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A B S T R A C T   

The ongoing COVID-19 corona virus outbreak has caused a global disaster with its deadly spreading. Due to the 
absence of effective remedial agents and the shortage of immunizations against the virus, population vulnera-
bility increases. In the current situation, as there are no vaccines available; therefore, social distancing is thought 
to be an adequate precaution (norm) against the spread of the pandemic virus. The risks of virus spread can be 
minimized by avoiding physical contact among people. The purpose of this work is, therefore, to provide a deep 
learning platform for social distance tracking using an overhead perspective. The framework uses the YOLOv3 
object recognition paradigm to identify humans in video sequences. The transfer learning methodology is also 
implemented to increase the accuracy of the model. In this way, the detection algorithm uses a pre-trained al-
gorithm that is connected to an extra trained layer using an overhead human data set. The detection model 
identifies peoples using detected bounding box information. Using the Euclidean distance, the detected bounding 
box centroid’s pairwise distances of people are determined. To estimate social distance violations between 
people, we used an approximation of physical distance to pixel and set a threshold. A violation threshold is 
established to evaluate whether or not the distance value breaches the minimum social distance threshold. In 
addition, a tracking algorithm is used to detect individuals in video sequences such that the person who violates/ 
crosses the social distance threshold is also being tracked. Experiments are carried out on different video se-
quences to test the efficiency of the model. Findings indicate that the developed framework successfully dis-
tinguishes individuals who walk too near and breaches/violates social distances; also, the transfer learning 
approach boosts the overall efficiency of the model. The accuracy of 92% and 98% achieved by the detection 
model without and with transfer learning, respectively. The tracking accuracy of the model is 95%.   

1. Introduction 

COVID-19 originated from Wuhan, China, has affected many coun-
tries worldwide since December 2019. On March 11, 2020, the World 
Health Organization (WHO) announced it a pandemic diseases as the 
virus spread through 114 countries, caused 4000 deaths and 118,000 
active cases (WHO; W.H. Organization, 2020). On October 7, 2020, they 
reported more than 35,537,491 confirmed COVID-19 cases, including 1, 
042,798 deaths. The latest number of infected people due to pandemic is 
shown in Fig. 1 (W. C. D. C. Dashboard). Many healthcare organizations, 
scientists, and medical professionals are searching for proper vaccines 
and medicines to overcome this deadly virus, although no progress is 

reported to-date. To stop the virus spread, the global community is 
looking for alternate ways. The virus mainly spreads in those people; 
who are in close contact with each other (within 6 feet) for a long period. 
The virus spreads when an infected person sneezes, coughs, or talks, the 
droplets from their nose or mouth disperse through the air and affect 
nearby peoples. The droplets also transfer into the lungs through the 
respiratory system, where it starts killing lung cells. Recent studies show 
that individuals with no symptoms but are infected with the virus also 
play a part in the virus spread (W. C. D. C. Dashboard). Therefore, it is 
necessary to maintain at least 6 feet distance from others, even if people 
do not have any symptoms. 

Social distancing associates with the measures that overcome the 
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virus’ spread, by minimizing the physical contacts of humans, such as 
the masses at public places (e.g., shopping malls, parks, schools, uni-
versities, airports, workplaces), evading crowd gatherings, and main-
taining an adequate distance between people (Adlhoch, 2020; Ferguson 
et al., 2005). Social distancing is essential, particularly for those people 
who are at higher risk of serious illness from COVID-19. By decreasing 
the risk of virus transmission from an infected person to a healthy, the 
virus’ spread and disease severity can be significantly reduced (Statis-
tica) Fig. 2. If social distancing is implemented at the initial stages, it can 
perform a pivotal role in overcoming the virus spread and preventing the 
pandemic disease’s peak, as illustrated in Fig. 3 (Harvard). It can be 
observed that social distancing can decrease the number of infected 
patients and reduce the burden on healthcare organizations. It also 
lowers the mortality rates by assuring that the number of infected cases 
(patients) does not surpass the public healthcare capability (Nguyen 
et al., 2020). 

