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Abstract

Background: Stunting is determined by using the World Health Organization (WHO) child growth standard which
was developed using precise measurements. However, it is unlikely that large scale surveys maintain the same level
of rigour and precision when measuring the height of children. The population measure of stunting in children is
sensitive to over-dispersion, and the high prevalence of stunting observed in surveys in low and middle-income
countries (LMIC) could partly be due to lower measurement precison.

Objectives: To quantify the incongruence in the dispersion of height-for-age in national surveys of <5y children,
in relation to the standard WHO Multicenter Growth Reference Study (MGRS), and propose a measure of
uncertainty in population measures of stunting.

Methods: An uncertainty factor was proposed and measured from the observed incongruence in dispersion of the
height-for-age of <5y children in the MGRS against carefully matched populations from the Demographic Health
Survey of 17 countries (‘test datasets’, based on the availability of data). This also allowed for the determination of
uncertainty-corrected prevalence of stunting (height-for-age Z score < —2) in <5y children.

Results: The uncertainty factor was estimated for 17 LMICs. This ranged from 0.9 to 2.1 for Peru and Egypt
respectively (reference value 1). As an explicit country example, the dispersion of height-for-age in the Indian
National Family Health Survey-4 test dataset was 39% higher than the MGRS study, with an uncertainty factor of
1.39. From this, the uncertainty-adjusted Indian national stunting prevalence estimate reduced to 18.7% from the
unadjusted estimate of 36.2%.

Conclusions: This study proposes a robust statistical method to estimate uncertainty in stunting prevalence
estimates due to incongruent dispersions of height measured in national surveys for children <5 years in relation to
the WHO height-for-age standard. The uncertainty is partly due to population heterogeneity, but also due to
measurement precision, and calls for better quality in these measurements.
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Background

Stunting is the most frequently used indicator for
chronic undernutrition in children and in setting prior-
ities for interventions based on the Sustainable Develop-
ment Goals [1] or the Global Hunger Index [2]. Though,
the prevalence of stunting in some of the Latin Ameri-
can countries like Brazil, Peru and Bolivia has markedly
reduced in last three decades [3], it continues to be high
in other Low and Middle Income Countries (LMIC), es-
pecially in South Asian and sub-Saharan African coun-
tries [4]. For example, India reported a national average
of 36% in <5 y children in National Family Health Sur-
vey (NFHS-4) [5] and 35% in 0—4 y children in the re-
cent Comprehensive National Nutrition Survey (CNNS)
[6]. This measure of chronic underunitrition is related to
poor outcomes in health, cognitive development, educa-
tional and economic attainment later in life [7].

Stunting is defined as a deficit in height relative to a
child’s age, that is, 2 standard deviations (SD) below the
median height-for-age derived from the WHO (World
Health Organization) child growth standards (hereon re-
ferred to as the WHO standard) [8]. This growth standard
is based on the WHO Multicentre Growth Reference Study
(MGRS) [8], of the anthropometric indices of children liv-
ing in what were considered to be the ‘best case’ for socio-
economic circumstances and nutritional access [8]. In the
MGRS, the very low (~3%) between-country variation of
age-specific mean height, and a strong similarity in the
mean and SD of linear growth from birth to 5 y in different
country samples provided sufficient justification for pooling
data across countries to obtain a global standard [8].

The population estimate of stunting is sensitive to the
dispersion of the height distribution in the population sur-
vey to which the standard is applied [9]. Maintaining a de-
sired level of precision in length or height measurement is
a major challenge in any large scale survey. Low precision
will cause over-dispersion and thus overestimate a
dispersion-sensitive measure such as stunting [10]. Simula-
tion exercises showed that even modest, random errors in
height measurements can increase the measure of disper-
sion and the increase in error can exponentially increase
the dispersion [10]. It was also clearly demonstrated that
this overdisperson could inturn inflate estimates of stand-
ard deviation cut-off based undernutrition indicators. In
addition to the measurement error induced over-dispersion
[10-12], population heterogeinity due to biological variabil-
ity, socioeconomic inequalities and adverse environmental
exposure would independently contribute to higher disper-
sion compared to that of the standard population.

