on the graphene sheet instead of the carboxylic group and epoxy group.
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Figure 2. FT-IR spectrum of AGO (solid line) and GO (dotted line).

The morphology and dispersity of AGO in the PLA matrix were observed by TEM. Figure 3 presents
an image of the PLA/AGO nanocomposites with different filler ratios and comparison images of neat
PLA (a) and PLA/GO (e) composite. A comparison of Figure 3c,e showed that AGO was in a superior
dispersed state to the unmodified GO in the PLA matrix. In Figure 3c, the AGO was dispersed as
nanosized particles, and there was virtually no clear space. In Figure 3e, however, GO was aggregated
due to the attraction force between the filler itself, and the clear space comprised a large portion of
the composite.

DSC measurements of the contents of the PLA/AGO composites were taken to analyze the
crystallization behavior. Figure 4 plots the endo (down)—exo (up) curve at a heating rate of 10 ◦C/min,
and Table 1 lists the characteristic thermal peaks. The degree of crystallinity (χ) was calculated using
the following equation [33,34]:

χ =
∆Hm

∆H∞mω
× 100 [%] (1)

where ∆H∞m is the heat of fusion (=93 J/g) of completely crystalline PLA [35]. Three significant changes
highlighted the positive effect of the crystallinity of the PLA/AGO nanocomposites due to the addition
of AGO: increase in glass transition temperature (Tg), decrease in cold crystallization temperature
(Tcc), and the gradual peak-splitting phenomena of melting temperature (Tm) with increasing AGO
content. As listed in Table 1, the Tg of the PLA/AGO composites was higher than that of the neat PLA.
Note that Tg is a temperature showing the absorbed energy for the reptile motion of the polymeric
chain. The incorporation of an AGO filler might disturb the glassy movement of the polymer chains
due to the affinity between the filler with the polymer matrix, which requires considerably more
energy, leading to an increase in Tg [36,37]. Despite our effort to estimate them with as little uncertainty
as possible with the increase of AGO content, especially in the case of 2 wt %, two potential Tgs
could be estimated because of aggregated AGO in the nanocomposite and we chose the lower one.
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In addition, related to the Tg, the reason why the Tg increased until the percolation threshold and
then decreased at 2 wt % (similar with neat PLA) is as follows. At first, the compatibility between
the polymer matrix (PLA) and filler (AGO) could increase the Tg, in which the similar surface energy
actually leads to the increase in the interaction between the matrix and the filler. Secondly, we can
consider the optimum conditions for the nanoconfinement effect. It could be regarded that due to
aggregation of the AGO filler in PLA/AGO 2 wt %, the particle size of the AGO increased, hindering the
confinement of the PLA chain. This is the reason why the Tg of PLA/AGO 2 wt % decreased and did
not increase compared with the neat PLA. Tcc decreased with the incorporation of AGO, which was
also observed by other groups [35,38]. This was attributed to the enhanced crystallization behavior
through the incorporation of AGO, which supplied heterogeneous nucleation sites to the PLA/AGO
nanocomposites [39]. The gradual appearance of two peaks in Tm could be further evidence that AGO
acts as a nucleating agent. At the early Tm1, the crystal formed at the outer layer of AGO was degraded.
Tm2 was the temperature peak for the degradation of the crystal formed at the surface of AGO [35].
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∆Hm [J/g] χ [%]
Tm1 Tm2

Neat PLA 56.5 117.9 - 152.8 15.44 19.77
PLA/AGO 0.1 58.6 113.2 - 156.4 29.1 30.34
PLA/AGO 0.3 58.9 110.3 - 155.1 30.36 31.72
PLA/AGO 0.5 57.2 111.2 - 154.2 24.13 25.39
PLA/AGO 1.0 59.8 106.2 149.8 155 23.15 24.23
PLA/AGO 2.0 55.1 108.9 150.8 156 20.93 22.25
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Figure 4. Differential scanning calorimetry (DSC) heating curves of pristine PLA and PLA/AGO
nanocomposites of different weight ratios.

