Published in final edited form as:

J Am Stat Assoc. 2020; 115(529): 254–265. doi:10.1080/01621459.2018.1543124.

Adaptive Huber Regression

Qiang Sun [Assistant Professor],

Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada.

Wen-Xin Zhou [Assistant Professor].

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093.

Jianqing Fan

Honorary Professor, School of Data Science, Fudan University, Shanghai, China and Frederick L. Moore '18 Professor of Finance, Department of Operations Research and Financial Engineering, Princeton University, NJ 08544.

Abstract

Big data can easily be contaminated by outliers or contain variables with heavy-tailed distributions, which makes many conventional methods inadequate. To address this challenge, we propose the adaptive Huber regression for robust estimation and inference. The key observation is that the robustification parameter should adapt to the sample size, dimension and moments for optimal tradeoff between bias and robustness. Our theoretical framework deals with heavy-tailed distributions with bounded (1 + δ)-th moment for any δ > 0. We establish a sharp phase transition for robust estimation of regression parameters in both low and high dimensions: when δ 1, the estimator admits a sub-Gaussian-type deviation bound without sub-Gaussian assumptions on the data, while only a slower rate is available in the regime $0 < \delta < 1$ and the transition is smooth and optimal. In addition, we extend the methodology to allow both heavy-tailed predictors and observation noise. Simulation studies lend further support to the theory. In a genetic study of cancer cell lines that exhibit heavy-tailedness, the proposed methods are shown to be more robust and predictive.

Keywords

Adaptive Huber regression; bias and robustness tradeoff; finite-sample inference; heavy-tailed data; nonasymptotic optimality; phase transition

1 Introduction

Modern data acquisitions have facilitated the collection of massive and high dimensional data with complex structures. Along with holding great promises for discovering subtle population patterns that are less achievable with small-scale data, big data have introduced a

qsun@utstat.toronto.edu.

Supplementary Materials

In the supplementary materials, we provide theoretical analysis under random designs, and proofs of all the theoretical results in this paper.

> series of new challenges to data analysis both computationally and statistically (Loh and Wainwright, 2015; Fan et al., 2018). During the last two decades, extensive progress has been made towards extracting useful information from massive data with high dimensional features and sub-Gaussian tails (Tibshirani, 1996; Fan and Li, 2001; Efron et al., 2004; Bickel, Ritov and Tsybakov, 2009). We refer to the monographs, Bühlmann and van de Geer (2011) and Hastie, Tibshirani and Wainwright (2015), for a systematic coverage of contemporary statistical methods for high dimensional data.

> The sub-Gaussian tails requirement, albeit being convenient for theoretical analysis, is not realistic in many practical applications since modern data are often collected with low quality. For example, a recent study on functional magnetic resonance imaging (fMRI) (Eklund, Nichols and Knutsson, 2016) shows that the principal cause of invalid fMRI inferences is that the data do not follow the assumed Gaussian shape, which speaks to the need of validating the statistical methods being used in the field of neuroimaging. In a microarray data example considered in Wang, Peng and Li (2015), it is observed that some gene expression levels have heavy tails as their kurtosises are much larger than 3, despite of the normalization methods used. In finance, the power-law nature of the distribution of returns has been validated as a stylized fact (Cont, 2001). Fan et al. (2016) argued that heavy-tailed distribution is a stylized feature for high dimensional data and proposed a shrinkage principle to attenuate the influence of outliers. Standard statistical procedures that are based on the method of least squares often behave poorly in the presence of heavy-tailed data² (Catoni, 2012). It is therefore of ever-increasing interest to develop new statistical methods that are robust against heavy-tailed errors and other potential forms of contamination.

In this paper, we first revisit the robust regression that was initiated by Peter Huber in his seminal work Huber (1973). Asymptotic properties of the Huber estimator have been well studied in the literature. We refer to Huber (1973), Yohai and Maronna (1979), Portnoy (1985), Mammen (1989) and He and Shao (1996, 2000) for an unavoidably incomplete overview. However, in all of the aforementioned papers, the robustification parameter is suggested to be set as fixed according to the 95% asymptotic efficiency rule. Thus, this procedure can not estimate the model-generating parameters consistently when the sample distribution is asymmetric.

From a nonasymptotic perspective (rather than an asymptotic efficiency rule), we propose to use the Huber regression with an adaptive robustification parameter, which is referred to as the adaptive Huber regression, for robust estimation and inference. Our adaptive procedure achieves the nonasymptotic robustness in the sense that the resulting estimator admits exponential-type concentration bounds when only loworder moments exist. Moreover, the resulting estimator is also an asymptotically unbiased estimate for the parameters of interest. In particular, we do not impose symmetry and homoscedasticity conditions on error distributions, so that our problem is intrinsically different from median/quantile regression

¹A random variable Z is said to have sub-Gaussian tails if there exists constants c_1 and c_2 such that $\mathbb{P}(|Z| > t) \le c_1 \exp(-c_2 t^2)$ for any t 0. ²We say a random variable X has heavy tails if $\mathbb{P}(|X| > t)$ decays to zero polynomially in 1/t as $t \to \infty$.

models, which are also of independent interest and serve as important robust techniques (Koenker, 2005).

We made several major contributions towards robust modeling in this paper. First and foremost, we establish nonasymptotic deviation bounds for adaptive Huber regression when the error variables have only finite $(1 + \delta)$ -th moments. By providing a matching lower bound, we observe a sharp phase transition phenomenon, which is in line with that discovered by Devroye et al. (2016) for univariate mean estimation. Second, a similar phase transition for regularized adaptive Huber regression is established in high dimensions. By defining the effective dimension and effective sample size, we present nonasymptotic results under the two different regimes in a unified form. Last, by exploiting the localized analysis developed in Fan et al. (2018), we remove the artificial bounded parameter constraint imposed in previous works; see Loh and Wainwright (2015) and Fan, Li and Wang (2017). In the supplementary material, we present a nonasymptotic Bahadur representation for the adaptive Huber estimator when δ 1, which provides a theoretical foundation for robust finite-sample inference.

The rest of the paper proceeds as follows. The rest of this section is devoted to related literature. In Section 2, we revisit the Huber loss and robustification parameter, followed by the proposal of adaptive Huber regression in both low and high dimensions. We sharply characterize the nonasymptotic performance of the proposed estimators in Section 3. We describe the algorithm and implementation in Section 5. Section 6 is devoted to simulation studies and a real data application. In Section 4, we extend the methodology to allow possibly heavy-tailed covariates/predictors. All the proofs are collected in the supplemental material.

1.1 Related Literature

The terminology "robustness" used in this paper describes how stable the method performs with respect to the tail-behavior of the data, which can be either sub-Gaussian/sub-exponential or Pareto-like (Delaigle, Hall and Jin, 2011; Catoni, 2012; Devroye et al., 2016). This is different from the conventional perspective of robust statistics under Huber's ϵ -contamination model (Huber, 1964), for which a number of depth-based procedures have been developed since the groundbreaking work of John Tukey (Tukey, 1975). Significant contributions have also been made in Liu (1990), Liu, Parelius, and Singh (1999), Zuo and Serfling (2000), Mizera (2002) and Mizera and Müller (2004). We refer to Chen, Gao and Ren (2018) for the most recent result and a literature review concerning this problem.

Our main focus is on the conditional mean regression in the presence of heavy-tailed and asymmetric errors, which automatically distinguishes our method from quantile-based robust regressions (Koenker, 2005; Belloni and Chernozhukov, 2011; Wang, 2013; Fan, Fan and Barut, 2014; Zheng, Peng and He, 2015). In general, quantile regression is biased towards estimating the mean regression coefficient unless the error distributions are symmetric around zero. Another recent work that is related to ours is Alquier, Cottett and Lecué (2017). They studied a general class of regularized empirical risk minimization procedures with a particular focus on Lipschitz losses, which includes the quantile, hinge and logistic losses. Different from all these work, our goal is to estimate the mean regression coefficients

robustly. The robustness is witnessed by a nonasymptotic analysis: the proposed estimators achieve sub-Gaussian deviation bounds when the regression errors have only finite second moments. Asymptotically, our proposed estimators are fully efficient: they achieve the same efficiency as the ordinary least squares estimators.

An important step towards estimation under heavy-tailedness has been made by Catoni (2012), whose focus is on estimating a univariate mean. Let X be a real-valued random variable with mean $\mu = \mathbb{E}(X)$ and variance $\sigma^2 = \text{var}(X) > 0$, and assume that X_1, \ldots, X_n are independent and identically distributed (i.i.d.) from X. For any prespecified exception probability t > 0, Catoni constructs a robust mean estimator $\hat{\mu}_{\mathbb{C}}(t)$ that deviates from the true mean μ logarithmically in 1/t, that is,

$$\mathbb{P}\left[\left|\hat{\mu}_{C}(t) - \mu\right| \le t\sigma/n^{1/2}\right] \ge 1 - 2\exp(-ct^{2}),\tag{1}$$

while the empirical mean deviates from the true mean only polynomially in $1/t^2$, namely subGaussian tails versus Cauchy tail in terms of t. Further, Devroye et al. (2016) developed adaptive sub-Gaussian estimators that are independent of the prespecified exception probability. Beyond mean estimation, Brownlees, Joly and Lugosi (2015) extended Catoni's idea to study empirical risk minimization problems when the losses are unbounded. Generalizations of the univariate results to those for matrices, such as the covariance matrices, can be found in Catoni (2016), Minsker (2018), Giulini (2017) and Fan, Li and Wang (2017). Fan, Li and Wang (2017) modified Huber's procedure (Huber, 1973) to obtain a robust estimator, which is concentrated around the true mean with exponentially high probability in the sense of (1), and also proposed a robust procedure for sparse linear regression with asymmetric and heavy-tailed errors.

