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Randomized controlled trials are crucial for the evaluation of interventions such as vaccinations, but the
design and analysis of these studies during infectious disease outbreaks is complicated by statistical, ethical,
and logistical factors. Attempts to resolve these complexities have led to the proposal of a variety of trial
designs, including individual randomization and several types of cluster randomization designs: parallel-arm,
ring vaccination, and stepped wedge designs. Because of the strong time trends present in infectious disease
incidence, however, methods generally used to analyze stepped wedge trials might not perform well in these
settings. Using simulated outbreaks, we evaluated various designs and analysis methods, including recently
proposed methods for analyzing stepped wedge trials, to determine the statistical properties of these methods.
While new methods for analyzing stepped wedge trials can provide some improvement over previous methods,
we find that they still lag behind parallel-arm cluster-randomized trials and individually randomized trials in
achieving adequate power to detect intervention effects. We also find that these methods are highly sensitive
to the weighting of effect estimates across time periods. Despite the value of new methods, stepped wedge trials
still have statistical disadvantages compared with other trial designs in epidemic settings.

cluster-randomized trials; epidemics; permutation tests; simulation; stepped wedge trials; synthetic control;
vaccine trials

Abbreviations: CRT, cluster-randomized trial; IRT, individually randomized trial; MEM, mixed effects model; MEM-CP,
mixed effects model–cluster period; NPWP, nonparametric within-period; PH, proportional hazards; R0, basic reproduction
number; SC, synthetic control; SWT, stepped wedge cluster-randomized trial; VE, vaccine efficacy.

Randomized controlled trials are crucial to evaluating
interventions, including vaccines and other preventive mea-
sures, during infectious disease outbreaks. Epidemic settings
and vaccine studies, however, pose statistical, logistical, and
ethical challenges that make randomized trials more difficult
to design, conduct, and analyze (1). Statistically, trials must
account for the interference between individuals and define
explicitly whether they identify the direct or indirect effects
of the vaccine, as well as handle a high degree of spatiotem-
poral variation, uncertain incidence rates, and the potential
for mild or asymptomatic infections (2–4). Logistically, tri-
als must be able to be implemented in the context of ongoing
epidemiologic work in outbreaks and account for the time-
line of production of the vaccine and the speed at which it
can be rolled out to affected communities (3, 5, 6). Ethically,

vaccine trials face complex considerations of the overall
value of the trial as well as the risks and benefits to partici-
pants and individuals in communities with participants (7, 8).

Cluster-randomized trials (CRTs) have recently become
more common in infectious disease settings. These designs
are well-suited to capture indirect effects (e.g., the effects of
herd immunity) and, in some situations, might be logistically
easier to implement or more acceptable to participating
communities (3, 7, 9). More complex CRT designs have also
been proposed for vaccine trials in outbreak settings. These
include the ring vaccination design that was used in the
2015 Ebola outbreak in Guinea (10) as well as the stepped
wedge cluster-randomized trial (SWT) design, which has
been proposed in various outbreak settings, including the
Ebola outbreak in Sierra Leone (11). SWTs might be more
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acceptable to communities enrolling in trials because there
is no placebo group, and they might align well with a phased
rollout necessitated by implementation challenges (12, 13).

There are, however, tradeoffs to these designs. They are
not designed to identify direct effects of intervention (7).
In addition, CRTs and SWTs generally have lower power
to detect treatment effects and thus require a larger sample
size than individually randomized trials (IRTs) (9, 14, 15).
They also might exhibit biases due to imbalance between
clusters, especially with the high incidence heterogeneity
of outbreaks, and they have less flexibility to adapt the
design or increase sample size (3, 9, 11, 16). To better
understand the statistical properties of these designs, we
can evaluate their performance on simulated outbreaks (17).
Bellan et al. (14) found that SWTs had much lower power
than IRTs in simulations of the waning Ebola outbreak.
Hitchings et al. (15) used simulated outbreaks to examine
the tradeoff between capturing indirect vaccine effects and
reduced power between parallel-arm CRTs and IRTs.

SWTs in particular are highly susceptible to misspeci-
fication and can produce biased results when time trends
and time-intervention interactions are not modeled correctly
(18, 19). Type I error of hypothesis tests can be preserved
by using permutation-based inference, but this generally
results in reduced power (20–22). New methods for analyz-
ing SWTs have recently been proposed that preserve type
I error but might have more precision and higher power
than permutation tests based on misspecified mixed effects
models (MEM). These can be purely “vertical” methods
that avoid the need to model time trends, such as the non-
parametric within-period (NPWP) method (23), the design-
based approach (24), and the synthetic control (SC)-based
approach (22), or “horizontal” methods that compare within-
cluster differences between 2 time points across clusters
(22). The properties of these analysis methods have been
studied in various theoretical and simulation-based contexts
but not specifically for infectious disease outbreaks and not
in a context that compares them with IRT and CRT designs.