Prompted by the concerns on data quality and its im-
pact on nutrition indicators, standard methods such as
the Standardized Monitoring and Assessment of Relief
and Transitions (SMART) [13] have been developed for
quality assessment of anthropometric measures for large

Page 2 of 10

scale surveys, at the time of data collection, reporting
and interpretation [10, 11]. However, there is no method
that provides a quantitative measure of the potential
measurement errors and a measure such as this could
further be used re-estimate the prevalence of stunting,
after accounting for an uncertainty factor. The aim of
the study is to identify an estimate of uncertainty that
can be obtained by comparing the dispersion of height-
for-age in a sample of healthy children at any given age
living in growth-favorable environments in the national
survey, with the dispersion of the MGRS. This estimate
of uncertainity can be used to correct for the incongru-
ence in dispersion and obtain a rough estimate of the
stunting in the absence of measurement error in height.
Since the prevalence of stunting is a commonly used
population level indicator to monitor and assess the ef-
fectiveness of public health and nutrition policy/pro-
grams, [14] it is worth quantifying an uncertainty factor
to interpret these data and estimate a dispersion cor-
rected prevalence.

In the current paper, we first explored the possibility of
overdispersion in height for age measurement in NFHS-4
survey data. Then we proposed a statistical method to
quantify overdispersion or uncertainty of the estimate
along with a statistical test. A method of dispersion cor-
rected prevalence estimation of stunting was proposed
and was applied to DHS and NFHS-4 survey data sets.

Methods
The first part of this study explicitly explored a specific
national survey to identify over-dispersion in height-for-
age as a potential source of uncertainty. For this exercise,
the Indian NFHS-4 survey [5] conducted in 2015-16 was
used, which provides a nation-wide detailed database on
socioeconomic status and anthropometric measurements
(237,136 valid height measurements) of < 5 y children (de-
tails of survey methods given in Additional file 1). The
biologically implausible data was defined as height-for-age
z-score (HAZ) > 6 or < - 6 of the sample mean and were
cleaned as per the defined norms of WHO [15]. Normality
of the HAZ distribution were examined for skewness and
kurtosis [16]. The height-for-age data in <5 y children
from NFHS-4 [5] were classified into percentiles under
each wealth quintile (computed based on the reported
possessions and other household characteristics) and then
compared to the WHO standard. Generalized Additive
Models for Location, Scale and Shape (GAMLSS) [17] was
used to derived smoothed percentiles across the quintiles.
In the second part of this study, the impact of over-
dispersion of height-for-age on global country estimates
of stunting was examined in the DHS survey data [18] of
<5 y children residing in LMIC (the method of data
extraction method from DHS is provided in Online
Additional Material 1).
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Statistical method for obtaining an uncertainty factor due
to measurement error

Let y, be the height-for-age t in a given healthy popula-
tion with growth favourable environment and y, is sub-
jected to measurement error due to low precision. Let Y
be the true measurement of the height-for-age t, then
observed y, can written as

Y=Y +es; Y£~N(/4[, af)&epN(O, 03)

where e, is random measurement error possibly due to
low precision in the measurement and the variance is as-
sumed to be age invariant, as only a trivial difference
was observed between that of children below 24 months
and children above 24 months. Hence observed height
(ys) will have normal distribution with mean g, and
variance
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For sake of simplicity, we assume 5? , the over-
dispersion measure (uncertainty factor) to be age invari-
ant [8; = 6°€(0, ).

As the WHO growth standard is applicable globally,
the true mean and variance of height of the healthy
population assumed above is assumed to be exactly
equal to the WHO standard height for the age t. Hence

_ ,WHO. . _ _WHO
Y, =u, 000 =0, and
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which is the Z-score as per WHO standard height-for-
age t. Let {Z1, Z,, ..., Z,} be the HAZ for a sample of size
n drawn from the healthy populaution identified above.
An obvious estimate of 6 would be

2 1
== 27 1
ng (1)

The uncertainty factor J lies between (0, «); § =1 indi-
cates no over-dispersion; § >1 or §<1 indicates over-
dispersion or under-dispersion against WHO standard
height-for-age.