Notation: We fix some notations that will be used throughout this paper. For any vector $\mathbf{u} = (u_1, ..., u_d)^{\mathrm{T}} \in \mathbb{R}^d$ and q = 1, $\|\mathbf{u}\|_q = \left(\sum_{j=1}^d |u_j|^q\right)^{1/q}$ is the ℓ_q norm. For any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$, we write $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\mathrm{T}} \mathbf{v}$. Moreover, we let $\|\mathbf{u}\|_{\infty} = \max_{1 \le j \le d} |u_j|$ denote the number of nonzero entries of \mathbf{u} , and set $\|\mathbf{u}\|_{\infty} = \max_{1 \le j \le d} |u_j|$. For two sequences of real numbers $\{a_n\}n_1$ and $\{b_n\}n_1$, $a_n \le b_n$ denotes $a_n = Cb_n$ for some constant C > 0 independent of n, $a_n \ge b_n$ if $b_n \le a_n$, and $a_n \times b_n$ if $a_n \le b_n$ and $b_n \le a_n$. For two scalars, we use $a \wedge b = \min\{a, b\}$ to denote the minimum of a and b. If \mathbf{A} is an $m \times n$ matrix, we use $\|\mathbf{A}\|$ to denote its spectral norm, defined by $\|\mathbf{A}\| = \max_{u \in \mathbb{S}^{n-1}} \|\mathbf{A}\mathbf{u}\|_2$, where $\mathbb{S}^{n-1} = \{\mathbf{u} \in \mathbb{R}^n : \|\mathbf{u}\|_2 = 1\}$ is the unit sphere in \mathbb{R}^n . For an $n \times n$ matrix \mathbf{A} , we use $\lambda_{\max}(\mathbf{A})$ and $\lambda_{\min}(\mathbf{A})$ to denote the maximum and minimum eigenvalues of \mathbf{A} , respectively. For two $n \times n$ matrices \mathbf{A} and \mathbf{B} , we write $\mathbf{A} \le \mathbf{B}$ if $\mathbf{B} - \mathbf{A}$ is positive semi-definite. For a function $f: \mathbb{R}^d \to \mathbb{R}$, we use $\nabla f \in \mathbb{R}^d$ to denote its gradient vector as long as it exists.

2 Methodology

We consider i.i.d. observations $(y_1, x_1), \ldots, (y_n, x_n)$ that are generated from the following heteroscedastic regression model

$$y_i = \langle \mathbf{x}_i, \boldsymbol{\beta}^* \rangle + \varepsilon_i, \quad \text{with} \quad \mathbb{E}(\varepsilon_i \mid \mathbf{x}_i) = 0 \quad \text{and} \quad v_{i, \delta} = \mathbb{E}(|\varepsilon_i|^{1+\delta}) < \infty.$$
 (2)

Assuming that the second moments are bounded (δ = 1), the standard ordinary least squares (OLS) estimator, denoted by $\hat{\beta}^{\text{ols}}$, admits a suboptimal polynomial-type deviation bound, and thus does not concentrate around β^* tightly enough for large-scale simultaneous estimation and inference. The key observation that underpins this sub-optimality of the OLS estimator is the sensitivity of quadratic loss to outliers (Huber, 1973; Catoni, 2012), while the Huber regression with a fixed tuning constant may lead to nonnegligible estimation bias. To overcome this drawback, we propose to employ the Huber loss with an adaptive robustification parameter to achieve robustness and (asymptotic) unbiasedness simultaneously. We begin with the definitions of the Huber loss and the corresponding robustification parameter.

Definition 1 (Huber Loss and Robustification Parameter).

The Huber loss $\mathcal{L}(\cdot)$ (Huber, 1964) is defined as

$$\ell_{\tau}(x) = \begin{cases} x^2/2, & \text{if } |x| \le \tau, \\ \tau |x| - \tau^2/2, & \text{if } |x| > \tau, \end{cases}$$

where $\tau > 0$ is referred to as the robustification parameter that balances bias and robustness (Fan, Li and Wang, 2017).

The loss function $\mathcal{L}(x)$ is quadratic for small values of x, and becomes linear when x exceeds τ in magnitude. The parameter τ therefore controls the blending of quadratic and ℓ losses, which can be regarded as two extremes of the Huber loss with $\tau = \infty$ and $\tau \to 0$, respectively. Comparing with the least squares, outliers are down weighted in the Huber loss. We will use the name, *adaptive Huber loss*, to emphasize the fact that the parameter τ should adapt to the sample size, dimension and moments for a better tradeoff between bias and robustness. This distinguishes our framework from the classical setting. As $\tau \to \infty$ is needed to reduce the bias when the error distribution is asymmetric, this loss is also called the RA-quadratic (robust approximation to quadratic) loss in Fan, Li and Wang (2017).

Define the empirical loss function $\mathcal{L}_{\tau}(\beta) = n^{-1} \sum_{i=1}^{n} \ell_{\tau}(y_i - \langle \mathbf{x}_i, \beta \rangle)$ for $\beta \in \mathbb{R}^d$.

The Huber estimator is defined through the following convex optimization problem:

$$\widehat{\boldsymbol{\beta}}_{\tau} = \arg \min_{\boldsymbol{\beta} \in \mathbb{R}^d} \mathcal{L}_{\tau}(\boldsymbol{\beta}). \tag{3}$$

In low dimensions, under the condition that $v_{\delta} = n^{-1} \sum_{i=1}^{n} \mathbb{E} \left(|\varepsilon_{i}|^{1+\delta} \right) < \infty$ for some $\delta > 0$, we will prove that $\hat{\beta}_{\tau}$ with $\tau \asymp \min \left\{ v_{\delta}^{1/(1+\delta)}, v_{1}^{1/2} \right\} n^{\max\{1/(1+\delta), 1/2\}}$ (the first factor is kept in order to show its explicit dependence on the moment) achieves the tight upper bound $d^{1/2} \tau^{-(\delta \wedge 1)} \asymp d^{1/2} n^{-\min\{\delta/(1+\delta), 1/2\}}$. The phase transition at $\delta = 1$ can be easily observed

(see Figure 1). When higher moments exist (δ 1), robustification leads to a sub-Gaussian-type deviation inequality in the sense of (1). In the high dimensional regime, we consider the following regularized adaptive Huber regression with a different choice of the robustification parameter:

$$\widehat{\boldsymbol{\beta}}_{\tau, \lambda} \in \arg \min_{\boldsymbol{\beta} \in \mathbb{R}^d} \{ \mathcal{L}_{\tau}(\boldsymbol{\beta}) + \lambda \| \boldsymbol{\beta} \|_1 \}$$
(4)

where $\tau \times \nu_{\delta} \{n/(\log d)\}^{\max\{1/(1+\delta),1/2\}}$ and $\lambda \times \nu_{\delta} \{(\log d)/n\}^{\min\{\delta/(1+\delta),1/2\}}$ with $\nu_{\delta} = \min \left\{ \nu_{\delta}^{1/(1+\delta)}, \nu_{1}^{1/2} \right\}$. Let s be the size of the true support s = $\sup(s)$. We will show that the regularized Huber estimator achieves an upper bound that is of the order $s^{1/2} \{(\log d)/n\}^{\min\{\delta/(1+\delta),1/2\}}$ for estimating s in s-error with high probability.

To unify the nonasymptotic upper bounds in the two different regimes, we define the *effective dimension*, d_{eff} , to be d in low dimensions and s in high dimensions.

In other words, $d_{\rm eff}$ denotes the number of nonzero parameters of the problem. The *effective sample size*, $n_{\rm eff}$, is defined as $n_{\rm eff}=n$ and $n_{\rm eff}=n/\log d$ in low and high dimensions, respectively. We will establish a phase transition: when $\delta-1$, the proposed estimator enjoys a sub-Gaussian concentration, while it only achieves a slower concentration when $0<\delta<1$. Specifically, we show that, for any $\delta\in(0,\infty)$, the proposed estimators with $\tau \asymp \min\{v_\delta^{1/(1+\delta)},v_1^{1/2}\}n_{\rm eff}^{\max\{1/(1+\delta),1/2\}}$ achieve the following tight upper bound, up to logarithmic factors:

$$\|\widehat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_{2} \lesssim d_{\text{eff}}^{1/2} n_{\text{eff}}^{-\min\{\delta/(1+\delta), 1/2\}} \text{ with high probability.}$$
 (5)

This finding is summarized in Figure 1.

3 Nonasymptotic Theory

3.1 Adaptive Huber Regression with Increasing Dimensions

We begin with the adaptive Huber regression in the low dimensional regime. First, we provide an upper bound for the estimation bias of Huber regression. We then establish the phase transition by establishing matching upper and lower bounds on the ℓ -error. The analysis is carried out under both fixed and random designs. The results under random designs are provided in the supplementary material. We start with the following regularity condition.

Condition 1.—The empirical Gram matrix $\mathbf{S}_n := n^{-1} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^{\mathrm{T}}$ is nonsingular. Moreover, there exist constants c_I and c_u such that $c_I \quad \lambda_{\min}(\mathbf{S}_n) \quad \lambda_{\max}(\mathbf{S}_n) \quad c_u$.

