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In the test-negative design, routine testing at health-care facilities is leveraged to estimate the effectiveness of
an intervention such as a vaccine. The odds of vaccination for individuals who test positive for a target pathogen
is compared with the odds of vaccination for individuals who test negative for that pathogen, adjusting for key
confounders. The design is rapidly growing in popularity, but many open questions remain about its properties. In
this paper, we examine temporal confounding by generalizing derivations to allow for time-varying vaccine status,
including out-of-season controls, and open populations. We confirm that calendar time is an important confounder
when vaccine status varies during the study. We demonstrate that, where time is not a confounder, including
out-of-season controls can improve precision. We generalize these results to open populations. We use our
theoretical findings to interpret 3 recent papers utilizing the test-negative design. Through careful examination of
the theoretical properties of this study design, we provide key insights that can directly inform the implementation
and analysis of future test-negative studies.

case-control studies; confounding factors; seasonal variation; test-negative design; vaccination

Abbreviation: VE, vaccine effectiveness.

The test-negative design is a recent epidemiologic design
(1, 2). Resembling a case-control study but structured as
an indirect cohort (3), the test-negative design enrolls indi-
viduals presenting at health-care facilities with a particular
clinical syndrome. Each individual is tested for the vaccine-
targeted pathogen(s) using a sensitive and specific laboratory
test. Individuals who test negative serve as controls for
individuals who test positive. Vaccine effectiveness (VE) is
estimated as VE = 1 − OR, where OR is the odds ratio
for exposure to vaccination for test-positive cases versus
test-negative controls, adjusting for key confounders. Under
standard assumptions, the odds ratio estimates the popula-
tion relative risk (4).

The test-negative design has several key advantages over
other observational studies. They are substantially cheaper
and easier to implement than cohort studies. They can be
readily integrated into routine surveillance for passive detec-
tion of cases. Unlike a traditional case-control study, the
control population is naturally defined from the test nega-
tives, precluding the need for external sampling of controls.
There might be complex reasons why certain cases present

for testing, including differential access to care. By restrict-
ing to individuals who seek health care and are tested, the
test-negative design reduces (although might not eliminate)
confounding due to health-care seeking behavior (5, 6). Test-
negative designs have been widely used in the assessment of
influenza vaccines (1, 7) and have been applied to cholera
(8, 9) and rotavirus (10).

Work is ongoing to examine the theoretical underpinnings
of the test-negative design (1, 2, 5, 11, 12). The central
assumption is that vaccine has no effect on other causes of
the same clinical syndrome. Thus, the test-negative controls
serve as a proxy for estimating the distribution of vaccine in
the underlying population. Other key assumptions include
no residual confounding after adjusting for measured con-
founders and accurate diagnostics.

Previous statistical work to assess the unbiasedness of the
test-negative design odds-ratio estimator for the true vac-
cine effect has focused on closed populations, fixed (non-
time-varying) vaccination status, and constant test-positive
and test-negative hazard rates, although 2 papers briefly
considered time-varying rates (11, 12). Earlier work has
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demonstrated that, in a closed population where vaccination
is completed before the study’s start, the test-negative design
odds ratio is unbiased for the all-or-none vaccine effect even
when the hazard rates vary over time (11, 12). For all-or-
none vaccines, the relative risk is time-invariant and is the
target estimand for the vaccine effect (13, 14). Thus, time
is not a confounder if a vaccination campaign is completed
before the start of a season (15). Where vaccine uptake
continues during the season, though, calendar time is likely
an important confounder. Adjusting for time was essential
when analyzing data from the 2009 H1N1 influenza pan-
demic because vaccine was provided responsively (16). This
has been demonstrated by simulation (17) but has not been
confirmed theoretically.