A)(2 statistical test (Hy:8=1 vs. H;:0 = 1), can also be
performed in the sample to test for significant over-
dispersion or under-dispersion. The details of testing
procedures are provided in Additional file 2.

Finally, estimated §, or the over-dispersion measure,
can be used to adjust the Z-score of the survey data
prior to deriving stunting as follows
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7.
szes = glfor all j=1,2,...,m(survey size) (2)

A child whose zfs < -2;j=1,2,..,m would be de-
fined as stunted adjusted for dispersion by the survey
tool.

For computing this uncertainity factor for any survey,
the requirement is to identify a population that has a
overdispersion compared to WHO MGRS, solely due to
measurement error of height and not due to other bio-
logical variability, socioeconomic inequalities and ad-
verse environmental exposure. A sample from such a
population would be considered as a ‘test dataset’.

The extraction of a ‘test dataset’ of healthy children with
a favourable growth environment for comparison of
dispersion with that of the WHO MGRS
A true ‘test dataset’ should be a sample from a healthy
sub-population with a favourable growth environment
for the given population. If not available, an attempt to
obtain a suitable subsample could be made from the
same survey data, identifying a healthy subset that repre-
sents the population of healthy children as per the
standard definition. As WHO growth standard was de-
veloped on a sample of healthy children, the inclusion
and exclusion criteria of MGRS [8] data set were used to
indentify a subset from NFHS-4 survey that approximate
desired healthy sample of children below 5 years. Hence,
the test dataset was extracted by matching children by
‘locality’, ‘socio-economic status’, ‘mother’s education’,
‘non-smoking mothers’, ‘exclusive breast feeding for 4
months’, ‘partial breast feeding for 12 months with
MGRS [8]. This test dataset (# = 3732) consisted of chil-
dren in the richest wealth quintile of an urban locality,
born with normal birthweight, breastfed till 4-23
months of age, and whose mothers were educated to
graduate level and above. Outliers for height in this sam-
ple, below the 5th and above the 95th percentile of
HAZ, as derived by the WHO standard, were excluded.
Several steps were taken to evaluate the validity of the
above measure of uncertainty factor (§). First, the vari-
ance in the height-for-age of the NFHS-4 test dataset
was compared with other Indian studies [12—14]. Re-
ports published between January 2004 and March 2019
(since MGRS completed in December 2003) in PubMed,
identified with search terms: ((((Infant) OR Children)
AND Height) OR Anthropo*) AND India, yielded 3
studies [19-21] on children aged 24—59 months. Single
site studies on >5y children, clinical complications, and
those reporting on children from middle or lower socio-
economic background were excluded. Second, a sensitiv-
ity analysis was conducted with different choices of the
matching variables on the prevalence of uncertainty ad-
justed stunting, since the test dataset was selected by
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matching socio-demographic characteristics of the In-
dian sub-sample of the MGRS [8]. Third, using the same
criteria as described above to extract NFHS-4 test data-
set, statistical matching was applied to earlier Indian
NFHS-3 data [22], which was conducted between 2005
and 2006, and the estimated uncertainty factor then
compared between the two successive Indian NFHS sur-
veys, along with the calculated uncertainty-adjusted
stunting prevalence.

Estimation of the uncertainty factor in demographic
health survey (DHS) data

In the second part of this analysis, the uncertainty factor
was estimated for surveys from the 17 DHS countries
that had socio-demographic data available to allow
matching with the WHO MGRS data, and had a suffi-
cient sample size for the estimation of the uncertainty
factor (details of computation provided in Additional
Figure 1). Standard method and measurement protocols
were used to collect DHS survey data [23]. The
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unadjusted stunting prevalence in all the selected coun-
tries was estimated using the WHO standard [8]. The
estimates of uncertainty-adjusted stunting were then cal-
culated for those countries with sufficient evidence for &
being different from the Null value of 1, ie: x3 5., < X2

< X%SS.;V!‘
All data analyses were performed using R-version 3.6.1
[24].