For any $\tau > 0$, $\hat{\beta}_{\tau}$ given in (3) is natural *M*-estimator of

$$\boldsymbol{\beta}_{\tau}^{*} := \arg \min_{\boldsymbol{\beta} \in \mathbb{R}^{d}} \mathbb{E} \{ \mathcal{L}_{\tau}(\boldsymbol{\beta}) \} = \arg \min_{\boldsymbol{\beta} \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \{ \mathcal{L}_{\tau}(y_{i} - \langle \boldsymbol{x}_{i}, \boldsymbol{\beta} \rangle) \}, \tag{6}$$

where the expectation is taken over the regression errors. We call β_{τ}^* the *Huber regression* coefficient, which is possibly different from the vector of true parameters β^* . The estimation bias, measured by $\|\beta_{\tau}^* - \beta^*\|_2$, is a direct consequence of robustification and asymmetric error distributions. Heuristically, choosing a sufficiently large τ reduces bias at the cost of losing robustness (the extreme case of $\tau = \infty$ corresponds to the least squares estimator). Our first result shows how the magnitude of τ affects the bias $\|\beta_{\tau}^* - \beta^*\|_2$. Recall that $v_{\delta} = n^{-1} \sum_{i=1}^{n} v_{i,\delta}$ with $v_{i,\delta} = \mathbb{E}(|\varepsilon_{i}|^{1+\delta})$.

Proposition 1.—Assume Condition 1 holds and that v_{δ} is finite for some $\delta > 0$. Then, the vector β_{τ}^* of Huber regression coefficients satisfies

$$\|\boldsymbol{\beta}_{\tau}^{*} - \boldsymbol{\beta}^{*}\|_{2} \le 2c_{l}^{-1/2}v_{\delta}\tau^{-\delta}$$
 (7)

provided $\tau \ge \left(4v_{\delta}\widetilde{M}^{2}\right)^{1/(1+\delta)}$ for $0 < \delta < 1$ or $\tau \ge (2v_{1})^{1/2}\widetilde{M}$ for δ 1, where $\widetilde{M} = \max_{1 \le i \le n} \left\|\mathbf{S}_{n}^{-1/2}\mathbf{x}_{i}\right\|_{2}$.

The total estimation error $\|\hat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_2$ can therefore be decomposed into two parts

$$\underbrace{\|\widehat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_2}_{\text{Total error}} \leq \underbrace{\|\widehat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*_{\tau}\|_2}_{\text{estimation error}} + \underbrace{\|\boldsymbol{\beta}^*_{\tau} - \boldsymbol{\beta}^*\|_2}_{\text{approximation bias}},$$

where the approximation bias is of order $\tau^{-\delta}$. A large τ reduces the bias but compromises the degree of robustness. Thus an optimal estimator is the one with τ diverging at a certain rate to achieve the optimal tradeoff between estimation error and approximation bias. Our next result presents nonasymptotic upper bounds on the ℓ -error with an exponential-type exception probability, when τ is properly tuned. Recall that $v_{\delta} = \min \left\{ v_{\delta}^{1/(1+\delta)}, v_{1}^{1/2} \right\}$ for any $\delta > 0$.

Theorem 1—(Upper Bound). Assume Condition 1 holds and $v_{\delta} < \infty$ for some $\delta > 0$. Let $L = \max_{1 \in I} \|\mathbf{x}_i\|_{\infty}$ and assume $n - C(L, c_l) d^2 t$ for some $C(L, c_l) > 0$ depending only on L and c_l . Then, for any t > 0 and $\tau_0 - v_{\delta}$, the estimator $\hat{\boldsymbol{\beta}}_{\tau}$ with $\tau = \tau_0(n/t) \max\{1/(1+\delta), 1/2\}$ satisfies the bound

$$\|\widehat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_{2} \le 4c_l^{-1} L \tau_0 d^{1/2} \left(\frac{t}{n}\right)^{\min\{\delta/(1+\delta), 1/2\}}$$
(8)

with probability at least $1 - (2d + 1)e^{-t}$.

Remark 1.—It is worth mentioning that the proposed robust estimator depends on the unknown parameter $v_{\delta}^{1/(1+\delta)}$. Adaptation to the unknown moment is indeed another important problem. In Section 6, we suggest a simple cross-validation scheme for choosing τ with desirable numerical performance. A general adaptive construction of τ can be obtained via Lepski's method (Lepski, 1991), which is more challenging due to unspecified constants. In the supplementary material, we discuss a variant of Lepski's method and establish its theoretical guarantee.

Remark 2.—We do not assume $\mathbb{E}(|\varepsilon_i|^{1+\delta} \mid x_i)$ to be a constant, and hence the proposed method accommodates heteroscedastic regression models. For example, ε_i can take the form of $\sigma(x_i)v_i$, where $\sigma:\mathbb{R}^d\to(0,\infty)$ is a positive function, and v_i are random variables satisfying $\mathbb{E}(v_i)=0$ and $\mathbb{E}(|v_i|^{1+\delta})<\infty$.

Remark 3.—We need the scaling condition to go roughly as $n \ge d^2t$ under fixed designs. With random designs, we show that the scaling condition can be relaxed to $n \ge d + t$. Details are given in the supplementary material.

Theorem 1 indicates that, with only bounded $(1 + \delta)$ -th moment, the adaptive Huber estimator achieves the upper bound $d^{1/2}n^{-\min\{\delta'(1+\delta),1/2\}}$, up to a logarithmic factor, by setting $t = \log(nd)$. A natural question is whether the upper bound in (8) is optimal. To address this, we provide a matching lower bound up to a logarithmic factor. Let $\mathcal{P}^{v_{\delta}}_{\delta}$ be the class of all distributions on \mathbb{R} whose $(1+\delta)$ -th absolute central moment equals v_{δ} . Let $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_n)^{\mathrm{T}} = (\mathbf{x}^1, ..., \mathbf{x}^d) \in \mathbb{R}^{n \times d}$ be the design matrix and $\mathcal{U}_n = \{\mathbf{u} : \mathbf{u} \in \{-1, 1\}^n\}$.

Theorem 2 (Lower Bound).—Assume that the regression errors $\boldsymbol{\varepsilon}_i$ are i.i.d. from a distribution in $\mathscr{P}^{v_{\delta}}_{\delta}$ with $\delta > 0$. Suppose there exists a $\boldsymbol{u} \in \mathscr{U}_n$ such that $\|\boldsymbol{n}^{-1}\mathbf{X}^T\boldsymbol{u}\|_{\min}$ \boldsymbol{a} for some $\boldsymbol{a} > 0$. Then, for any $t \in [0, n/2]$ and any estimator $\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}(y_1, ..., y_n, t)$ possibly depending on t, we have

$$\sup_{\mathbb{P}} \mathbb{P}\left[\left\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\right\|_2 \geq \alpha c_u^{-1} v_\delta d^{1/2} \left(\frac{t}{n}\right)^{\min\left\{\delta/(1+\delta),\,1/2\right\}}\right] \geq \frac{e^{-2t}}{2},$$

where $c_u \quad \lambda_{\max}(\mathbf{S}_n)$.

Theorem 2 reveals that root-n consistency with exponential concentration is impossible when $\delta \in (0, 1)$. It widens the phenomenon observed in Theorem 3.1 in Devroye et al. (2016) for estimating a mean. In addition to the eigenvalue assumption, we need to assume that there exists a $\mathbf{u} \in \mathcal{U}_n \subseteq \mathbb{R}^n$ such that the minimum angle between $n^{-1}\mathbf{u}$ and \mathbf{x}^j is non-vanishing. This assumption comes from the intuition that the linear subspace spanned by \mathbf{x}^j is at most of rank d and thus cannot span the whole space \mathbb{R}^n . This assumption naturally holds in the univariate case where $\mathbf{X} = (1, \dots, 1)^T$ and we can take $\mathbf{u} = (1, \dots, 1)^T$ and $\mathbf{a} = 1$. More generally, $\|\mathbf{X}^T\mathbf{u}/n\|_{\min} = \min\{|\mathbf{u}^T\mathbf{x}^1|/n, \dots, |\mathbf{u}^T\mathbf{x}^d|/n\}$. Taking $\|\mathbf{u}^T\mathbf{x}^1|/n$ for an

example, since $u \in \{-1, +1\}^n$, we can assume that each coordinate of x^1 is positive. In this case, $u^Tx^1/n = \sum_{i=1}^n |x_i^1|/n \ge \min_i |x_i^1|$, which is strictly positive with probability one, assuming x^1 is drawn from a continuous distribution.

Together, the upper and lower bounds show that the adaptive Huber estimator achieves near-optimal deviations. Moreover, it indicates that the Huber estimator with an adaptive τ exhibits a sharp phase transition: when $\delta = 1$, $\hat{\beta}_{\tau}$ converges to β^* at the parametric rate $n^{-1/2}$, while only a slower rate of order $n^{-\delta'(1+\delta)}$ is available when the second moment does not exist.

Remark 4.—We provide a parallel analysis under random designs in the supplementary material. Beyond the nonasymptotic deviation bounds, we also prove a nonasymptotic Bahadur representation, which establishes a linear approximation of the nonlinear robust estimator. This result paves the way for future research on conducting statistical inference and constructing confidence sets under heavy-tailedness. Additionally, the proposed estimator achieves full efficiency: it is as efficient as the ordinary least squares estimator asymptotically, while the robustness is characterized via nonasymptotic performance.

3.2 Adaptive Huber Regression in High Dimensions

In this section, we study the regularized adaptive Huber estimator in high dimensions where d is allowed to grow with the sample size n exponentially. The analysis is carried out under fixed designs, and results for random designs are again provided in the supplementary material. We start with a modified version of the localized restricted eigenvalue introduced by Fan et al. (2018). Let $\mathbf{H}_{\tau}(\boldsymbol{\beta}) = \nabla^2 \mathcal{L}_{\tau}(\boldsymbol{\beta})$ denote the Hessian matrix. Recall that $\mathcal{S} = \sup(\boldsymbol{\beta}^*) \subseteq \{1, ..., d\}$ is the true support set with $|\mathcal{S}| = s$.