In the past decades, computer vision, machine learning, and deep 

learning have shown promising results in several daily life problems. 
Recent improvement in deep learning allows object detection tasks 
(Brunetti, Buongiorno, Trotta, & Bevilacqua, 2018) more effective. Re-
searchers (Punn, Sonbhadra, & Agarwal, 2020b; Ramadass, Arunacha-
lam, & Sagayasree, 2020; Yang, Yurtsever, Renganathan, Redmill, & 
Özgüner, 2020), often utilize these methods to measure social distancing 
among people across the moving frames, as seen in Fig. 4. To determine 
the distancing between people, clustering and distance-based methods 
are utilized. From Fig. 4, it can be seen that most of the methods are 
developed using frontal or side view video sequences, which requires a 
proper camera calibration to map pixels to distance for real easily, 
measurable units (i.e., feet, meters, etc.). Secondly, if we assume a 
top-down approach, i.e., an overhead view approach, then the distance 
calculations from the overhead view will lead to a better distance 
approximation and wide coverage of the wide scene. 

In this work, we used an overhead view to provide an effective 
framework for social distance monitoring. Some scholars, e.g. Ahmed 

Fig. 1. Latest number confirmed cases and deaths reported by WHO due to pandemic ().  

I. Ahmed et al.                                                                                                                                                                                                                                   



Sustainable Cities and Society 65 (2021) 102571

3

and Adnan (2017), Ahmad, Ahmed, Khan, Qayum, and Aljuaid (2020), 
Ahmed, Din, Jeon, and Piccialli (2019), Ahmed, Ahmad, Adnan, Ahmad, 
and Khan (2019), Ahmed, Ahmad, Piccialli, Sangaiah, and Jeon (2018), 
Ahmad, Ahmed, Ullah, Khan, and Adnan (2018), Choi, Moon, and Yoo 
(2015), and Migniot and Ababsa (2016) use an overhead perspective for 
human detection and tracking. The overhead perspective offers a better 
field of view and overcomes the issues of occlusion, thereby playing a 
key role in social distance monitoring to compute the distance between 
peoples. It might help overcome computation, communication load, 
energy consumption, human resource, and installation costs (Ahmad 
et al., 2019). This work aims to present a deep learning-based social 
distance monitoring framework for the public campus environment 
from an overhead perspective. A deep learning model, i.e., YOLOv3 (You 
Only Look Once) (Redmon & Farhadi, 2018), is applied for human 
detection. The current model (pre-trained on frontal or normal view 
data sets) is initially tested on the overhead data set. Transfer learning is 
also used to improve the efficiency of the detection model. To the best of 
our knowledge, this work could be considered as the first effort to use an 
overhead view perspective to monitor social distance with transfer 
learning. The detection model detects humans and gives bounding box 
information. After human detection, the Euclidean distance between 
each detected centroid pair is computed using the detected bounding 
box and its centroid information. A predefined minimum social distance 
violation threshold is specified using pixel to distance assumptions. To 

check, either the calculated distance comes under the violation set or 
not, the estimated information is matched with the violation threshold. 
The bounding box’s color is formerly initialized as green; if the bounding 
box comes under the violation set, its color is updated to red. In addition, 
the centroid tracking algorithm is used to track a person who violated 
the social distancing threshold. The key goals of this work are as follows: 

• To present a deep learning-based social distance monitoring frame-
work using an overhead view perspective.  

• To deploy pre-trained YOLOv3 for human detection and computing 
their bounding box centroid information. In addition, a transfer 
learning method is applied to enhance the performance of the model. 
The additional training is performed with overhead data set, and the 
newly trained layer is appended to the pre-trained model.  

• In order to track the social distance between individuals, the 
Euclidean distance is used to approximate the distance between each 
pair of the centroid of the bounding box detected. In addition, a 
social distance violation threshold is specified using a pixel to dis-
tance estimation.  

• Utilizing a centroid tracking algorithm to keep track of the person 
who violates the social distance threshold.  