Results

Uncertainty factor for the Indian NFHS-4 survey

A consistent over-dispersion of the height-for-age distri-
bution was observed in the NFHS-4 data when com-
pared to the MGRS (Fig. la). The height-for-age
percentile curves (2.5th, 50th and 97.5th) constructed
from NFHS-4 data, classified by wealth quintiles, are
shown in comparison to the MGRS, in Fig. 1b. The 2.5th
percentile curve (Fig. 1b) remained consistently lower
and 97.5th percentile curve remained consistently higher
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Fig. 1 Distribution of MGRS and NFHS-4 height-for-age; a Median and 95% Cl of height-for-age from MGRS and NFHS-4 (b) Height-for-age
centiles of <5y children from MGRS and NFHS-4 in different wealth quintiles; NFHS-4 (n = 237,136), richest (n =32,152), richer (n =39,607), middle

(n=47,360), poorer (n=55916), poorest (n=62,101). Cl: Confidence Interval; MGRS: WHO Multicentre Growth Reference Study [6]; NFHS-4:
National Family Health Survey-4 [4]
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upto ~ 3years before it started showing little downward
trend for NFHS-4 data in comparison to the same curve
for the MGRS across age groups and wealth quintiles
(Fig. 1b), indicating greater dispersion of NFHS-4 height.
However, median shows gradually decreasing trend as
age pogressess compared to MGRS.

The estimated value of the & (uncertainty factor) was
1.39 (95% CI: 1.36—1.43), which meant that the disper-
sion in height-for-age in the NFHS-4 test dataset was
39% higher (P <0.001) than that observed in the MGRS
data [8]. Using the uncertainty adjusted Z-score for the
WHO standard, the prevalence of stunting could be as
low as 18.7%, since the dispersion was much higher than
MGRS. This value is substantially lower than the current
estimated prevalence of 36.2% (calculated from the raw
data of NFHS-4) using the unaltered WHO standard.

The estimates of & for younger children (<24 months)
was 140 (95% CIL: 1.36-1.45) and was comparable to

that of children aged 24-59 montsh, 5 =1.38 (95% CI:
1.33-1.44).

The dispersion of the height-for-age distribution in the
test dataset of NFHS-4 was comparable to other nation-
ally representative datasets but was much higher than
that of the MGRS, which defines the WHO standard, as
shown in Fig. 2. The sensitivity analysis of the determin-
ation of §, with different choices of matching variables
between NFHS-4 data and the Indian sub-sample of the
MGRS [8] is reported in Table 1. Maternal education
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and wealth quintiles were sensitive, but to a small extent.
The uncertainty factor varied from 1.39 to 1.43 when
maternal education (up to graduate level and above) was
replaced with education up to matriculation and above.
When replacing the richest quintile with the top two
quintiles of wealth, the uncertainty factor increased from
from 1.39 to 1.50 (Table 1). These slight changes in un-
certainty could result in small changes in the uncertainty
adjusted prevalence of stunting.

As an additional test of validity, a consistent over-
dispersion of the height-for-age distribution was ob-
served in the earlier NFHS-3 survey as well, when com-
pared to WHO standard (Additional Figure 2A).
Applying the same matching criteria (as performed for
the NFHS-4 survey) to the NFHS-3 survey data to obtain
a similar test dataset (Additional Figure 2B) of the
healthiest children (n=828), the & (dispersion based
uncertainty factor) was found to be 1.31 (95% CI: 1.24—
1.38,), which was not different from the § value esti-
mated for the NFHS-4 survey (Additional Figure 3). The
uncertainty adjusted prevalence of stunting obtained in
the NFHS-3 survey was 32.3% (95% CI: 31.9-32.8), com-
pared to 48% (95% CI: 47.6—48.5) when estimated by the
unaltered WHO standard.