Definition 2 (Localized Restricted Eigenvalue, LRE).—The localized restricted eigenvalue of H_{τ} is defined as

$$\kappa_{+}(m,\gamma,r) = \sup\{\langle \boldsymbol{u}, \mathbf{H}_{\tau}(\boldsymbol{\beta})\boldsymbol{u}\rangle : (\boldsymbol{u},\boldsymbol{\beta}) \in \mathcal{C}(m,\gamma,r)\},\$$

$$\kappa_{-}(m, \gamma, r) = \inf\{\langle \mathbf{u}, \mathbf{H}_{\tau}(\boldsymbol{\beta})\mathbf{u}\rangle : (\mathbf{u}, \boldsymbol{\beta}) \in \mathcal{C}(m, \gamma, r)\},\$$

where

where
$$\mathscr{C}(m,\gamma,r) := \left\{ (\boldsymbol{u},\boldsymbol{\beta}) \in \mathbb{S}^{d-1} \times \mathbb{R}^d : \forall J \subseteq \{1,...,d\} \text{ satisfying } S \subseteq J, |J| \le m, \|\boldsymbol{u}_{J^c}\|_1 \le \gamma \|\boldsymbol{u}_{J}\|_1, \text{ is a } \|\boldsymbol{\beta} - \boldsymbol{\beta}^*\|_1 \le r \right\}$$

local 4-cone.

The LRE is defined in a local neighborhood of β^* under ℓ -norm. This facilitates our proof, while Fan et al. (2018) use the ℓ -norm.

Condition 2.—H_{τ} satisfies the localized restricted eigenvalue condition LRE(k, γ , r), that is, $\kappa_I \quad \kappa_-(k, \gamma, r) \quad \kappa_+(k, \gamma, r) \quad \kappa_U$ for some constants κ_U , $\kappa_I > 0$.

The condition above is referred to as the LRE condition (Fan et al., 2018). It is a unified condition for studying generalized loss functions, whose Hessians may possibly depend on β . For Huber loss, Condition 2 also involves the observation noise. The following definition concerns the restricted eigenvalues of \mathbf{S}_n instead of \mathbf{H}_{τ} :

Definition 3 (Restricted Eigenvalue, RE).—The restricted maximum and minimum eigenvalues of S_n are defined respectively as

$$\rho_{+}(m,\gamma) = \sup_{u} \{ u, \mathbf{S}_{n} u : u \in \mathcal{C}(m,\gamma) \},$$

$$\rho_{-}(m,\gamma) = \inf_{u} \{ u, \mathbf{S}_{n} u : u \in \mathcal{C}(m,\gamma) \},$$

where $\mathscr{C}(m,\gamma)$: = $\left\{ \boldsymbol{u} \in \mathbb{S}^{d-1} : \forall \boldsymbol{J} \subseteq \{1,...,d\} \text{ satisfying } S \subseteq \boldsymbol{J}, |\boldsymbol{J}| \leq m, \|\boldsymbol{u}_{\boldsymbol{J}}^c\|_1 \leq \gamma \|\boldsymbol{u}_{\boldsymbol{J}}\|_1 \right\}$.

Condition 3.—S_n satisfies the restricted eigenvalue condition RE(k, γ), that is, $\kappa_l = \rho_-(k, \gamma) = \rho_+(k, \gamma) = \kappa_u$ for some constants κ_u , $\kappa_l > 0$.

To make Condition 2 on \mathbf{H}_{τ} practically useful, in what follows, we show that Condition 3 implies Condition 2 with high probability. As before, we write $v_{\delta} = n^{-1} \sum_{i=1}^{n} v_{i, \delta}$ and $L = \max_{i \in \mathcal{I}} \|\mathbf{x}_{i}\|_{\infty}$.

Lemma 1.—Condition 3 implies Condition 2 with high probability: if $0 < \kappa_1 \quad \rho_-(k, \gamma) \quad \rho_+(k, \gamma) \quad \kappa_u < \infty$ for some k-1 and $\gamma > 0$, then it holds with probability at least $1 - e^{-t}$ that, $0 < \kappa_1/2 \quad \kappa_-(k, \gamma, r) \quad \kappa_+(k, \gamma, r) \quad \kappa_u < \infty$ provided $\tau \quad \max\{8Lr, c_1(L^2kv_\delta)^{1/(1+\delta)}\}$ and $n c_2L^4k^2t$, where $c_1, c_2 > 0$ are constants depending only on (γ, κ_1) .

With the above preparations in place, we are now ready to present the main results on the adaptive Huber estimator in high dimensions.

Theorem 3 (Upper Bound in High Dimensions).—Assume Condition 3 holds with $(k, \gamma) = (2s, 3), \ v_{\delta} < \infty$ for some $0 < \delta$ 1. For any t > 0 and τ_0 v_{δ} , let $\tau = \tau_0(n/t)^{\max\{1/(1+\delta),1/2\}}$ and λ $4L\tau_0(t/n)^{\min\{\delta/(1+\delta),1/2\}}$. Then with probability at least $1 - (2s+1)e^{-t}$, the ℓ -regularized Huber estimator $\hat{\beta}_{\tau,\lambda}$ defined in (4) satisfies

$$\|\widehat{\boldsymbol{\beta}}_{\tau,\lambda} - \boldsymbol{\beta}^*\|_2 \le 3\kappa_l^{-1} s^{1/2} \lambda,\tag{9}$$

as long as n $C(L, \kappa_l)s^2t$ for some $C(L, \kappa_l)$ depending only on (L, κ_l) . In particular, with $t = (1 + c) \log d$ for c > 0 we have

$$\|\widehat{\boldsymbol{\beta}}_{\tau,\lambda} - \boldsymbol{\beta}^*\|_2 \lesssim \kappa_l^{-1} L \tau_0 s^{1/2} \left\{ \frac{(1+c)\log d}{n} \right\}^{\min\{\delta/(1+\delta), 1/2\}}$$
 (10)

with probability at least $1 - d^{-c}$.

The above result demonstrates that the regularized Huber estimator with an adaptive robustification parameter converges at the rate $s^{1/2}\{(\log d)/n\}^{\min\{\delta/(1+\delta),1/2\}}$ with overwhelming probability. Provided the observation noise has finite variance, the proposed estimator performs as well as the Lasso with sub-Gaussian errors. We advocate the adaptive Huber regression method since sub-Gaussian condition often fails in practice (Wang, Peng and Li, 2015; Eklund, Nichols and Knutsson, 2016).

Remark 5.—As pointed out by a reviewer, if one pursues a sparsity-adaptive approach, such as the SLOPE (Bogdan et al., 2015; Bellec et al., 2018), the upper bound on \mathcal{L} -error can be improved from $\sqrt{s \log(d)/n}$ to $\sqrt{s \log(ed/s)/n}$. With heavy-tailed observation noise, it is interesting to investigate whether this sharper bound can be achieved by Huber-type regularized estimator. We leave this to future work as a significant amount of additional work is still needed. On the other hand, since $\log(ed/s) = 1 + \log d - \log s$ and s - n, $\log(ed/s)$ scales the same as $\log d > a \log n$ for some a > 1.

Remark 6.—Analogously to the low dimensional case, here we impose the sample size scaling $n \gtrsim s^2 \log d$ under fixed designs. In the supplementary material, we obtain minimax optimal ℓ_1 -, ℓ_2 - and prediction error bounds for $\hat{\beta}_{\tau, \lambda}$ with random designs under the scaling $n \gtrsim s \log d$.

Finally, we establish a matching lower bound for estimating β^* . Recall the definition of \mathcal{U}_n in Theorem 2.

Theorem 4 (Lower Bound in High Dimensions).—Assume that ε_i are independent from some distribution in $\mathscr{P}^{\upsilon_{\delta}}_{\delta}$. Suppose that Condition 3 holds with k=2s and $\gamma=0$. Further assume that there exists a set \mathscr{A} with $|\mathscr{A}|=s$ and $u\in\mathscr{U}_n$ such that $\mathbf{X}^{\mathsf{T}}_{\mathscr{A}}u/n_{\min}\geq\alpha$ for some $\alpha>0$. Then, for any A>0 and s-sparse estimator $\widehat{\beta}=\widehat{\beta}(y_1,...,y_n,A)$ possibly depending on A, we have

$$\sup_{\mathbb{P}} \mathbb{P} \left[\| \widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^* \|_2 \ge \nu_{\delta} \frac{\alpha s^{1/2}}{\kappa_u} \left(\frac{A \log d}{2n} \right)^{\min \left\{ \delta/(1+\delta), 1/2 \right\}} \right] \ge 2^{-1} d^{-A},$$

as long as $n - 2(A \log d + \log 2)$.

Together, Theorems 3 and 4 show that the regularized adaptive Huber estimator achieves the optimal rate of convergence in $\[\ell \]$ -error. The proof, which is given in the supplementary material, involves constructing a sub-class of binomial distributions for the regression errors. Unifying the results in low and high dimensions, we arrive at the claim (5) and thus the phase transition in Figure 1.

4 Extension to Heavy-tailed Designs

In this section, we extend the idea of adaptive Huber regression described in Section 2 to the case where both the covariate vector \mathbf{x} and the regression error \mathbf{e} exhibit heavy tails. We

focus on the high dimensional regime $d \gg n$, where $\beta^* \in \mathbb{R}^d$ is sparse with $s = \|\beta^*\|_0 \ll n$. Observe that, for Huber regression, the linear part of the Huber loss penalizes the residuals, and therefore robustifies the quadratic loss in the sense that outliers in the response space (caused by heavy-tailed observation noise) are down weighted or removed. Since no robustification is imposed on the covariates, intuitively, the adaptive Huber estimator may not be robust against heavy-tailed covariates. In what follows, we modify the adaptive Huber regression to robustify both the covariates and regression errors.