• To assess the performance of pre-trained YOLOv3 by evaluating it on 
an overhead data set. The output of the detection framework is 
assessed with and without the transfer learning. Furthermore, the 

Fig. 2. Importance of social distancing.  

Fig. 3. Effect of social distancing: the peak of pandemic cases is decreasing and meeting with available healthcare capability ().  
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model performance is also compared with other deep learning 
models. 

The rest of the work discussed in the paper is structured as follows. 
The related work is presented in Section 2. A deep learning-based social 
distance monitoring framework has been presented in Section 3. The 
overhead view data set used for training and testing during experi-
mentation is briefly discussed in Section 4. The detailed analysis of 
output results and performance evaluation of the model with and 
without transfer learning is also illustrated in this Section. The conclu-
sion of the given work with potential future plans is provided in Section 
5. 

2. Literature review 

After the rise of the COVID-19 pandemic since late December 2019, 
Social distancing is deemed to be an utmost reliable practice to prevent 
the contagious virus transmission and opted as standard practice on 
January 23, 2020 (B. News, 2020). During one month, the number of 
cases rises exceptionally, with two thousand to four thousand new 
confirmed cases reported per day in the first week of February 2020. 
Later, there has been a sign of relief for the first time for five successive 
days up to March 23, 2020, with no new confirmed cases (N. H. C. of the 
Peoples Republic of China, 2020). This is because of the social distance 
practice initiated in China and, latterly, adopted by worldwide to control 
COVID-19. Ainslie et al. (2020) investigated the relationship between 
the region’s economic situation and the social distancing strictness. The 
study revealed that moderate stages of exercise could be allowed for 
evading a large outbreak. So far, many countries have used 
technology-based solutions (Punn, Sonbhadra, & Agarwal, 2020a) to 
overcome the pandemic loss. Several developed countries are employing 
GPS technology to monitor the movements of the infected and suspected 
individuals. Nguyen et al. (2020) provides a survey of different 
emerging technologies, including Wi-fi, Bluetooth, smartphones, and 
GPS, positioning (localization), computer vision, and deep learning that 
can play a crucial role in several practical social distancing scenarios. 
Some researchers utilize drones and other surveillance cameras to detect 
crowd gatherings (Harvey & LaPlace, 2019; Robakowska et al., 2017). 

Until now researchers have done considerable work for detection 
(Iqbal, Ahmad, Bin, Khan, & Rodrigues, 2020; Patrick et al., 2020; Yash 
Chaudhary & Mehta, 2020), some provides an smart healthcare system 
for pandemic using Internet of Medical Things (Chakraborty, 2021; 
Chakraborty et al., 2021). Prem et al. (2020) studied the social 
distancing impacts on the spread of the COVID-19 outbreak. The studies 
concluded that the early and immediate practice of social distancing 
could gradually reduce the peak of the virus attack. As we all know, that 
although social distancing is crucial for flattening the infection curve, it 
is an economically unpleasant step. In Adolph, Amano, Bang-Jensen, 
Fullman, and Wilkerson (2020), Adolph et al. highlighted the United 
States of America’s condition during the pandemic. Due to a lack of 
general support by decision-makers, it was not implemented at an initial 
stage, starting harm to public health. However, social distancing influ-
enced economic productivity; even then, numerous scholars sought al-
ternatives that overcame the loss. 

Researchers provide effective solutions for social distance measuring 
using surveillance videos along with computer vision, machine learning, 
and deep learning-based approaches. Punn et al. (2020b) proposed a 
framework using the YOLOv3 model to detect humans and the Deepsort 
approach to track the detected people using bounding boxes and 
assigned IDs information. They used an open image data set (OID) re-
pository, a frontal view data set. The authors also compared results with 
faster-RCNN and SSD. Ramadass et al. (2020) developed an autonomous 
drone-based model for social distance monitoring. They trained the 
YOLOv3 model with the custom data set. The data set is composed of 
frontal and side view images of limited people. The work is also 
extended for the monitoring of facial masks. The drone camera and the 
YOLOv3 algorithm help identify the social distance and monitor people 
from the side or frontal view in public wearing masks. Pouw, Toschi, van 
Schadewijk, and Corbetta (2020) suggested an efficient graph-based 
monitoring framework for physical distancing and crowd manage-
ment. Sathyamoorthy, Patel, Savle, Paul, and Manocha (2020) per-
formed human detection in a crowded situation. The model is designed 
for individuals who do not obey a social distance restriction, i.e., 6 feet 
of space between them. The authors used a mobile robot with an RGB-D 
camera and a 2-D lidar to make collision-free navigation in mass 
gatherings. 