Uncertainty factor in selected DHS country data

The uncertainty factor § could be calculated for 17 se-
lected DHS countries, where data were available, and
ranged from 0.80 (95% CI: 0.67-1.00) for Nicaragua to
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Fig. 2 Comparison of height-for-age SD in MGRS with NFHS-4 test dataset and other Indian studies; Khadilkar 2010 (n = 1493), [13] Khadilkar 2014
(n=494), [12] Marwaha 2011 (n= 106,843 children of 3-18'y), [14] NFHS-4 test data (n = 3732), [4] MGRS (n = 8440) [6]; SD: Standard deviation;
MGRS: WHO Multicentre Growth Reference Study [6]; NFHS-4: National Family Health Survey-4 [4]
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Table 1 Sensitivity analysis of uncertainty factor based on
socio-demographic characteristics

Parameters N [J

NFHS-4 test data set 3732 1.39
Wealth quintile: Richer/Richest 775 1.50
Locality: Rural 1638 1.38
Birth weight > 3 kg 2373 140
Breast feeding: 6-24 months 2973 140
Education: >9y 6826 143
Education: > 11y 5523 142

NFHS-4: National Family Health Survey-4 (5) n: sample size of NFHS-4 test
dataset with select values on matching variables from MGRS; 6: Uncertainty
factor for over-dispersion of height-for-age observed in NFHS-4 test data set
compared to the MGRS (WHO Multicentre Growth Reference Study) [8].

2.11 (95% CI: 1.91-2.37) for Egypt (Fig. 3). The § was
lower than 1 for Latin American countries, with Peru
having 13% lower dispersion for height-for-age in their
test dataset (& =0.87, 95% CI: 0.78—0.98). Most of the Af-
rican and all Asian countries selected from the DHS had
d >1 indicating over-dispersion. The § value for India
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(1.39) was higher than most DHS countries, but lower
than that of Egypt which had the highest estimate (§ =
2.1; 95% CI:1.9-2.4). As a result, the uncertainty adjust-
ment lowered the stunting prevalence in Egypt to 3%
compared to the 21% unadjusted stunting prevalence
estimated with the WHO MGRS standard [8].

Discussion

The debate about stunting as a primary growth problem,
rather than an indicator of social deprivation, poverty
and environment, and the consequent diversion for at-
tention from the underlying causes has been pointed out
before [25, 26]. This has led to debates about the appli-
cation of global standards to Indian, and by extension,
all LMIC children. In some instances, such as in India,
these debates have focused on the potential genetic pre-
disposition to short stature, with counterpoints linked to
the high variation in height-for-age [25, 26]. In a popula-
tion living under ideal conditions for child growth,
~2.5% of the children would be stunted, where the HAZ
would be normally distributed with a mean value of zero
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Fig. 3 Estimated value of uncertainty factor for variance of height-for-age using DHS data in LMIC countries; DHS: Demographic Health Survey
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and SD of 1 [8]. In large scale surveys [27, 28], it is often
observed that the SD of the HAZ distribution is > 1, sug-
gesting that the prevalence of stunting (HAZ < -2) may
be >2.5% even in the healthiest subset of the population
due to higher variablility in the anthrometric data in
most of the large surveys [29]. This is problematic as the
HAZ metric is based on 2.5th percentile position of the
height-for-age and distribution in a standard healthy
population as defined in the WHO MGRS [8].