To begin with, suppose we observe independent data $\{(y_i, x_i)\}_{i=1}^n$ from (y, x), which follows the linear model $y = \langle x, \beta^* \rangle + \varepsilon$. To robustify x_i , we define truncated covariates $x_i^{\varpi} = (\psi_{\varpi}(x_{i1}), ..., \psi_{\varpi}(x_{id}))^{\mathrm{T}}$, where $\psi_{\varpi}(x) := \min\{\max(-\varpi, x), \varpi\}$ and $\varpi > 0$ is a tuning parameter. Then we consider the modified adaptive Huber estimator (see Fan et al. (2016) for a general robustification principle)

$$\widehat{\boldsymbol{\beta}}_{\tau, \, \boldsymbol{\varpi}, \, \lambda} \in \arg \min_{\boldsymbol{\beta} \in \, \mathbb{R}^d} \{ \mathcal{Z}_{\tau}^{\boldsymbol{\varpi}}(\boldsymbol{\beta}) + \lambda \| \boldsymbol{\beta} \|_1 \}, \tag{11}$$

where $\mathcal{L}_{\tau}^{\varpi}(\beta) = n^{-1} \sum_{i=1}^{n} \ell_{\tau}(y_i - \langle x_i^{\varpi}, \beta \rangle)$ and $\lambda > 0$ is a regularization parameter.

Let \mathcal{S} be the true support of $\boldsymbol{\beta}^*$ with sparsity $|\mathcal{S}| = s$, and denote by $\boldsymbol{H}_{\tau}^{\varpi}(\boldsymbol{\beta}) = \nabla^2 \mathcal{L}_{\tau}^{\varpi}(\boldsymbol{\beta})$ the Hessian matrix of the modified Huber loss. To investigate the deviation property of $\hat{\boldsymbol{\beta}}_{\tau,\varpi,\lambda}$, we impose the following mild moment assumptions.

Condition 4.

(i)
$$\mathbb{E}(\varepsilon) = 0$$
, $\sigma^2 = \mathbb{E}(\varepsilon^2) > 0$ and $v_3 := \mathbb{E}(\varepsilon^4) < \infty$; (ii) The covariate vector $\mathbf{x} = (x_1, ..., x_d)^{\mathrm{T}} \in \mathbb{R}^d$ is independent of ε and satisfies $M_4 := \max_{1 \le j \le d} \mathbb{E}(x_j^4) < \infty$.

We are now in place to state the main result of this section. Theorem 5 below demonstrates that the modified adaptive Huber estimator admits exponentially fast concentration when the convariates only have finite fourth moments, although at the cost of stronger scaling conditions.

Theorem 5.

Assume Condition 4 holds and let $H_{\tau}^{\varpi}(\cdot)$ satisfy Condition 2 with k = 2s, $\gamma = 3$ and $r > 12\kappa_l^{-1}\lambda s$. Then, the modified adaptive Huber estimator $\widehat{\beta}_{\tau, \varpi, \lambda}$ given in (11) satisfies, on the event $\mathscr{E}(\tau, \varpi, \lambda) = \{\|(\nabla \mathscr{L}_{\tau}^{\varpi}(\boldsymbol{\beta}^*))_{\mathcal{S}}\|_{\infty} \le \lambda/2\}$, that

$$\|\widehat{\boldsymbol{\beta}}_{\tau, \varpi, \lambda} - \boldsymbol{\beta}^*\|_2 \le 3\kappa_l^{-1} s^{1/2} \lambda$$
.

For any t > 0, let the triplet (τ, ϖ, λ) satisfy

$$\lambda \ge 2M_4 \|\boldsymbol{\beta}^*\|_2 s^{1/2} \varpi^{-2} + 8 \left\{ v_2 M_2^{1/2} + M_4 \|\boldsymbol{\beta}^*\|_2^3 s^{3/2} \right\} \tau^{-2} + 2 \left(2\sigma^2 M_2 + 2M_4 \|\boldsymbol{\beta}^*\|_2^2 s \right)^{1/2} \sqrt{\frac{t}{n}} + \varpi \tau \frac{t}{n},$$
(12)

where $v_2 = \mathbb{E}(|\varepsilon|^3)$ and $M_2 = \max_{1 \le j \le d} \mathbb{E}(x_j^2)$. Then $\mathbb{P}\{\mathscr{E}(\tau, \varpi, \lambda)\} \ge 1 - 2se^{-t}$.

Remark 7.

Assume that the quantities v_3 , M_4 and $\|\beta^*\|_2$ are all bounded. Taking $t \times \log d$ in (12), we see that $\hat{\beta}_{\tau, \varpi, \lambda}$ achieves a near-optimal convergence rate of order $s\sqrt{(\log d)/n}$ when the parameters (τ, ϖ, λ) scale as

$$\tau \approx s^{1/2} \left(\frac{n}{\log d}\right)^{1/4}$$
, $\varpi \approx \left(\frac{n}{\log d}\right)^{1/4}$ and $\lambda \approx \sqrt{\frac{s \log d}{n}}$.

We remark here that the theoretically optimal τ is different from that in the sub-Gaussian design case. See Theorem B.2 in the supplementary material.

5 Algorithm and Implementation

This section is devoted to computational algorithm and numerical implementation. We focus on the regularized adaptive Huber regression in (4), as (3) can be easily solved via the iteratively reweighted least squares method. To solve the convex optimization problem in (4), standard optimization algorithms, such as the cutting-plane or interior point method, are not scalable to large-scale problems.

In what follows, we describe a fast and easily implementable method using the local adaptive majorize-minimization (LAMM) principle (Fan et al., 2018). We say that a function $g(\beta|\beta^{(k)})$ majorizes $f(\beta)$ at the point $\beta^{(k)}$ if

$$g(\boldsymbol{\beta} \mid \boldsymbol{\beta}^{(k)}) \ge f(\boldsymbol{\beta})$$
 and $g(\boldsymbol{\beta}^{(k)} \mid \boldsymbol{\beta}^{(k)}) = f(\boldsymbol{\beta}^{(k)})$.

To minimize a general function $f(\beta)$, a majorize-minimization (MM) algorithm initializes at $\beta^{(0)}$, and then iteratively computes $\beta^{(k+1)} = \arg\min_{\beta \in \mathbb{R}^d} g(\beta \mid \beta^{(k)})$ for $k = 0, 1, \ldots$ The objective value of such an algorithm decreases in each step, since

$$f(\boldsymbol{\beta}^{(k+1)}) \stackrel{\text{major.}}{\leq} g(\boldsymbol{\beta}^{(k+1)} \mid \boldsymbol{\beta}^{(k)}) \stackrel{\text{min.}}{\leq} g(\boldsymbol{\beta}^{(k)} \mid \boldsymbol{\beta}^{(k)}) \stackrel{\text{init.}}{=} f(\boldsymbol{\beta}^{(k)}). \tag{13}$$

As pointed out by Fan et al. (2018), the majorization requirement only needs to hold locally at $\beta^{(k+1)}$ when starting from $\beta^{(k)}$. We therefore locally majorize $\mathcal{L}_{\tau}(\beta)$ in (4) at $\beta^{(k)}$ by an isotropic quadratic function

$$g_k(\boldsymbol{\beta} \mid \boldsymbol{\beta}^{(k)}) = \mathcal{L}_{\tau}(\boldsymbol{\beta}^{(k)}) + \langle \nabla \mathcal{L}_{\tau}(\boldsymbol{\beta}^{(k)}), \boldsymbol{\beta} - \boldsymbol{\beta}^{(k)} \rangle + \frac{\phi_k}{2} \|\boldsymbol{\beta} - \boldsymbol{\beta}^{(k)}\|_{2, \infty}^2$$

where ϕ_k is a quadratic parameter such that $g_k(\boldsymbol{\beta}^{(k+1)} | \boldsymbol{\beta}^{(k)}) \ge \mathcal{L}_{\tau}(\boldsymbol{\beta}^{(k+1)})$. The isotropic form also allows a simple analytic solution to the subsequent majorized optimization problem:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \left\{ \left\langle \nabla \mathcal{L}_{\tau} (\boldsymbol{\beta}^{(k)}), \boldsymbol{\beta} - \boldsymbol{\beta}^{(k)} \right\rangle + \frac{\phi_k}{2} \|\boldsymbol{\beta} - \boldsymbol{\beta}^{(k)}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1 \right\}. \tag{14}$$

Algorithm 1

LAMM algorithm for regularized adaptive Huber regression.

- 1: Algorithm: $\left\{ \boldsymbol{\beta}^{(k)}, \phi_k \right\}_{k=1}^{\infty} \leftarrow \text{LAMM}(\lambda, \boldsymbol{\beta}^{(0)}, \phi_0, \epsilon)$
- 2: **Input:** λ , $\beta^{(0)}$, ϕ_0 , ϵ
- 3: Initialize: $\phi^{(\ell,k)} \leftarrow \max\{\phi_0, \gamma_u^{-1}\phi^{(\ell,k-1)}\}$
- 4: **for** k = 0,1,... until $\| \boldsymbol{\beta}^{(k+1)} \boldsymbol{\beta}^{(k)} \|_2 \in \mathbf{do}$
- 5: Repeat
- 6: $\boldsymbol{\beta}^{(k+1)} \leftarrow T_{\lambda, \phi_k} (\boldsymbol{\beta}^{(k)})$
- 7: If $g_k(\pmb{\beta}^{(k+1)} \mid \pmb{\beta}^{(k)}) < \mathcal{L}_{\tau}(\pmb{\beta}^{(k+1)})$ then $\phi_k \leftarrow \gamma_u \phi_k$
- 8: Until $g_k(\boldsymbol{\beta}^{(k+1)} \mid \boldsymbol{\beta}^{(k)}) \ge \mathcal{L}_{\tau}(\boldsymbol{\beta}^{(k+1)})$
- 9: **Return** { $\boldsymbol{\beta}^{(k+1)}$, $\boldsymbol{\phi}_k$ }
- 10: end for
- 11: Output: $\hat{\boldsymbol{\beta}} = \boldsymbol{\beta}^{(k+1)}$

It can be shown that (14) is minimized at

$$\boldsymbol{\beta}^{(k+1)} = T_{\lambda}, \phi_k(\boldsymbol{\beta}^{(k)}) = S(\boldsymbol{\beta}^{(k)} - \phi_k^{-1} \nabla \mathcal{L}_{\tau}(\boldsymbol{\beta}^{(k)}), \phi_k^{-1} \lambda),$$

where $S(\mathbf{x}, \lambda)$ is the soft-thresholding operator defined by $S(\mathbf{x}, \lambda) = \operatorname{sign}(x_j) \max(|x_j| - \lambda, 0)$. The simplicity of this updating rule is due to the fact that (14) is an unconstrained optimization problem.