Despite its potential applications, such as the biomedical and packaging industries, PLA still lacks
the appropriate mechanical properties for injection and extrusion molding [40]. Crystallinity plays
a crucial role in controlling mechanical performance in rigid molded applications [41]. This study
compared the crystallization behaviors of isothermal crystallized PLA/AGO nanocomposites, neat PLA,
and PLA/AGO 1 wt % without any treatment by XRD (Figure 5). First, by comparing the neat PLA and
untreated PLA/AGO 1 wt %, a slight increase in the (200)/(110) α′ form of the PLA homocrystallite
was formed at 16.3◦ 2θ [42,43]. After isothermal crystallization at 70 ◦C, a significant increase was
observed at the same spot (16.3◦ 2θ). Moreover, a shoulder peak was observed at 10.4◦ 2θ, which is
also a sign of the (004)/(103) α form of PLA [44]. Therefore, incorporating an AGO filler and isothermal
crystallization promotes nucleation and crystal growth.
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A tensile test was performed using a universal tensile testing machine (UTM) with an ASTM
D638 Type 5 dog-bone specimen to examine the mechanical properties according to the crystallization
characteristics and homogeneous dispersion of AGO. Figure 6a presents the typical stress−strain
curve of PLA/AGO nanocomposites, neat PLA, and PLA/GO. The PLA/GO composite showed inferior
performance compared to the PLA/AGO nanocomposites, which is in accordance with the poor
dispersity of agglomerated GO, as shown in Figure 2e. The typical properties derived from the
stress−strain plot, such as the tensile strength, elongation at break, Young’s modulus, and tensile
toughness, are given as a function of the filler contents, as shown in Figure 6b–d. In Figure 6b,d,
the tensile strength and Young’s modulus increased with the addition of AGO until 1 wt %. The tensile
strength of PLA/AGO 1 wt % (81.2 MPa) was 37.8% higher than that of neat PLA (59 MPa) and slightly
lower than that of PLA/AGO 2 wt %. The Young’s modulus also showed similar behavior: the value
increased from 358 MPa to 602 MPa and decreased above 1 wt %. This effect arose from the higher
mechanical properties that AGO possesses compared to PLA. The homogeneously dispersed AGO
might act as an effective load-transfer medium. Generally, the stiffness in polymeric composites has an
inverse relationship with the ductility [45,46]. Therefore, it is easy to see data with an inverse tendency
between tensile strength and the elongation at break. On the other hand, as shown in Figure 6c,
the elongation at break also reached a maximum at PLA/AGO 1 wt %, which was 42% higher than
that of neat PLA along with the maximum tensile toughness (1174.9 mJ/m2), as shown in Figure 6e.
Standard deviation of all these mechanical characteristic values was below 5%. This remarkable
property originates from interfacial adhesion between PLA and AGO [47]. The strong adhesion and
interaction can prevent the PLA/AGO nanocomposites from crack propagation and enhance load
transfer during the tensile test [37].

The flow behavior of PLA/AGO nanocomposites with different AGO contents and neat PLA
was analyzed using a rotational rheometer MCR102, as shown in Figure 7. The controlled shear rate
(CSR) test was performed over the shear rate range of 0.01 to 1 s−1 at 170 ◦C. As shown in the figure,
the initial viscosity increased with increasing filler content, especially from 0.5 wt % to 1.0 wt %.
The neat PLA exhibited Newtonian behavior of a constant shear viscosity, which is independent of the
shear rate. On the other hand, the sample with high filler content exhibited non-Newtonian behavior.
For PLA/AGO 1.0 and 2.0 wt %, shear-thinning of the viscosity was detected compared to the lower
filler contents. In the case of PLA/AGO 0.1 and 0.3 wt %, the shear viscosity behavior was similar to
the neat PLA. This was attributed to the internal networking structure of the filler, which will also be
explained in the oscillatory shear experiment. The flow curve of the PLA/AGO samples could be fitted
using the Carreau-Yasuda equation [48,49]:

η− η∞
η0 − η∞

=
1[

1 +
(
λ

.
γ
)a](1−n)/a

(2)

where η0 and η∞ are the shear viscosity of zero and infinite shear rate, respectively. λ [s] is the relaxation
time; n is the dimensionless parameter (0 ≤ n < 1), and a is the parameter that depicts the transition
zone from Newtonian to the shear-thinning region. Table 2 lists the calculated parameters.