As a first step, a quantitative approach to measure and
correct for incongruencies in dispersion is required as
stunting is a commonly used indicator to evaluate policy
and programs and therefore it is worthwhile to dispersion
corrected prevalence for more precise estimates of change
or progress. The present study makes the first attempt to
offer an appropriate, simple, but robust method to exam-
ine the uncertainty in the application of the WHO stand-
ard [8] in accordance to the variation observed in a
relatively healthy population (test dataset of the NFHS-4
survey in this instance), and thereby offers a measure of
an over-dispersion based uncertainty factor. The sensitiv-
ity analysis (Table 1) performed on the uncertainty factor

& showed that matching criteria for the test dataset were
stringent. Using this estimate of the factor to adjust the
stunting prevalence estimates gives values that are, in
some cases, far removed from the unadjusted prevalence
estimate (for example, Egypt and India). Therefore, it is
important to be cautious that the estimation of the uncer-
tainty factor is indicative, but may not result in a ‘true,
corrected’ stunting prevalence. There is simply no replace-
ment for better quality and precision in measurements
performed in national surveys, which can be achived with
available guidance during conduct of large surveys [16].

However, for a survey with optimal measurement error with
respect to MGRS study, a deviation of this factor from ‘1’
would indicate true population variation and imply the re-
quirement for population adjustment in dispersion while using
standard data. A true higher dispersion could occur due to
biological and environmental reasons. These could be related
to intergenerational and maternal diet linked epigenetics, par-
ental height, intra-uterine growth restriction, and variation in
gestational age at birth [30], or an unsanitary and polluted en-
vironment arising from poverty. The sampling method for the
MGRS was careful to reduce this variation, by drawing sam-
ples from a well-defined affluent population in a single city of
the selected country. However, since 85-90% of total genetic
variation is found in a collection of individuals within country,
multisite sampling within-country is probably a requirement
for a true representation of the country population [31]. The
study attempted to quantify over-dispersion in the distribution
of height-for-age using a ‘best’ subset of the survey itself, and
importantly, does not differentiate over-dispersion due to true
variability or measurement error.
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Thus, in the test dataset of the national surveys stud-
ied here, the over-dispersion of height-for-age could be
first, due to random errors introduced by poor precision
in the measurement of height, recall bias related age-
ascertainment errors, terminal digit preferences, incor-
rect data recording and entry [10, 11]. Second, there is
always the possibility that the true biological variance of
the theoretically healthiest children could be higher than
that of the MGRS. Third, the study design and sampling
techniques followed in these large scale national surveys
[5, 18] and the MGRS were different [8]. Fourth, secular
trends in the variance of height may be operative. How-
ever, this was tested in Indian surveys, where a similar
over-dispersion in height-for-age was observed in the
earlier NFHS-3 (Additional Figure 2), as well as in other
research studies in India (Fig. 2); thus it is unlikely that
this was responsible for the over-dispersion observed in
the later NFHS-4. The overdispersion was considered to
be age invariant and this assumption was tested in the
NFHS-4 data set, and the uncertainty estimate may vary
by age if the measuremenr error varies by age, which
appears unlikely.

A recent analysis of height distribution from 179
Demographic and Health Surveys in 64 low and middle-
income countries, reported the mean SD of HAZ to be
1.68 (range: 1.65-2.11), indicating the possibility of
greater uncertainty in these countries when using the
WHO standard [29]. The same analysis showed that if
all children were exposed to the same growth limiting
factors, the mean height-for-age would decline without
an increase in the SD [29]. This may explain the ob-
served lower dispersion but higher prevalence of stunt-
ing in sub-saharan African and Latin American
countries (Fig. 3).