To find the smallest ϕ_k such that $g_k(\boldsymbol{\beta}^{(k+1)} \mid \boldsymbol{\beta}^{(k)}) \geq \mathcal{L}_{\tau}(\boldsymbol{\beta}^{(k+1)})$, the basic idea of LAMM is to start from a relatively small isotropic parameter $\phi_k = \phi_k^0$ and then successfully inflate ϕ_k by a factor $\gamma_u > 1$, say $\gamma_u = 2$. If the solution satisfies $g_k(\boldsymbol{\beta}^{(k+1)} \mid \boldsymbol{\beta}^{(k)}) \geq \mathcal{L}_{\tau}(\boldsymbol{\beta}^{(k+1)})$, we stop and obtain $\boldsymbol{\beta}^{(k+1)}$, which makes the target value non-increasing. We then continue with the iteration to produce next solution until the solution sequence $\{\boldsymbol{\beta}^{(k)}\}_{k=1}^{\infty}$ converges. A simple stopping criterion is $\|\boldsymbol{\beta}^{(k+1)} - \boldsymbol{\beta}^{(k)}\|_2 = \epsilon$ for a sufficiently small ϵ , say 10^{-4} . We refer to Fan et al. (2018) for a detailed complexity analysis of the LAMM algorithm.

6 Numerical Studies

6.1 Tuning Parameter and Finite Sample Performance

For numerical studies and real data analysis, in the case where the actual order of moments is unspecified, we presume the variance is finite and therefore choose robustification and regularization parameters as follows:

$$\tau = c_{\tau} \times \hat{\sigma} \left(\frac{n_{\rm eff}}{t}\right)^{1/2}$$
 and $\lambda = c_{\lambda} \times \hat{\sigma} \left(\frac{n_{\rm eff}}{t}\right)^{1/2}$,

where $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (y_i - \bar{y})^2$ with $\bar{y} = n^{-1} \sum_{i=1}^n y_i$ serves as a crude preliminary estimate of σ^2 , and the parameter t controls the confidence level. We set $t = \log n$ for simplicity except for the phase transition plot. The constant c_{τ} and c_{λ} are chosen via 3-fold cross-validation from a small set of constants, say $\{0.5, 1, 1.5\}$.

We generate data from the linear model

$$y_i = \langle \mathbf{x}_i, \boldsymbol{\beta}^* \langle + \boldsymbol{\varepsilon}_i, \quad i = 1, ..., n,$$
 (15)

where ε_i are i.i.d. regression errors and $\beta^* = \left(5, -2, 0, 0, 3, \underbrace{0, \dots, 0}_{d-5}\right)^T \in \mathbb{R}^d$. Independent of ε_i ,

we generate x_i from standard multivariate normal distribution $\mathcal{N}(\theta, I_d)$. In this section, we set (n, d) = (100, 5), and generate regression errors from three different distributions: the normal distribution $\mathcal{N}(0, 4)$, the *t*-distribution with degrees of freedom 1.5, and the log-normal distribution $\log \mathcal{N}(0, 4)$. Both *t* and log-normal distributions are heavy-tailed, and produce outliers with high chance.

The results on *L*-error for adaptive Huber regression and the least squares estimator, averaged over 100 simulations, are summarized in Table 1. In the case of normally distributed noise, the adaptive Huber estimator performs as well as the least squares. With heavy-tailed regression errors following Student's *t* or log-normal distribution, the adaptive Huber regression significantly outperforms the least squares. These empirical results reveal that adaptive Huber regression prevails across various scenarios: not only it provides more reliable estimators in the presence of heavy-tailed and/or asymmetric errors, but also loses almost no efficiency at the normal model.

6.2 Phase Transition

In this section, we validate the phase transition behavior of $\|\hat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_2$ empirically. We generate continuous responses according to (15), where $\boldsymbol{\beta}^*$ and \boldsymbol{x}_i are set the same way as before. We sample independent errors as $\boldsymbol{e}_i \sim t_{\rm df}$, Student's *t*-distribution with df degrees of freedom. Note that $t_{\rm df}$ has finite (1+ δ)-th moments provided $\delta < {\rm df} - 1$ and infinite df-th moment. Therefore, we take $\delta = {\rm df} - 1 - 0.05$ throughout.

In low dimensions, we take (n, d) = (500, 5) and a sequence of degrees of freedoms (df's): df $\in \{1.1, 1.2, \dots, 3.0\}$; in high dimensions, we take (n, d) = (500, 1000), with the same choice

of df's. Tuning parameters (τ , λ) are calibrated similarly as before. Indicated by the main theorems, it holds

1. (Low dimension):

$$-\log\left(\left\|\widehat{\boldsymbol{\beta}}_{\tau}-\boldsymbol{\beta}^{*}\right\|_{2}\right)\asymp\frac{\delta}{1+\delta}\log\left(n\right)-\frac{1}{1+\delta}\log\left(v_{\delta}\right),\quad0<\delta\leq1,$$

2. (High dimension):

$$-\log\left(\|\widehat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_2\right) \asymp \frac{\delta}{1+\delta}\log\left(\frac{n}{\log d}\right) - \frac{1}{1+\delta}\log\left(v_{\delta}\right), \quad 0 < \delta \leq 1,$$

which are approximately $\log(n) \times \delta/(1+\delta)$ and $\log(n/\log d) \times \delta/(1+\delta)$, respectively, when *n* is sufficiently large.

Figure 2 displays the negative $\log \mathcal{L}$ -error versus δ in both low and high dimensions over 200 repetitions for each (n, d) combination. The empirically fitted curve closely resembles the theoretical curve displayed in Figure 1. These numerical results are in line with the theoretical findings, and empirically validate the phase transition of the adaptive Huber estimator.

We also compared the $\underline{\ell}$ -error of the adaptive Huber estimator with that of the OLS estimator for *t*-distributed errors with varying degrees of freedoms. As shown in Figure 3, adaptive Huber exhibits a significant advantage especially when δ is small. The OLS slowly catches up as δ increases.

6.3 Effective Sample Size

In this section, we verify the scaling behavior of $\|\hat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_2$ with respect to the effective sample size. The data are generated in the same way as before except that the errors are drawn from $t_{1.5}$. As discussed in the previous subsection, we take $\delta = 0.45$ and then choose the robustification parameter as $\tau = c_{\tau}\hat{v}_{\delta}(n/\log d)^{1/(1+\delta)}$, where \hat{v}_{δ} is the $(1+\delta)$ -th sample absolute central moment. For simplicity, we take $c_{\tau} = 0.5$ here since our goal is to demonstrate the scaling behavior as n grows, instead of to achieve the best finite-sample performance.

The left panel of Figure 4 plots the \mathcal{L} -error $\|\widehat{\boldsymbol{\beta}}_{\tau,\lambda} - \boldsymbol{\beta}^*\|_2$ versus sample size over 200 repetitions when the dimension $d \in \{100, 500, 5000\}$. In all three settings, the \mathcal{L} -error decays as the sample size grows. As expected, the curves shift to the right when the dimension increases. Theorem 3 provides a specific prediction about this scaling behavior: if we plot the \mathcal{L} -error versus effective sample size ($n/\log d$), the curves should align roughly with the theoretical curve

$$\|\widehat{\boldsymbol{\beta}}_{\tau,\;\lambda} - \boldsymbol{\beta}^*\|_2 \asymp \left(\frac{n}{\log d}\right)^{-\delta/(1+\delta)}$$

for different values of *d*. This is validated empirically by the right panel of Figure 4. This near-perfect alignment in Figure 4 is also observed by Wainwright (2009) for Lasso with sub-Gaussian errors.

6.4 A Real Data Example: NCI-60 Cancer Cell Lines

We apply the proposed methodologies to the NCI-60, a panel of 60 diverse human cancel cell lines. The NCI-60 consists of data on 60 human cancer cell lines and can be downloaded from http://discover.nci.nih.gov/cellminer/. More details on data acquisition can be found in Shankavaram et al. (2007). Our aim is to investigate the effects of genes on protein expressions. The gene expression data were obtained with an Affymetrix HG-U133A/B chip, \log_2 transformed and normalized with the guanine dytosine robust multi-array analysis. We then combined the same gene expression variables measured by multiple different probes into one by taking their median, resulting in a set of p = 17, 924 predictors. The protein expressions based on 162 antibodies were acquired via reverse-phase protein lysate arrays in their original scale. One observation had to be removed since all values were missing in the gene expression data, reducing the number of observations to n = 59.

We first center all the protein and gene expression variables to have mean zero, and then plot the histograms of the kurtosises of all expressions in Figure 5. The left panel in the figure shows that, 145 out of 162 protein expressions have kurtosises larger than 3; and 49 larger than 9. In other words, more than 89.5% of the protein expression variables have tails heavier than the normal distribution, and about 30.2% are severely heavy-tailed with tails flatter than t_5 , the t-distribution with 5 degrees of freedom. Similarly, about 36.5% of the gene expression variables, even after the \log_2 -transformation, still exhibit empirical kurtosises larger than that of t_5 . This suggests that, regardless of the normalization methods used, genomic data can still exhibit heavy-tailedness, which was also pointed out by Purdom and Holmes (2005).