Another important consideration is how to handle test-
negative controls observed when the target disease is not cir-
culating (“out of season”). These might be collected before
or after the season, or from interim weeks when no cases are
detected. Jackson and Nelson (1) suggest that these controls
induce immortal person-time bias; a common practice is to
exclude them from the analysis (7), despite others arguing
that excluding these individuals is not necessary if all vacci-
nations have been provided before the start of recruitment
(15). Data analyses (18) and simulations (17) have noted
little impact of restricting to only weeks with cases, after
adjusting for time. Nonetheless, the inclusion/exclusion of
out-of-season controls remains an important open question
with no theoretical results to guide decision-making.

All prior theoretical and simulation studies have focused
on closed populations. In practice, individuals will age into
and out of the target population or move in or out of the study
area. For infant vaccines, such as the rotavirus vaccine, an
open population is particularly relevant because children are
born during the course of the study.

We address open questions about temporal confound-
ing due to time-varying vaccination status, out-of-season
controls, and open populations. Below, we derive results
that allow for generic test-positive and test-negative hazard
rates, and we consider a generic vaccine rollout strategy that
allows coverage to change during the study. We consider an
open population such as separate birth cohorts. Importantly,
we provide a theoretical basis for many results that have
previously been evaluated in simulation only. We apply these
findings to recent papers on the test-negative design and
draw conclusions.

TEMPORAL CONFOUNDING

Assumptions and notation

Individuals in the population are infected by the target
pathogen with time-varying hazard rate λI(t) at time t with
cumulative hazard function �I(t) = ∫ t

0λI(u)du, where
t = 0 corresponds to the start of the study. We assume that
everyone is susceptible at t = 0, although we later relax
this assumption. Given infection with the target pathogen,
the probability of developing symptomatic disease is πI . We
assume that infection confers immunity to the target disease,
so the individual is not at risk for repeat infection during the
remainder of the study.

Individuals in the population are infected with nontarget
pathogens causing the same clinical syndrome with time-
varying intensity rate λN(t) with cumulative intensity func-
tion �N(t) = ∫ t

0λN(u)du. Given infection with a nontarget
pathogen, the probability of developing symptomatic dis-
ease is πN . Because we assume that there are several differ-
ent causes of the clinical syndrome cocirculating, infection
with a nontarget pathogen does not confer immunity. After
each nontarget infection, that individual might be infected
with another nontarget pathogen, following the same inten-
sity function. Similarly, infection with the target disease does
not confer immunity to the nontarget diseases.

Each individual i in the population of size n has vac-
cination time vi. We define a cumulative distribution for
vaccination in the population G(t) = 1

n

∑n
i=11(vi ≤ t) where

1(vi ≤ t) is an indicator of vaccination by time t. G(t) is
the proportion of the population vaccinated by time t and
has associated density/mass function g(t). We assume that
vaccine confers an all-or-none vaccine effect to vaccinated
individuals (13, 14). A proportion φ are fully protected by
the vaccine, and the remaining 1−φ are unprotected. Vaccine
effectiveness is VE = φ. We assume that the vaccine is
immediately protective with no induction period. We further
assume no waning of VE over time. We also assume that
vaccine does not alter the probability of a clinical syndrome
given infection (πI).

To reflect potential confounding by health-care seeking
behavior, we allow the probability of seeking care given
symptomatic disease to vary by vaccination status. Once
symptoms appear, vaccinated and unvaccinated individuals
are tested with probability μ1 and μ0, respectively.

Consistent with other examinations of the test-negative
design (4, 12), we assume the study uses inclusive sampling
(13), also referred to as modified case-cohort sampling (19).
Individuals are not censored even after they are known
to have tested positive for the target pathogen. Under an
inclusive sampling strategy, the odds ratio directly estimates
the relative risk (13).

Expected cell counts and odds ratio

Test-negative design data is typically summarized in a 2 ×
2 table (test positive/negative vs. vaccinated/unvaccinated at
time of testing). We derive the expected cell counts at time t
for unvaccinated test-positive cases NP0(t), vaccinated test-
positive cases NP1(t), unvaccinated test-negative controls
NN0(t), and vaccinated test-negative controls NN1(t).