Table 2. Carreau−Yasuda model parameters of viscosity fitting.

Sample η0 Λ n η∞ R2

Neat 203 6.8 0.3656 186 0.93
PLA/AGO 0.1 833 5.627 0.1032 764 0.96
PLA/AGO 0.3 976 6.186 0.4511 823 0.98
PLA/AGO 0.5 2290 0.7193 0.1874 1120 0.99
PLA/AGO 1.0 6610 22.86 0.2123 374 0.99
PLA/AGO 2.0 12,200 29.89 0.1002 834 0.99



Polymers 2020, 12, 2402 9 of 16

Polymers 2020, 12, x FOR PEER REVIEW 8 of 16 

6b,d, the tensile strength and Young’s modulus increased with the addition of AGO until 1 wt %. The 
tensile strength of PLA/AGO 1 wt % (81.2 MPa) was 37.8% higher than that of neat PLA (59 MPa) 
and slightly lower than that of PLA/AGO 2 wt %. The Young’s modulus also showed similar behavior: 
the value increased from 358 MPa to 602 MPa and decreased above 1 wt %. This effect arose from the 
higher mechanical properties that AGO possesses compared to PLA. The homogeneously dispersed 
AGO might act as an effective load-transfer medium. Generally, the stiffness in polymeric composites 
has an inverse relationship with the ductility [45,46]. Therefore, it is easy to see data with an inverse 
tendency between tensile strength and the elongation at break. On the other hand, as shown in Figure 
6c, the elongation at break also reached a maximum at PLA/AGO 1 wt %, which was 42% higher than 
that of neat PLA along with the maximum tensile toughness (1174.9 mJ/m2), as shown in Figure 6e. 
Standard deviation of all these mechanical characteristic values was below 5%. This remarkable 
property originates from interfacial adhesion between PLA and AGO [47]. The strong adhesion and 
interaction can prevent the PLA/AGO nanocomposites from crack propagation and enhance load 
transfer during the tensile test [37]. 

 

 
Figure 6. (a) Stress−strain curves of pure PLA and PLA/AGO composites and variation of
(b) tensile strength (c) elongation at break (d) Young’s modulus (e) tensile toughness as a function of
the AGO contents.

The characteristic time λ was significantly large at higher filler contents, which were 1.0 and
2.0 wt %. This indicates early termination of the pseudo-solid property during the low shear rates and
higher rigidity at high AGO contents.

From the dynamic oscillatory shear measurements, the complex viscosity was obtained as a
function of the frequency, as shown in Figure 8. The complex viscosity showed a similar trend to that
of the shear viscosity and exhibited a strong dependency on the addition of AGO filler. Neat PLA
showed a Newtonian plateau in the low angular frequency region. As the filler content increased,
however, the composite showed a shear-thinning property. The initial complex viscosity increased
with increasing AGO, and showed a typical sharp increase in the filler content between PLA/AGO
0.5 wt % (1990 Pa·s) and PLA/AGO 1.0 wt % (5850 Pa·s). Such behavior was attributed to the change in
the internal microstructure of the filler, which is expected to be cross-linked because the filler content is
above the percolation threshold [50].
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Figure 8. Complex viscosity as a function of the frequency of the PLA/AGO nanocomposite in the
dynamic oscillation model.

In the CSR mode test, rheological data at a very high shear rate level was difficult to obtain
with a parallel-plate geometry. The Cox−Merz rule, which states that the shear viscosity η and
complex viscosity η∗ are equivalent when compared at the same unit as [s−1] as shown in Figure 9.
The relationship between η and η∗ can be described as follows [51]:

η
( .
γ
)∣∣∣∣ .
γ=ω

=
∣∣∣η∗(ω)∣∣∣ = √

η′2(ω) + η′′ 2 (3)