Measuring the height or length of children is not triv-
ial, defined precision is an important part of survey
reporting [10, 16]. The reported precision of the height
measurement in the MGRS was excellent, at < 1%, and
procedures were adopted to maintain precision through-
out the study keeping minimal inter-observer variability
[8]. Rigorous training, periodic standardization sessions
and assessments, frequent monitoring and regular equip-
ment calibration were among the quality measures of
the MGRS [8]. The DHS and the NFHS-4 do not report
the precision of the length or height measurements that
were made, although the measurements were made
using standard instruments [5, 18]. Other cross-sectional
studies from India, refered in the present analysis, have
reported a precision for height measurement of < 1% at
the beginning of the survey, [19-21] but it is not clear
how precision was maintained throughout the survey
period. A comparative analysis of the HAZ distributions
for large scale population based surveys such as DHS
and Multiple Indicator Cluster Surveys (MICS) showed
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greater SD of HAZ (1.82 and 1.80 respectively) com-
pared to National Nutrition Surveys (NNS) (SD - 1.36),
which followed the standardised SMART method to
conduct the survey [11] suggesting the importance of
quality assessment in athropometric measures. However,
the uncertainty adjustement will not affect a trend analysis
of stunting prevalence between NHFS-3 and NFHS-4 as
the adjustment factor is very similar, but a comparison of
the uncertainty adjusted prevalence estimates between dif-
ferent countries will be preferable given the adjustment
factor is different by country. A height distribution ana-
lysis using Joint Malnutrition Estimates database (included
data from 422 surveys) showed that SDs of HAZ progres-
sively decreased with age, ranging from 1.59 in 6-11
months to 1.28 in 48—59 months, indicating the complex-
ity of measuring length compared to height in children
[16]. Higher variation could also be observed if inconsist-
ent measurement techniques were followed; for instance,
one versus two leg recumbent length measurement (0.02
to 2 cm difference) have shown a random variation which
decreases with increasing age [32]. The diurnal variation
in height measurement [26] and errors in maternal recall
of birth dates [33] are other important aspects that could
lead to imprecise measurements of height. A random
error of 2 cm in height measurement can increase the SD
of HAZ distribution to 1.17 which may in turn overesti-
mate the prevalence of moderate and severe stunting by
3.5 and 2.2% respectively. The same analysis showed that
every 0.1 SD reduction in over-dispersion can reduce the
prevalence of stunting by 2% [10]. Further, the random er-
rors associated with accurate age determination also have
shown to impact over-dispersion of height-for-age distri-
bution. This is critical when age is approximated using a
calendar of local events and mother’s recall ability, in the
absence of accurate birth records. An error of 3 months in
a 12 month old child can increase the SD of height distri-
bution up to 1.97 and the prevalence of severe stunting
can be overestimated by 7.3% [10].

In addition, the purposive sampling and longitudinal
study design (0-2 y), followed in the MGRS were not
comparable to the cross-sectional sampling design of the
DHS. The sampling variation with random sampling in a
cross-sectional study design will always be higher than
purposive sampling in a longitudinal study design. On
the other hand, with a higher replication, the approxima-
tion of sampling distribution of any sample statistic is
likely to be better. It is possible that having only 6 sam-
ples from 6 study centers in the MGRS study [8] may
still be insufficient to accurately estimate the true sam-
pling distribution of the sample variance of the popula-
tion used to derive the growth standard. Effectively, the
homogeneity across samples from different countries, or
within a country, needs to be established with more rep-
lication, under the same conditions. Quantification of
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uncertainty due measurement error and a novel method
of its correction in prevalence of stunting are the most
important strengths of the study. A limitation was
matching for partial number of inclusion and exclusion
criteria (gestational age, history of perinatal morbidity
and time of complementary feeding introduction were
not available) with the MGRS Indian subsample [6] to
extract the DHS test dataset. An additional limitation is
the inability to differentiate true population heterogen-
eity from measurement imprecision in the test dataset.

Conclusions

In conclusion, the uncertainty factor, derived by adjust-
ing for over-dispersion from a test dataset (extracted
from a national survey) in comparison to the dispersion
in the WHO standard, provides a comprehensive ap-
proach that corrects for both precision errors in a large-
scale survey and true biological variation of a population.
Although, true population heterogeneity could not be
differentiated from measurement imprecision in the test
dataset, the aim here was to provide a level of uncer-
tainty to be used while interpreting stunting prevalence
estimates. A similar over-dispersion could occur with
the measurement of weight as well and the present at-
tempt needs to be expanded for other measures of un-
dernutrition such as weight-for-age and weight-for-
height. This analysis emphasises the critical need for
maintaining precision in anthropometric measurements,
especially in large surveys used to derive nutritional sta-
tus indicators that in turn inform policy.
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