The expected (cumulative) cell counts between time 0 and
time t under a generic vaccination strategy with generic test-
positive and test-negative rates are:

E
[
N̄P0(t)

]=nπIμ0

[∫ v=t

v=0
g(v)(1 − e−�I(v))dv + (1 − G(t))(1 − e−�I(t))

]

E
[
N̄P1(t)

]=nπIμ1

∫ v=t

v=0
g(v) (1−φ) (e−�I(v)−e−�I(t))dv
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E
[
N̄N0(t)

]=nπNμ0

[∫ v=t

v=0
g(v)�N(v)dv+(1−G(t))�N(t)

]

E
[
N̄N1(t)

]=nπNμ1

∫ v=t

v=0
g(v) (�N(t) − �N(v)) dv. (1)

The expressions for E[NP0(t)] and E[NN0(t)] integrate
over all vaccination times before t, considering events occur-
ring between time 0 and vaccination; this is added to events
that occur in individuals who have not yet been (or never will
be) vaccinated. The expressions for E[NP1(t)] and E[NN1(t)]
integrate over all vaccination times before t, considering
events occurring between vaccination and time t.

The expected changes in cell counts at time t in some
small interval dt are:

E
[
dN̄P0(t)

] = nπIμ0 (1 − G(t)) λI(t)e
−�I(t)dt (2)

E
[
dN̄P1(t)

] = nπIμ1G(t) (1 − φ)λI(t)e
−�I(t)dt

E
[
dN̄N0(t)

] = nπNμ0 (1 − G(t)) λN(t)dt

E
[
dN̄N1(t)

] = nπNμ1G(t)λN(t)dt.

We consider two test-negative design odds ratios. The
first is the time-unadjusted (cumulative) test-negative design
odds ratio through time t, ORU(t) = NP1(t)NN0(t)/(NP0(t)
NN1(t)), that, following a first-order Taylor series expansion
of the ratio and independence of the test-positive cases and
test-negative controls, has expected value approximated by:
E[ORU(t)] ≈ E[NP1(t)]E[NN0(t)]/(E[NP0(t)]E[NN1(t)]).
The second is the time-adjusted test-negative design odds ra-
tio at time t, ORdt(t) = dNP1(t)dNN0(t)/(dNP0(t)dNN1(t)).
To achieve this in practice, we stratify finely on time.

Varying vaccine coverage

When vaccination is completed before the start of the
study with coverage ρ, the expected cell counts are:

E
[
N̄P0(t)

] = nπIμ0 (1 − ρ) (1 − e−�I(t)) (3)

E
[
N̄P1(t)

] = nπIμ1ρ (1 − φ) (1 − e−�I(t))

E
[
N̄N0(t)

] = nπNμ0 (1 − ρ) �N(t)

E
[
N̄N1(t)

] = nπNμ1ρ�N(t).

From equation set (3), it follows that E[ORU(t)] = 1 − φ
for all time t. Thus, calendar time is not a confounder.

In contrast, under a generic vaccine rollout strategy, we
see from equation set (1) that the time-unadjusted test-
negative design odds ratio does not in general simplify to
1 − φ. For the time-adjusted test-negative design odds ratio,
though, E[ORdt(t)] = 1 − φ for all time t (see equation
set (2)). Thus, we confirm the importance of adjusting for
calendar time when vaccine is rolled out during the study.

These results suggest that a natural approach to adjust
for calendar time, instead of finely stratifying, is to break
up the study period into windows in which vaccination
coverage is relatively constant. We could visually examine
the proportion vaccinated over time in the test negatives to
identify breaks (see Figure 4b in Bond et al. (17) for an
example). Within each time window, there will be no (or
minimal) temporal confounding.