Figure 10 presents the storage (G′) and loss (G′′ ) modulus of the PLA/AGO nanocomposites as a
function of frequency. The graph shows the effect of incorporating AGO filler on the rheological
property. The difference was observed more clearly in the low-frequency region. Both G′ and G′′ of
PLA/AGO nanocomposite presented in Figures 10a and 10b, respectively increased with increasing
AGO loading and the dependence on the frequency decreased significantly at high AGO contents
(1.0 and 2.0 wt %). The formation of a G′ plateau indicates the 3-D percolation network of AGO in
the PLA matrix, which is stated as a nonterminal behavior [15,52,53]. Such behavior is in accordance
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with the result of complex viscosity, in which shear-thinning occurred abruptly from 1.0 wt %. In the
low-frequency region, the low filler content nanocomposites (neat, 0.1–0.5 wt %) showed terminal
behavior. In particular, the neat PLA had a slope of ~2. In the literature, the homo-dispersed polymer
chains follow the power−law relation of G′ ∼ ω2 in the terminal flow behavior. The incorporation of
AGO gradually develops the filler network and limits the motion of the PLA chains, resulting in the
decreased dependency of G′ to the frequency and increased G′ value in the low-frequency region [54].

Polymers 2020, 12, x FOR PEER REVIEW 10 of 16 

From the dynamic oscillatory shear measurements, the complex viscosity was obtained as a 
function of the frequency, as shown in Figure 8. The complex viscosity showed a similar trend to that 
of the shear viscosity and exhibited a strong dependency on the addition of AGO filler. Neat PLA 
showed a Newtonian plateau in the low angular frequency region. As the filler content increased, 
however, the composite showed a shear-thinning property. The initial complex viscosity increased 
with increasing AGO, and showed a typical sharp increase in the filler content between PLA/AGO 
0.5 wt % (1990 Pa∙s) and PLA/AGO 1.0 wt % (5850 Pa∙s). Such behavior was attributed to the change 
in the internal microstructure of the filler, which is expected to be cross-linked because the filler 
content is above the percolation threshold [50]. 

 
Figure 8. Complex viscosity as a function of the frequency of the PLA/AGO nanocomposite in the 
dynamic oscillation model. 

In the CSR mode test, rheological data at a very high shear rate level was difficult to obtain with 
a parallel-plate geometry. The Cox−Merz rule, which states that the shear viscosity η and complex 
viscosity 𝜂∗  are equivalent when compared at the same unit as [s−1] as shown in Figure 9. The 
relationship between 𝜂 and 𝜂∗ can be described as follows [51]: 𝜂(𝛾ሶ )|ఊሶ ୀఠ = |𝜂∗(𝜔)| = ඥ𝜂ᇱଶ(𝜔) + 𝜂ᇱᇱଶ (3) 

 
Figure 9. Cox–Merz relationship of shear (closed symbol) and complex (open symbol) viscosities. 

10-2 10-1 100 101 102

102

103

104

105

Neat PLA
PLA/AGO 0.1 wt.%
PLA/AGO 0.3 wt.%
PLA/AGO 0.5 wt.%
PLA/AGO 1.0 wt.%
PLA/AGO 2.0 wt.%

C
om

pl
ex

 v
isc

os
ity

 [P
a⋅

s]

Angular frequency [1/s]

10-2 10-1 100 101 102

102

103

104

105

Neat PLA
PLA/AGO 0.1 wt.%
PLA/AGO 0.3 wt.%
PLA/AGO 0.5 wt.%
PLA/AGO 1.0 wt.%
PLA/AGO 2.0 wt.%

Sh
ea

r 
vi

sc
os

ity
 [P

a⋅
s]

C
om

pl
ex

 v
isc

os
ity

 [P
a ⋅

s]

Shear rate [1/s] 
 Angular frequency [1/s]

Figure 9. Cox–Merz relationship of shear (closed symbol) and complex (open symbol) viscosities.