We order the protein expression variables according to their scales, measured by the standard deviation. We show the results for the protein expressions based on the KRT19 antibody, the protein keratin 19, which constitutes the variable with the largest standard deviation, serving as one dependent variable. KRT19, a type I keratin, also known as Cyfra 21–1, is encoded by the *KRT19* gene. Due to its high sensitivity, the KRT19 antibody is the most used marker for the tumor cells disseminated in lymph nodes, peripheral blood, and bone marrow of breast cancer patients (Nakata et al., 2004). We denote the adaptive Huber regression as AHuber, and that with truncated covariates as TAHuber. We then compare AHuber and TAHuber with Lasso. Both regularization and robustification parameters are chosen by the ten-fold cross-validation.

To measure the predictive performance, we consider a robust prediction loss: the mean absolute error (MAE) defined as

$$MAE(\widehat{\boldsymbol{\beta}}) = \frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} |y_i^{\text{test}} - \langle \mathbf{x}_i^{\text{test}}, \widehat{\boldsymbol{\beta}} \rangle|,$$

where y_i^{test} and x_i^{test} , $i = 1, \ldots, n_{\text{test}}$, denote the observations of the response and predictor variables in the test data, respectively. We report the MAE via the leave-one-out cross-validation. Table 2 reports the MAE, model size and selected genes for the considered methods. TAHuber clearly shows the smallest MAE, followed by AHuber and Lasso. The Lasso produces a fairly large model despite the small sample. Now it has been recognized that Lasso tends to select many noise variables along with the significant ones, especially when data exhibit heavy tails.

The Lasso selects a model with 42 genes but excludes the KRT19 gene, which encodes the protein keratin 19. AHuber finds 11 genes including KRT19. TAHuber results in a model with 7 genes: KRT19, MT1E, ARHGAP29, MALL, ANXA3, MAL2, BAMBI. First, KRT19 encodes the keratin 19 protein. It has been reported in Wu et al. (2008) that the MT1E expression is positively correlated with cancer cell migration and tumor stage, and the MT1E isoform was found to be present in estrogen receptor-negative breast cancer cell lines (Friedline et al., 1998). ANXA3 is highly expressed in all colon cell lines and all breast-derived cell lines positive for the oestrogen receptor (Ross et al., 2000). A very recent study in Zhou et al. (2017) suggested that silencing the ANXA3 expression by RNA interference inhibits the proliferation and invasion of breast cancer cells. Moreover, studies in Shangguan et al. (2012) and Kretzschmar (2000) showed that the BAMBI transduction significantly inhibited TGF- β /Smad signaling and expression of carcinoma-associated fibroblasts in human bone marrow mesenchymal stem cells (BM-MSCs), and disrupted the cytokine network mediating the interaction between MSCs and breast cancer cells. Consequently, the BAMBI transduction abolished protumor effects of BM-MSCs in vitro and in an orthotopic breast cancer xenograft model, and instead significantly inhibited growth and metastasis of coinoculated cancer. MAL2 expressions were shown to be elevated at both RNA and protein levels in breast cancer (Shehata et al., 2008). It has also been shown that MALL is associated with various forms of cancer (Oh et al., 2005; Landi et al., 2014). However, the effect of ARHGAP29 and MALL on breast cancer remains unclear and is worth further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank the Editor, Associate Editor, and two anonymous referees for their valuable comments. This work is supported by a Connaught Award, NSERC Grant RGPIN-2018-06484, NSF Grants DMS-1662139, DMS-1712591, and DMS-1811376, NIH Grant 2R01-GM072611-14, and NSFC Grant 11690014.

References

Alquier P, Cottet V and Lecué G (2017). Estimation bounds and sharp oracle inequalities of regularized procedures with Lipschitz loss functions. Preprint. Available at arXiv:1702.01402.

Belloni A and Chernozhukov V (2011). 4-penalized quantile regression in high-dimensional sparse models. The Annals of Statistics, 39 82–130.

Bellec PC, Lecué G and Tsybakov AB (2018). Slope meets Lasso: Improved oracle bounds and optimality. The Annals of Statistics, 46 3603–3642.

Bickel PJ, Ritov Y and Tsybakov AB (2009). Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics, 37 1705–1732.

- Bogdan M, van den Berg E, Sabatti C, Su W and Candès EJ (2015). SLOPE-Adaptive variable selection via convex optimization. The Annals of Applied Statistics, 9 1103–1140. [PubMed: 26709357]
- Brownlees C, Joly E and Lugosi G (2015). Empirical risk minimization for heavy-tailed losses. The Annals of Statistics, 43 2507–2536.
- Bühlmann Pand van de Geer S (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Heidelberg.
- Catoni O (2012). Challenging the empirical mean and empirical variance: A deviation study. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 48 1148–1185.
- Catoni O (2016). PAC-Bayesian bounds for the Gram matrix and least squares regression with a random design. Preprint. Available at arXiv:1603.05229.
- Chen M, Gao C and Ren Z (2018). Robust covariance and scatter matrix estimation under Huber's contamination model. The Annals of Statistics, 46, 1932–1960.
- Cont R (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1, 223–236.
- Delaigle A, Hall P and Jin J (2011). Robustness and accuracy of methods for high dimensional data analysis based on Student's *t*-statistic. Journal of the Royal Statistical Society, Series B, 73 283–301
- Devroye L, Lerasle M, Lugosi G and Oliveira RI (2016). Sub-Gaussian mean estimators. The Annals of Statistics, 44 2695–2725.
- Efron B, Hastie T, Johnstone I and Tibshirani R (2004). Least angle regression. The Annals of Statistics, 32 407–499.
- Eklund A, Nichols T and Knutsson H (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113 7900–7905.
- Fan J, Fan Y and Barut E (2014). Adaptive robust variable selection. The Annals of Statistics, 42 324–351. [PubMed: 25580039]
- Fan J, Li Q and Wang Y (2017). Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions. Journal of the Royal Statistical Society, Series B, 79 247– 265.
- Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96 1348–1360.
- Fan J, Liu H, Sun Q and Zhang T (2018). I-LAMM for sparse learning: Simultaneous control of algorithmic complexity and statistical error. The Annals of Statistics, 96 1348–1360.
- Fan J, Wang W and Zhu Z (2016). A shrinkage principle for heavy-tailed data: High-dimensional robust low-rank matrix recovery. Available at arXiv:1603.08315.
- Friedline JA, Garrett SH, Somji S, Todd JH and Sens DA (1998). Differential expression of the MT-1E gene in estrogen-receptor-positive and-negative human breast cancer cell lines. The American Journal of Pathology, 152 23–27. [PubMed: 9422519]
- Giulini I (2017). Robust PCA and pairs of projections in a Hilbert space. Electronic Journal of Statistics, 11 3903–3926.
- Hastie T, Tibshirani R and Wainwright MJ (2015). Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press.
- He X and Shao Q-M (1996). A general Bahadur representation of *M*-estimators and its application to linear regression with nonstochastic designs. The Annals of Statistics, 24 2608–2630.
- He X and Shao Q-M (2000). On parameters of increasing dimensions. Journal of Multivariate Analysis, 73 120–135.
- Huber PJ (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35 73–101.
- Huber PJ (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. The Annals of Statistics, 1 799–821.

- Koenker R (2005). Quantile Regression. Cambridge University Press, New York.
- Kretzschmar M (2000) Transforming growth factor- β and breast cancer: transforming growth factor- β / Smad signaling defects and cancer. Breast Cancer Research, 2 107–115. [PubMed: 11250700]
- Landi A, Vermeire J, Iannucci V, Vanderstraeten H, Naessens E, Bentahir M and Verhasselt B (2014). Genome-wide shRNA screening identifies host factors involved in early endocytic events for HIV-1-induced CD4 down-regulation. Retrovirology, 11 118–129. [PubMed: 25496667]
- Lepski OV (1991). Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates. IEEE Transactions on Information Theory, 36 682–697.
- Liu RY (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18 405–414.
- Liu RY, Parelius JM and Singh K (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh). The Annals of Statistics, 27 783–858.
- Loh P and Wainwright MJ (2015). Regularized *M*-estimators with nonconvexity: Statistical and algorithmic theory for local optima. Journal of Machine Learning Research, 16 559–616.
- Mammen E (1989). Asymptotics with increasing dimension for robust regression with applications to the bootstrap. The Annals of Statistics, 17 382–400.
- Minsker S (2018). Sub-Gaussian estimators of the mean of a random matrix with heavy-tailed entries. The Annals of Statistics, 46 2871–2903.
- Mizera I (2002). On depth and deep points: A calculus. The Annals of Statistics, 30 1681–1736.
- Mizera I and Müller CH (2004). Location-scale depth. Journal of the American Statistical Association, 99 949–966.
- Nakata B, Takashima T, Ogawa Y, Ishikawa T and Hirakawa K (2004). Serum CYFRA 21–1 (cytokeratin-19 fragments) is a useful tumour marker for detecting disease relapse and assessing treatment efficacy in breast cancer. British Journal of Cancer, 91 873–878. [PubMed: 15280913]
- Oh JH, Yang JO, Hahn Y, Kim MR, Byun SS, Jeon YJ, Kim JM, Song KS, Noh SM, Kim S and Yoo HS (2005). Transcriptome analysis of human gastric cancer. Mammalian Genome, 16 942–954. [PubMed: 16341674]
- Portnoy S (1985). Asymptotic behavior of M estimators of p regression parameters when p^2/n is large; II. Normal approximation. The Annals of Statistics, 13 1403–1417.
- Purdom E and Holmes SP (2005). Error distribution for gene expression data. Statistical Applications in Genetics and Molecular Biology, 4: 16.
- Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer W, Jeffrey SS, Van de Rijn M, Pergamenschikov A, Lee JCF, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D and Brown PO (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24, 227–235. [PubMed: 10700174]
- Shangguan L, Ti X, Krause U, Hai B, Zhao Y, Yang Z and Liu F (2012). Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Sells, 30 2810–2819.
- Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, Reimers MA, Scherf U Kahn A, Dolginow D, Cossman J, Kaldjian EP, Scudiero DA, Petricoin E, Liotta L, Lee JK and Weinstein JN (2007). Transcript and protein expression profiles of the NCI-60 cancer cell panel: An integromic microarray study. Molecular Cancer Therapeutics, 40 2877–2909.
- Shehata M, Bieche I, Boutros R, Weidenhofer J, Fanayan S, Spalding L, Zeps N, Byth K, Bright RK, Lidereau R and Byrne JA (2008). Nonredundant functions for tumor protein D52-like proteins support specific targeting of TPD52. Clinical Cancer Research, 14 5050–5060. [PubMed: 18698023]
- Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58 267–288.
- Tukey JW (1975). Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians, 2 523–531.
- Wainwright MJ (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using 4-constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55 2183–2202.