For generic vaccine roll-out but constant rates λI and λN ,
expected cell counts are:

E
[
N̄P0(t)

] = nπIμ0[∫ v=t

v=0
g(v)

(
1 − e−λI v) dv + (1 − G(t))

(
1 − e−λI t)]

E
[
N̄P1(t)

] = nπIμ1

∫ v=t

v=0
g(v) (1 − φ)

(
e−λI v − e−λI t) dv

E
[
N̄N0(t)

] = nπNμ0

[∫ v=t

v=0
g(v)λNvdv + (1 − G(t)) λNt

]

E
[
N̄N1(t)

] = nπNμ1

∫ v=t

v=0
g(v) (λNt − λNv) dv. (4)

Even though there is no association between time and
hazard rate, the time-unadjusted test-negative design odds
ratio does not simplify to 1 − φ because test-positive cases
come from the depleted at-risk population (1− e−λI t terms),
but test-negative controls come from the conserved source
population (λNt terms). Nonetheless, when the disease is
rare, the time-unadjusted odds ratio simplifies following a
first-order Taylor series approximation (1 − e−λI t ≈ λI t);
thus, temporal confounding is minimal.

We demonstrate the existence of a theoretical (though
unrealistic) test-positive hazard rate that eliminates temporal
confounding; this is described in Web Appendix 1.

Out-of-season controls

We use our results to address open questions about out-of-
season controls. Jackson and Nelson (1) describe including
these controls as inducing immortal person-time bias, but
this implies that data are analyzed as a cohort. In fact,
the test-negative controls serve as a proxy for characteriz-
ing vaccine coverage in the underlying source population.
Table 1 demonstrates this concept heuristically.

As long as the test-negative controls are representative of
the underlying health-care-seeking source population (given
the central assumption that vaccine does not influence the
intensity rate of test-negative disease), the time-unadjusted
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If vaccination is completed early on in the study, one
option is to restrict analysis to the period after all vaccine has
been provided. We demonstrate in Web Appendix 1 (https://
doi.org/10.1093/aje/kwaa084) that the time-unadjusted test-
negative design odds ratio is consistent for the true vaccine
effect in this case. In practice, the benefit of not having to
adjust for calendar time should be weighed against potential
information lost by excluding early data.
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Table 1. Sample Test-Negative Design Tablea

Overall Test-Positive Cases
Test-Negative Controls

(In Season)
Test-Negative Controls

(Out of Season)
Source Population

Vaccinated a c e nρ

Unvaccinated b d f n(1 − ρ)

a Sample test-negative design table for a population of size n with constant vaccination coverage ρ (all vaccinations completed before the
beginning of the study). Hypothetical case counts for each combination of vaccination status and test status/timing are denoted by a through f.

odds ratio (ORU) estimates the relative risk (RR) because
ORu = a/c

b/d ≈ a/nρ
b/n(1−ρ)

= RR. Thus, where vaccination
coverage does not vary in and out of season (c/d ≈ e/f ≈
ρ/(1 − ρ)), out-of-season controls do not induce bias. Sim-
ilarly, from equation set (3), when vaccination is completed
before the study, the time-unadjusted test-negative design
odds ratio is consistent even if the test-positive hazard func-
tion is very small or equal to zero at times, representing time
out of season. Including out-of-season controls can enable
more precisely estimation of vaccination coverage.

Where vaccination coverage varies over time, including
out-of-season test-negative controls can induce bias in the
time-unadjusted test-negative design odds ratio. Including
controls before the season when coverage is lowest could
bias VE downward. Including cases after the season when
coverage is highest could bias VE upward. Including cases
during intermittent weeks in the season with no cases would
seem to induce the smallest bias.

Nonetheless, we previously demonstrated the importance
of adjusting for calendar time when vaccination coverage
is varying over time. If this is done using a conditional
logistic regression model, for example, time periods with
no cases will drop out of the conditional likelihood. Consis-
tent with simulation results (17), there is no further advan-
tage to restricting the analysis period after adjusting for
time.