Fig. 4. Example images from the literature, used for social distance monitoring. (a), (b) and (c) Yang et al. (2020) used faster-RCNN for monitoring social distance. 
(d) and (e) Punn et al. (2020b) used YOLOv3 with Deepsort to monitor social distancing on Oxford Town Center, and (f) Ramadass et al. (2020). 

I. Ahmed et al.                                                                                                                                                                                                                                   
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Fig. 5. Flow diagram of overhead view social distance monitoring framework.  

Fig. 6. General architecture of YOLOv3 utilized for overhead view human detection.  

I. Ahmed et al.                                                                                                                                                                                                                                   
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From the literature, we concluded that the researcher had done a 
considerable amount of work for monitoring of social distance in public 
environments. But, most of the work is focused on the frontal or side 
view camera perspective. Therefore, in this work, we presented an 
overhead view social distance monitoring framework that offers a better 
field of view and overcomes the issues of occlusion, thereby playing a 
key role in social distance monitoring to compute the distance between 
peoples. 

3. Social distance monitoring 

Researchers use a frontal or side perspective for social distance 
monitoring, as discussed in Section 22 . In this work, a deep learning- 
based social distance monitoring framework using an overhead 
perspective has been introduced. The flow diagram of the framework is 
shown in Fig. 5. The recorded overhead data set are split into training 
and testing sets. A deep learning-based detection paradigm is used to 
detect individuals in sequences. There are a variety of object detection 
models available, such as Krizhevsky, Sutskever, and Hinton (2012), 
Simonyan and Zisserman (2014), Girshick, Donahue, Darrell, and Malik 
(2014), Szegedy et al. (2015), Girshick (2015) and Ren, He, Girshick, 
and Sun (2015). Due to the best performance results for generic object 
detection, in this work, YOLOv3 (Redmon & Farhadi, 2018) is used. The 
model used single-stage network architecture to estimate the bounding 
boxes and class probabilities. The model was originally trained on the 
COCO (Common objects in context) data set (Lin et al., 2014). For 
overhead view person detection, transfer learning is implemented to 
enhance the detection model’s efficiency, and a new layer of overhead 
training is added with the existing architecture. 

After detection, the bounding box information, mainly centroid in-
formation, is used to compute each bounding box centroid distance. We 
used Euclidean distance and calculated the distance between each 
detected bounding box of peoples. Following computing centroid dis-
tance, a predefined threshold is used to check either the distance among 
any two bounding box centroids is less than the configured number of 
pixels or not. If two people are close to each other and the distance value 
violates the minimum social distance threshold. The bounding box in-
formation is stored in a violation set, as seen in Fig. 1, and the color of 
the bounding box is updated/changed to red. A centroid tracking 

algorithm is adopted for tracking so that it helps in tracking of those 
people who violate/breach the social distancing threshold. At the 
output, the model displays the information about the total number of 
social distancing violations along with detected people bounding boxes 
and centroids. 

In this work, YOLOv3 is used for human detection as it improves 
predictive accuracy, particularly for small-scale objects. The main 
advantage is that it has adjusted network structure for multi-scale object 
detection. Furthermore, for object classification, it uses various inde-
pendent logistic rather than softmax. The model’s overall architecture is 
presented in Fig. 6; it can be seen that feature learning is performed 
using the convolutional layers, also called Residual Blocks. The blocks 
are made up of many convolutional layers and skip connections. The 
model’s unique characteristic is that it performs detection at three 
separate scales, as depicted in Fig. 6.The convolutional layers with a 
given stride are practiced to downsample the feature map and transfer 
invariant-sized features (Redmon & Farhadi, 2018). Three feature maps, 
as shown in Fig. 6, are utilized for object detection. 