Wang L (2013). The L_1 penalized LAD estimator for high dimensional linear regression. Journal of Multivariate Analysis, 120 135–151.

- Wang L, Peng B and Li R (2015). A high-dimensional nonparametric multivariate test for mean vector. Journal of the American Statistical Association, 110 1658–1669. [PubMed: 26848205]
- Wang L, Wu Y and Li R (2012). Quantile regression for analyzing heterogeneity in ultra-high dimension. Journal of the American Statistical Association, 107 214–222. [PubMed: 23082036]
- Wu Y, Siadaty MS, Berens ME, Hampton GM and Theodorescu D (2008). Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein E1 and nicotinamide N-methyltransferase as novel regulators of cell migration. Oncogene, 27 6679–6689. [PubMed: 18724390]
- Yohai VJ and Maronna RA (1979). Asymptotic behavior of *M*-estimators for the linear model. The Annals of Statistics, 7 258–268.
- Zheng Q, Peng L and He X (2015). Globally adaptive quantile regression with ultra-high dimensional data. The Annals of Statistics, 43 2225–2258. [PubMed: 26604424]
- Zhou T, Li Y, Yang L, Liu L, Ju Y and Li C (2017). Silencing of ANXA3 expression by RNA interference inhibits the proliferation and invasion of breast cancer cells. Oncology Reports, 37 388–398. [PubMed: 27878264]
- Zuo Y and Serfling R (2000). General notions of statistical depth function. The Annals of Statistics, 28 461–482.

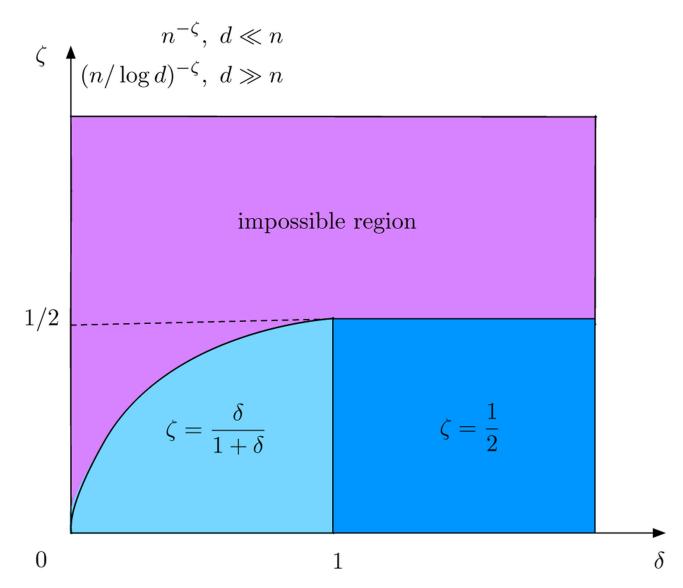


Figure 1: Phase transition in terms of \mathcal{L} -error for the adaptive Huber estimator. With fixed effective dimension, $\|\hat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_2 \approx n_{\text{eff}}^{-\delta/(1+\delta)}$, when $0 < \delta < 1$; $\|\hat{\boldsymbol{\beta}}_{\tau} - \boldsymbol{\beta}^*\|_2 \approx n_{\text{eff}}^{-1/2}$, when δ 1. Here n_{eff} is the effective sample size: $n_{\text{eff}} = n n_{\text{eff}} = n \log d$ in high dimensions.

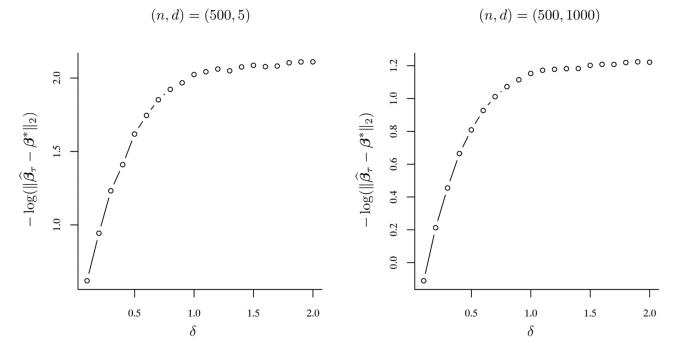


Figure 2: Negative $\log \ell_2$ -error versus δ in low (left panel) and high (right panel) dimensions.

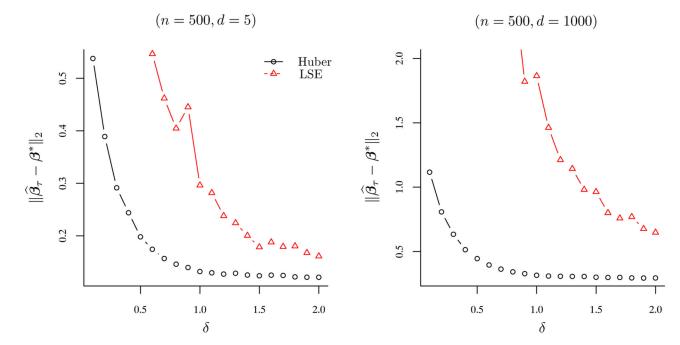


Figure 3: Comparison between the (regularized) adaptive Huber estimator and the (regularized) least squares estimator under ℓ_2 -error.

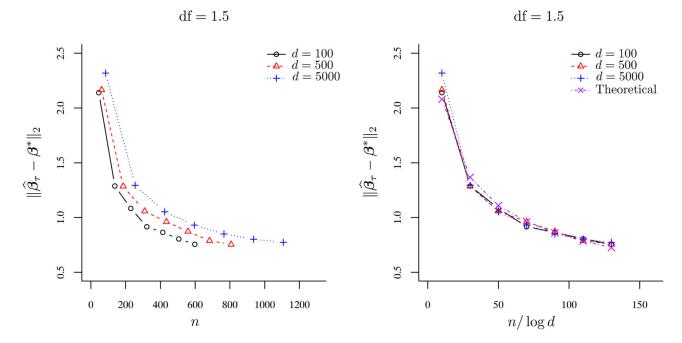


Figure 4: The ℓ -error versus sample size n (left panel) and the ℓ -error versus effective sample size $n_{\rm eff} = n/\log d$ (right panel).

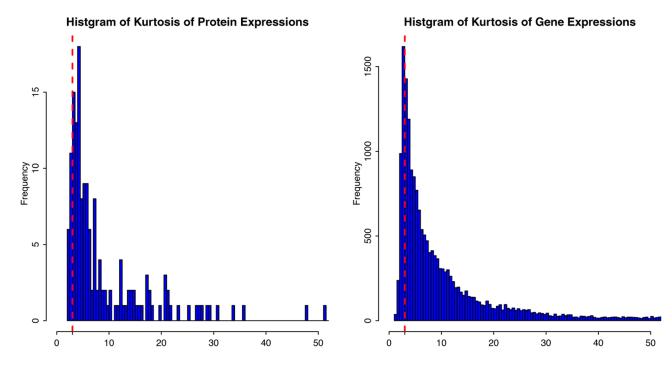


Figure 5: Histogram of kurtosises for the protein and gene expressions. The dashed red line at 3 is the kurtosis of a normal distribution.

Table 1:

Results for adaptive Huber regression (AHR) and ordinary least squares (OLS) when n = 100 and d = 5. The mean and standard deviation (std) of \mathcal{L} -error based on 100 simulations are reported.

Noise	AHR		OLS	
	mean	std	mean	std
Normal	0.566	0.189	0.567	0.191
Student's t	0.806	0.651	1.355	2.306
Log-normal	3.917	3.740	8.529	13.679

Table 2:

We report the mean absolute error (MAE) for protein expressions based on the KRT19 antibody from the NCI-60 cancer cell lines, computed from leave-one-out cross-validation. We also report the model size and selected genes for each method.

Method	MAE	Size	Selected Genes
Lasso	7.64	42	FBLIMI, MTIE, EDN2, F3, FAMI02B, S100A14, LAMB3, EPCAM, FNI, TM4SFI, UCHLI, NMU, ANXA3, PLAC8, SPP1, TGFBI, CD74, GPX3, EDN1, CPVL, NPTX2, TES, AKR1B10, CA2, TSPYL5, MAL2, GDA, BAMBI, CST6, ADAMTS15, DUSP6, BTG1, LGALS3, IFI27, MEIS2, TOX3, KRT23, BST2, SLPI, PLTP, XIST, NGFRAP1
AHuber	6.74	11	MT1E, ARHGAP29, CPCAM, VAMP8, MALL, ANXA3, MAL2, BAMBI, LGALS3, KRT19, TFF3
TAHuber	5.76	7	MTIE, ARHGAP29, MALL, ANXA3, MAL2, BAMBI, KRT19