Polymers 2020, 12, x FOR PEER REVIEW 11 of 16 

Figure 10 presents the storage (Gᇱ) and loss (Gᇱᇱ) modulus of the PLA/AGO nanocomposites as a 
function of frequency. The graph shows the effect of incorporating AGO filler on the rheological 
property. The difference was observed more clearly in the low-frequency region. Both Gᇱ and Gᇱᇱ of 
PLA/AGO nanocomposite presented in Figure 10a and Figure 10b, respectively increased with 
increasing AGO loading and the dependence on the frequency decreased significantly at high AGO 
contents (1.0 and 2.0 wt %). The formation of a Gᇱ plateau indicates the 3-D percolation network of 
AGO in the PLA matrix, which is stated as a nonterminal behavior [15,52,53]. Such behavior is in 
accordance with the result of complex viscosity, in which shear-thinning occurred abruptly from 1.0 
wt %. In the low-frequency region, the low filler content nanocomposites (neat, 0.1–0.5 wt %) showed 
terminal behavior. In particular, the neat PLA had a slope of ~ 2. In the literature, the homo-dispersed 
polymer chains follow the power−law relation of Gᇱ ~ 𝜔ଶ  in the terminal flow behavior. The 
incorporation of AGO gradually develops the filler network and limits the motion of the PLA chains, 
resulting in the decreased dependency of Gᇱ to the frequency and increased Gᇱ value in the low-
frequency region [54]. 

 

 

Figure 10. Frequency sweep of the PLA/AGO nanocomposites at a fixed strain (0.01) chosen in their 
linear viscoelastic region. (a) storage modulus; (b) loss modulus. 

Figure 10. Frequency sweep of the PLA/AGO nanocomposites at a fixed strain (0.01) chosen in their
linear viscoelastic region. (a) storage modulus; (b) loss modulus.



Polymers 2020, 12, 2402 12 of 16

Figure 11 shows the modified Cole−Cole curve, which can also explain the effects of incorporating
fillers on the structural changes of the composite [55,56]. Because the rheological and processing
characteristics change abruptly above the percolation threshold of the nanofiller, the relationship
between G′ and G′ changes dramatically by the formation of a network structure in the filler. In the
figure, low AGO loading samples (0.1 to 0.5 wt %) have a similar tendency to neat PLA, whereas the slope
decreases for high AGO filler loading above 1.0 wt %, which indicates a change in the microstructure
of the AGO filler.
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In addition to the modified Cole−Cole plot, the formation of a solid-like structure can also be
explained by the van Gurp−Palmen (VGP) plot in Figure 12. The VGP plot is a diagram of the
phase angle in the function of the complex modulus. The low loading of the AGO nanocomposites
(0.1–0.5 wt %) showed similar behavior to the neat PLA. In particular, the composite showed a viscous
property for a phase angle close to 90◦ in a low complex modulus region. For the samples with a high
loading AGO, however, the values were below 45◦ in a low complex modulus region. The dramatic
decrease in the phase angle indicated a physically cross-linked network structure of AGO fillers [57,58].
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4. Conclusions

The alkylation of GO was performed by grafting octylamine onto the surface of GO. Octylamine reacted
with the –OH, –O–(basal plane), and –COOH functionalities of GO, providing hydrophobicity and a
layer-to-layer distance of the graphene sheet. Such properties are the key to inhibiting the agglomeration
of AGO filler itself and increasing the compatibility with the PLA matrix. FT-IR and turbiscan
confirmed the presence of the alkyl chains on the GO surface. The alkane C-H chain peak increased
abruptly according to the FT-IR spectra, which led to longer dispersion stability in CHCl3, which was
confirmed by Turbiscan. Crystallization studies using DSC showed that the incorporation of AGO
facilitated the crystallization process of PLA, and the crystallinity was higher than that of the neat
PLA. UTM analysis revealed a significant increase in the mechanical properties of the PLA/AGO
nanocomposite. By incorporating 1 wt % AGO to the PLA, the G’ increased up to 35% compared
to neat PLA, and the elongation at break increased to 42%. This was attributed to the superior
compatibility between AGO and the PLA matrix, which enhanced the interfacial adhesion between the
filler and the matrix. The rheological measurements also confirmed a filler network in the PLA matrix,
showing a percolation threshold between the filler contents of 0.5 and 1.0 wt %. The modulus
and viscosity increased as more AGO was added to the PLA, and the viscosity was fitted to
the predicted model. On the other hand, we anticipate that the biodegradable, ecofriendly PLA
and its nanocomposites could replace petrochemical-based materials in various engineering fields,
including food packaging and medical devices. Especially, the PLA/AGO nanocomposite could
increase the barrier characteristics against gas and water vapor transfer for packaging.
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