The architecture shown in Fig. 6 is trained using an overhead data 
set. For that purpose, a transfer learning approach is adopted, that 
enhance the efficiency of the model. With transfer learning, the model is 
additionally trained without dropping the valuable information of the 
existing model. Further, the additional overhead data set trained layer is 
appended with the existing architecture. In this way, the model takes 
advantage of the pre-trained and newly trained information, and both 
detection results are further deliver better and faster detection results. 

The architecture shown in Fig. 6 used a single-stage network for the 
entire input image to predict the bounding box and class probability of 
detected objects. For feature extraction, the architecture utilizes 
convolution layers, and for class prediction, fully connected layers are 
used. During human identification, as seen in Fig. 6, the input frame is 
divided into a region of S× S, also called grid cells. These cells are 
related to bounding box estimation and class probabilities. It predicts 
the probability of whether the center of the person bounding box is in 
the grid cell or not: 

Conf(p) = Pr(p) × IOU(pred, actual) (1) 

In Eq. (1), Pr(p) indicates that whether the person present is in the 
detected bounding box or not. The value of Pr(p) is 1 for yes and 0 for 

Fig. 7. Detected coordinates of person bounding box.  

I. Ahmed et al.                                                                                                                                                                                                                                   
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not. IoU(pred, actual) determines the Intersection Over Union of the 
actual and predicted bounding box. It is defined as (Redmon & Farhadi, 
2018): 

IoU(pred, actual) = area
BoxT ∩ BoxP
BoxT ∪ BoxP

(2)  

where the ground truth box (actual) manually labeled in the training 
data set represented with BoxT, and the predicted bounding box is dis-
played as BoxP. area presents the area of intersection. An acceptable area 
is predicted and decided for each detected person in the input frame. The 
confidence value is applied after prediction to achieve the optimal 
bounding box. For each predicted bounding box, h,w, x, y are estimated, 
where bounding box coordinates are defined by x, y, and width and 
height are determined by w, h. The model produces the following pre-
dicted bounding box values as seen in Fig. 7 and Eq. (3) (Redmon & 
Farhadi, 2018); 

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwet
w

bh = pwht
h

(3) 

In Eq. (3), bx, by, bw, bh are predicted coordinate bounding boxes, 
where the coordinates’ center is represented as x, y and width and height 
with w, h. tw, th, tx, ty, defined the network output and cx, cy are used to 
correspond the top-left coordinates of the grid cell as shown in Fig. 7, 
while the pw and ph are width and height of anchors. 

A threshold value is defined that process the high confidence values 
and discards the low confidence values. Using non-maximal suppres-
sion, the final location parameters are derived for the detected bounding 
box. At last, loss function is calculated, for detected bounding box 

(Redmon & Farhadi, 2018). The given loss function is the sum of three 
functions, i.e., regression, classification, and confidence. At each grid 
cell, if the object is detected, then the classification loss is computed as 
the squared error of the conditional class probabilities and calculated as 
(Redmon & Farhadi, 2018); 

L cls =
∑S2

i=0
1obj

ij

∑

cεclass
1obj

i (pi(c) − p∗i(c))2 (4)  

In Eq. (4), in grid cell i if the person is detected then 1obj
ij = 1, otherwise 

equals to 0. The conditional class probabilities for class c in grid cell i are 
represented as p∗i(c). The localization loss estimates the failures in the 
predicted bounding box sizes and locations. The bounding box con-
taining the detected object, i.e., a person, is added. It is defined as 
(Redmon & Farhadi, 2018); 

L loc = λcoord1obj
ij

∑S2

i=0

∑B

j=0
[(xi − x∗i )

2
+ (yi − y∗i )

2

+(
̅̅̅̅̅
wi

√
−

̅̅̅̅̅̅
w∗

i

√
)

2
+ (

̅̅̅̅
hi

√
−

̅̅̅̅̅

h∗
i

√

)
2
]