In summary, the more important analytical decision is
whether to adjust for time. Whether or not time is adjusted
for, there is no apparent harm in including out-of-season con-
trols unless they differ with respect to other key confounders.
Either these controls add precision to a time-unadjusted
analysis or are uninformative in a time-adjusted analysis.

Open population

Finally, we consider open populations in which cohorts
enter over time. We demonstrate these concepts using a
series of simple examples with 2 cohorts, although the logic
quickly extends to any finite number of cohorts. The first
cohort enters at t0, and the second cohort enters at t1 > t0.

For the first setting, we assume that vaccination is com-
pleted prior to recruitment in both cohorts. For example,
infants are eligible to be included in the study once they have
reached an age when they would have completed all doses,
and infants either receive the vaccine on time or not at all.
Vaccine coverage is ρ0 in the first cohort and ρ1 in the second
cohort.

When ρ0 = ρ1 (vaccination coverage is constant across
cohorts), the time-unadjusted test-negative design odds ratio
is consistent for the true vaccine effect (see Web Appendix
2). This is true when there are more than 2 cohorts, as long
as they all have equal vaccination coverage. Although cohort
is associated with the probability of testing positive (given
that older cohorts have greater immunity), cohort is not
a confounder because vaccine coverage is constant across
cohorts. Calendar time is also not a confounder because
vaccine coverage is fixed over time.

When ρ0 �= ρ1 (vaccination coverage varies across
cohorts), cohort is an important confounder. When we adjust
for cohort, we see that that the odds ratio is unbiased (see
Web Appendix 2). It is not necessary to adjust for calendar
time after adjusting for cohort because vaccination status
does not change over time within cohort.

Alternatively, imagine a disease that has been endemic in
the population such that immunity has built up especially in
older cohorts. A vaccine is made available and is deployed
over time during an outbreak. If vaccination is rolled out over
time to all populations uniformly, then calendar time is a
confounder, but cohort is not because at any time coverage is
equal across cohorts. If the vaccine is rolled out differentially
across cohorts, though, say to preferentially target children,
then both cohort and calendar times will be confounders (see
Web Appendix 2). Thus, to determine whether cohort is a
confounder, it is important to examine whether vaccination
coverage varies across cohorts in the source population.

APPLYING OUR FINDINGS

We consider 3 studies applying the test-negative design,
and we discuss how our findings inform their results or
approach.

Cholera trial

Ali et al. (20) used a test-negative design to reanalyze
data from 2 cluster-randomized cholera vaccine trials and
a nonrandomized study. For our example, we consider the
trial in Kolkata, India, although the implications are the same
across studies. The trial enrolled residents at least 1 year of
age (21). Two doses of vaccine or placebo were provided in 2
rounds, each lasting no more than 3 weeks. Follow-up began
14 days after the second dose of vaccine. The authors used
the first episode of noncholera diarrhea for each participant
as a test-negative control. Their primary model adjusted for
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age at vaccination and severity, and a secondary model also
adjusted for seasonality but found no change in the results.
Overall, the test-negative design estimate of VE was highly
concordant with the cohort estimate from the original trial.

Calendar time would not be a confounder because vac-
cination was essentially completed before follow-up began.
Vaccine coverage was also stable across age groups because
of randomization (always 50%), so it might not be necessary
to adjust for age. In fact, the authors showed that adjusting
for age at first dose and severity had virtually no impact on
estimated VE (Table 1 in Ali et al. (20)).

Rotavirus trials

Schwartz et al. (22) used a test-negative design to re-
analyze data from 3 individually-randomized rotavirus
vaccine trials. All trials enrolled infants aged approximate-
ly 4–12 weeks during a 2-year study period, and they
were then randomized to vaccine or placebo and followed
longitudinally. The authors defined a trial participant as
a test-negative control if they experienced at least 1 severe
rotavirus-negative diarrheal episode and had no severe
rotavirus-positive episodes. They found high concordance
between the unadjusted test-negative design and trial esti-
mates with one notable exception. In the analysis of a trial in
Ghana, Kenya, and Mali, the authors showed that restricting
to the rotavirus season in Ghana and Mali (but using year-
round data in Kenya) was important for reducing bias in the
test-negative design.