(5)  

In above equation 1obj
ij is equal to 1, in case if the jth bounding box in grid 

cell i is used for object detection, otherwise it is equal to 0. Instead of 
predicting simple height and width, the model predicts the square root 
of the bounding box width and height. In Eq. (5) the scale parameters 
λcoord is used for predictions of bounding box coordinates and equals to 5 
as (Redmon, Divvala, Girshick, & Farhadi, 2016). The predicted posi-
tions are represented with xi, yi, hi,wi in ith cell of detected bounding 
box, while the actual positions of bounding box in the ith cell is defined 
using x∗

i , y∗i , h∗
i ,w∗

i . The Eq. (5) measures the loss function of predicted 
bounding box having coordinates value x,y. To represent the possibility 

Fig. 8. (a) Input image, (b) detected person bounding boxes using deep learning algorithm, (c) compute the centroid of each detected bounding box, and (d) finally, 
the distance between each pair of the centroid is determined. In the example image, the red lines indicate the distance between each bounding box centroid. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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of the detected person in the jth bounding box 1obj
ij is used. The value of λ 

is constant, the function in Eq. (5) calculates sum over each bounding 
box, using (j = 0 to B) as predictor for each grid cell (i = 0 to S2). 

Finally the confidence loss is calculated that is given in Eq. (6) as 
(Redmon & Farhadi, 2018): 

L conf =
∑S2

i=0

∑B

j=0
1obj

ij (Ci − C∗
i )

2 (6)  

where the confidence score is defined as C∗, for jth bounding box in grid 
cell i and 1obj

ij and is equal to 1 in case if in cell i the jth bounding box is 
responsible for object detection; otherwise it is equal to 0. In case if the 
object is not detected, then the confidence loss is provided as (Redmon & 
Farhadi, 2018); 

L conf = λnoobj

∑S2

i=0

∑B

j=0
1noobj

ij (Ci − C∗
i )

2 (7) 

Fig. 9. Social distance monitoring from an overhead view using a pre-trained detection model. In sample frames, the people in green rectangles are those who 
maintain the social distancing. The people who violate the social distance threshold are shown red in rectangles. The manually labels yellow positive cross shows miss 
detections. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Training loss of YOLOv3 using overhead view data set.  
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In Eq. (7), 1noobj
ij is defined as the complement of 1obj

ij . The bounding 
box’ confidence score C∗ in cell i and λnoobj is used to weights down the 
loss during detecting background. As in most cases detected, bounding 
boxes do not contain any objects that cause a class imbalance problem; 
therefore, the model is more frequently trained to detect background 
rather than detect objects. To solve this, the loss is weight down by a 
factor λnoobj (default: 0.5). 

After detecting people in video frames, in the next step, the centroid 
of each detected person bounding boxes shown as green boxes are used 
for distance calculation, as shown in Fig. 8(b). The detected bounding 
box coordinates (x, y) are used to compute the bounding box’s centroid. 
Fig. 8(c) demonstrates accepting a set of bounding box coordinates and 
computing the centroid. After computing, centroid, a unique ID is 
assigned to each detected bounding box. In the next step, we measure 

Fig. 11. Training Accuracy of YOLOv3 using overhead view data set.  

Fig. 12. Results of social distance monitoring, using transfer learning. It can be seen that the detection performance of the model is improved after transfer learning. 
In sample frames, the people in green rectangles maintain social distancing while in red rectangles are those who breach/violate the social distance. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the distance between each detected centroid using Euclidean distance. 
For every subsequent frame in the video stream, we firstly compute 
bounding box centroids shown in Fig. 8(c); and then calculate the dis-
tance (highlighted with red lines) between each pair of detected 
bounding box centroids, Fig. 8(d). The information of each centroid is 
stored in the form of a list. Based on distance values, a threshold is 
defined to check if any two people are less than N pixels apart or not. If 
the distance violates the minimum social distance set or two people are 
too close, then the information is added into the violation set. The 
bounding box color is initialized as green. The information is checked in 
the violation set; if the current index exists violation set, the color is 
updated to red. Furthermore, the centroid tracking algorithm is used to 
track the detected people in the video sequence. The tracking algorithm 
also helps to keep track of people who are violating the social distance 
threshold. At the output, the model displays information about the total 
number of social distancing violations. 

4. Experiments, results, and discussion 

The detailed descriptions of various experiments carried out in this 
work are presented in this section. For social distance monitoring, an 
indoor data set recorded at Institute of Management Sciences, Hay-
atabad, Peshawar Pakistan is used (Ahmed, Ahmad, Adnan, et al., 2019; 
2019a), containing video sequences captured from the overhead view. 
The data collection is divided into 70% and 30% training and testing, 
respectively. There is no restriction on the mobility of persons 
throughout the scene. Peoples in the scene move freely; their visual 
appearance is affected by radial distance and camera position. From 
example frames, it can be observed that the human’s visual appearance 
is not identical, and peoples heights, poses, scales are varying in the data 
set. For implementation, we used OpenCV. The experimental results are 
divided into two subsections; first, the pre-trained model’s testing re-
sults are discussed, while in the second subsection, the results of the 
detection model after applying transfer learning and training on the 
overhead data set are explained. For comparison, the model is tested 
using the same video sequences. The performance evaluation of the 
model is also made in this section, along with a comparison with 
different deep learning models. 

4.1. Results of social distance monitoring using pre-trained model 

In Fig. 9, the testing results of the social distance framework using a 
pre-trained model (Redmon & Farhadi, 2018) has been visualized. The 
testing results are evaluated using different video sequences. The people 
in the video sequences are freely moving in the scenes; it can be seen 
from sample frames that the individual’s visual appearance is not 
identical to the frontal or side view (Fig. 9). The person’s size is also 

varying at different locations, as shown in Fig. 9. Since the model only 
considers human (person) class; therefore, only an object having an 
appearance like a human is detected by a pre-trained model. The 
pre-trained model delivers good results and detects various size person 
bounding boxes, as shown with green rectangles in Fig. 9(a)–(c). From 
sample frames of Fig. 9, people are marked with green rectangles as they 
maintain a social distancing threshold. The model is also tested for 
multiple peoples, as depicted in Fig. 9(g)–(i), multiple people are 
entering in the scene. In sample images, it can be seen that after person 
detection, the distance between each detected bounding box is measured 
to check whether the person in the scene violates the social distance or 
not. In Fig. 9(e) and (h), two people at the center of the scene are marked 
with red bounding boxes as they violate or breaches the social distancing 
threshold. Some miss detections also occur that are manually labeled 
with a yellow cross in sample frames. From the sample frames, it can be 
seen that a person is effectively detected at several scene locations. 
However, in some cases, the person’s appearance is changing; therefore, 
the model gives miss detections. The reason for miss detection maybe, as 
the pre-trained model is applied, and an individual’s appearance from 
an overhead view is changing, which may be misleading for the model. 

4.2. Results of social distance monitoring using transfer learning 

The transfer learning methodology is applied to improve the accu-
racy of the detection model. Using an overhead data set, the model is 
additionally trained using 500 sample frames. The epoch size 40 and 
batch size 64 is set for training of the model. The training loss and ac-
curacy curves are shown in Figs. 10 and 11 . A new layer is obtained after 
training the model; that is further appended with a pre-trained model. 

The model is now tested for the same test video sequences, as dis-
cussed in the above sub-section. The experimental findings reveal that 
transfer learning significantly increases the detection results, as seen in 
Fig. 12. From the sample images, it can be visualized that the model 
detects the individuals at various scene locations. People with various 
characteristics are effectively-identified, and the social distance between 
people is also computed, as shown in the sample frames. In sample 
frames of Fig. 12(a)–(c), there is no social distance violation found, since 

Fig. 13. Precision, Recall, and Accuracy of model (YOLOv3) with and without 
transfer learning. 

Fig. 14. Tracking accuracy with pre-trained and trained YOLOv3 detec-
tion model. 