We would not expect confounding by calendar time or
by age cohort because vaccination was completed before
follow-up. Furthermore, coverage is 50% in the trial popula-
tion at all times and in all age cohorts due to randomization.
We see concordance in trials in countries that also have sea-
sonal patterns of transmission (e.g., South Africa, Malawi,
Bangladesh). In Ghana and Mali, vaccination coverage is
overestimated in test-negative controls (>50%), particularly
in year 2. Restricting to the rotavirus season reduces this
imbalance, but it reduces the number of test-negative con-
trols from 373 to 139. A possible explanation for this imbal-
ance is that controls are participants known to have never
tested positive (exclusive instead of inclusive sampling). If
vaccine is protective, more controls from the unvaccinated
arm are removed, thereby overrepresenting vaccine coverage
in controls, especially in high-incidence countries.

Dengue trial

Anders et al. (19) introduced the concept of cluster-ran-
domized test-negative design trials motivated by community-
level dengue interventions. The data are analyzed by
intention-to-treat, where exposure to the intervention is not
time-varying. Thus, adjustment for calendar time is not
required. The authors note the importance of recruiting test-
negative controls only when test-positive illness is circulat-
ing, citing Jackson and Nelson (1).

We counter that restricting to time in-season might not be
necessary for a cluster-randomized test-negative design trial.
Unless there are large changes in migration that are differen-

tial across the study arms, the proportion exposed should be
constant over time. Including test-negative controls out of
season would likely improve precision and power without
inducing bias.

DISCUSSION

We undertook a theoretical examination of temporal
confounding in the test-negative design, focusing on time-
varying exposure, out-of-season controls, and open pop-
ulations. Our results confirm that temporal confounding
occurs when vaccine coverage changes during the study,
even with constant test-positive and test-negative hazard
rates. Nonetheless, this bias is minimal for rare diseases. We
show that including out-of-season controls does not induce
bias unless vaccine coverage is different in versus out of
season. If calendar time is adjusted for, these controls will be
largely uninformative. Where coverage is stable, including
out-of-season controls can improve precision. Finally, we
described settings in open populations where age cohort
(i.e., time in the population) might be a confounder.

We made several simplifying assumptions. We do not con-
sider changes in reporting over time, interference between
test-positive and test-negative pathogens due to temporary
innate immunity, severity as a confounder, and other key
risk factors for infection, such as age or high-risk status.
These generalizations should be studied in future work. We
assumed no differential loss to follow-up in the population.
For severe diseases, such as Ebola virus, differential survival
in the vaccinated and unvaccinated groups is expected to
lead to bias (23), although this bias will likely be small
where the cumulative incidence is low. Our analysis also
assumes an all-or-none vaccine. Previous work has demon-
strated that inclusive sampling with a leaky vaccine (vaccine
confers partial protection) yields biased estimators (12).
Further study is needed on the test-negative design and leaky
vaccines; where feasible, innovations to allow us to censor
individuals who have been previously infected could reduce
bias (13, 24, 25).

The test-negative design is rapidly growing in popularity
and has many potential future applications. It is highly cost-
effective and can be used where a placebo-controlled ran-
domized trial is not practical or ethical. The design will be
especially useful for postlicensure surveillance and bridg-
ing studies, to evaluate new vaccine formulations, VE in
new populations, or effectiveness against new strains. There
are also interesting opportunities to integrate test-negative
designs with cluster randomized trials (19).

The test-negative design is being applied in diverse set-
tings, and the need for theoretical examination of its proper-
ties is clear. We contribute to understanding the critical role
of temporal confounding in test-negative designs.
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