Table 1 
Comparison results of YOLOv3 with other deep learning models.  

S. 
no. 

Model True detection 
rate 

False detection 
rate 

1. Fast-RCNN (pre-trained) 90% 0.7% 
2. Faster-RCNN (pre-trained) 92% 0.6% 
3. Mask-RCNN (pre-Trained) 92% 0.5% 
4. YOLOv3 (pre-trained) 92% 0. 4% 
5 YOLOv3 (trained overhead data 

set) 
95% 0.3%  
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all people are marked with green rectangle boxes by the automated 
framework. While in the sample frame Fig. 12(e), the violation is 
detected; however, the number of people present in the scene is small as 
compared to Fig. 12(b), where all people are maintaining social dis-
tance, and therefore not a single violation is observed. In Fig. 12(d)–(f), 
due to close interactions between people, violation is recorded by 
automated system. The same behavior can be found in Fig. 12(g)–(i) 
where people are around dozen in both (g) and (h) and violation in (h) is 
three times as compared to (g). In Fig. 12(d)–(f), multiple people are 
walking, and entering in the scene are detected and monitored. The 
framework effectively detected the breach of social distance between 
people and marked the bounding box as red rectangles if people are too 
close to each other. 

4.3. Performance evaluation 

Different quantitative metrics are used in this work to evaluate the 
performance of the framework for social distance monitoring using a 
deep learning model and an overhead perspective. To assess the effi-
ciency of the detection model, Precision, Recall, and Accuracy is used. 
Furthermore, the findings are also compared with other deep learning 
models. For estimation of Precision, Recall and Accuracy, we used, tp 
true positive, fp, false positives, tn true negative and fn false-negative. 
The Accuracy Recall and Precision results are shown in Fig. 13. It can 
be analyzed that when the model is additionally trained for overhead 
view data set, the overall performance of the detection model is 
improved. The tracking accuracy is also given in Fig. 14. 

We also compared the newly trained YOLOv3 with other deep 
learning models. The True detection and False detection rate of different 
deep learning models are depicted in Table 1. From the results, it can be 
seen that transfer learning improved the results significantly for the 
overhead view data set. The false detection rate of different deep 
learning models are very small, about 0.7–0.4% without any training, 
which reveals the effectiveness of deep learning models. Different pre- 
trained object detection models are tested on the overhead data set. 
Although the models were trained on the different frontal data sets, they 
still show good results by achieving an accuracy of 90%. In Fig. 15, the 
comparison results of different state of the art detection are shown. 

5. Conclusion and future works 

In this work, a deep learning-based social distance monitoring 
framework is presented using an overhead perspective. The pre-trained 
YOLOv3 paradigm is used for human detection. As a person’s appear-
ance, visibility, scale, size, shape, and pose vary significantly from an 

overhead view, the transfer learning method is adopted to improve the 
pre-trained model’s performance. The model is trained on an overhead 
data set, and the newly trained layer is appended with the existing 
model. To the best of our knowledge, this work is the first attempt that 
utilized transfer learning for a deep learning-based detection paradigm, 
used for overhead perspective social distance monitoring. The detection 
model gives bounding box information, containing centroid coordinates 
information. Using the Euclidean distance, the pairwise centroid dis-
tances between detected bounding boxes are measured. To check social 
distance violations between people, an approximation of physical dis-
tance to the pixel is used, and a threshold is defined. A violation 
threshold is used to check if the distance value violates the minimum 
social distance set or not. Furthermore, a centroid tracking algorithm is 
used for tracking peoples in the scene. Experimental results indicated 
that the framework efficiently identifies people walking too close and 
violates social distancing; also, the transfer learning methodology in-
creases the detection model’s overall efficiency and accuracy. For a pre- 
trained model without transfer learning, the model achieves detection 
accuracy of 92% and 95% with transfer learning. The tracking accuracy 
of the model is 95%. The work may be improved in the future for 
different indoor and outdoor environments. Different detection and 
tracking algorithms might be used to help track the person or people 
who are violating or breaches the social distancing threshold. 
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