Understanding the statistical properties of various trial
designs for infectious disease outbreaks is a key part of
planning for vaccine studies. Vaccine studies in outbreak
settings, as currently with coronavirus disease 2019, should
take into consideration these properties, along with feasi-
bility and ethical considerations, in the design phase. To be
ethical, a randomized trial should have a clear analysis plan
that will result in a statistically valid estimate of the effect
and is adequately powered to detect a meaningful effect
size in a reasonable amount of time. By considering the
properties of various SWT analysis methods and comparing
these with IRT and CRT methods, this article contributes
to the appropriate design of future trials conducted during
epidemics.

METHODS

Outbreak and trial simulation

We simulated outbreaks using a model developed by
Hitchings et al. (15). This model simulates a main pop-
ulation, in which an epidemic progresses, and the study

population, which is composed of many smaller communi-
ties. Infections are imported from the main population into
the study population, where the outbreak spreads within the
communities, but, for our simulation, not between commu-
nities.

The model and parameters are described in more detail by
Hitchings et al. (15). We used the infectious period distribu-
tion (gamma distributed with a mean of 5.0 days and a stan-
dard deviation of 4.7 days), community size (uniformly dis-
tributed from 80 to 120 persons), within-community proba-
bility of a contact between 2 individuals (0.15), and percent-
age of a community enrolled in the trial (50%) used in those
simulations. In our model, the infectious period corresponds
approximately with reported timing of the peak viral load for
severe acute respiratory syndrome coronavirus-2 infection
(25). The community size and contact rates are highly depen-
dent on context but might be reasonable if most transmis-
sions are from very close contacts. To reduce the number of
communities with no cases, we increased the expected num-
ber of importations into a community to 2 over the course of
the study. We assumed that the incubation period and latent
period were the same for each individual, independently
generated from a gamma distribution with shape parameter
5.807 and scale parameter 0.948, for a mean incubation
period of 5.51 days, as has been estimated for coronavirus
disease 2019 (26). We enrolled 40 communities into the
trial 56 days after the start of the epidemic in the main
population and conducted follow-up for 308 days. Finally,
we considered 4 values of basic reproduction number (R0)
for the outbreak: R0 = 1.34, 1.93, 2.47, and 2.97, by varying
the transmission rate constant parameter in the model.

On top of this outbreak, we simulated 3 types of random-
ized trials: an IRT, a CRT, and a SWT. The IRT and CRT
were conducted as described by Hitchings et al. (15). In all
designs, on day 56, half of the individuals in each study
cluster who had not yet been infected were enrolled into the
trial, and these individuals were followed for 308 days. In the
IRT, half of these individuals in each cluster were assigned
to vaccination and the other half to control; the vaccination
occurred immediately upon enrollment. In the CRT, half of
the clusters were assigned to vaccination and the other half
to control; all enrolled individuals in a cluster received the
treatment for that cluster immediately upon enrollment. In
the SWT, all clusters began in the control arm. In design
SWT-A, 4 clusters crossed over to the vaccination arm every
28 days, beginning on day 84. In design SWT-B, 1 cluster
crossed over to the vaccination arm every 7 days, beginning
on day 84. So the period lengths differed for SWT-A (28
days) and SWT-B (7 days). We considered 3 values of the
direct vaccine efficacy (VE): 0, 0.6, and 0.8. In both of the
nonzero cases, the vaccine is leaky, conferring a constant
reduction in the probability of infection acquisition per con-
tact across all vaccinated individuals. For each combination
of R0, VE, and trial type, we conducted 1,000 simulations
and analyzed the results.

Analysis methods

The results from the IRT and CRT designs were analyzed
as described by Hitchings et al. (15), using the time to
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symptom onset for each enrolled individual. For the IRT,
statistical analysis was conducted using a Cox proportional
hazards (PH) analysis, stratified by community. For the CRT,
statistical analysis was conducted using a Cox PH model
with a gamma-distributed shared frailty to account for clus-
tering by community. In both of these analyses, individuals
who have not experienced symptom onset by the end of
follow-up are censored.

The results from the 2 SWT designs were analyzed using
a variety of methods. A PH approach used the time to symp-
tom onset to estimate a hazard ratio, like the approaches used
for the IRT and CRT designs. The other approaches use the
proportion of individuals with symptom onset in each cluster
in each period to estimate a risk or odds ratio; this has the
advantage of being less sensitive to consistent determination
of the date of symptom onset but might have less power than
methods using the time to event. The methods used were:
• SWT-PH: Cox PH analysis with a time-varying interven-

tion covariate and a gamma-distributed shared frailty to
account for clustering by community (14, 27).

• MEM: MEM with a fixed effect of time and a normally
distributed random effect for cluster, with a logit link (28).

• MEM-cluster period (CP): MEM with a fixed effect of
time and independent normally distributed random ef-
fects for cluster and cluster period, with a logit link (29).

• Two vertical nonparametric within-period methods, both
with a log link (23):

◦ NPWP-1: equally weighting period-specific NPWP
estimates across periods.

◦ NPWP-2: weighting period-specific NPWP estimates
by the total number of cases in that period.

• Four vertical synthetic control methods, all with a log link
(22):

◦ SC-1: equally weighting clusters within each period
and equally weighting period-specific SC estimates
across periods.

◦ SC-2: equally weighting clusters within each period
and weighting period-specific SC estimates by the
total number of cases in that period.

◦ SC-Wt-1: weighting clusters within each period by the
inverse mean square prediction error of the SC fit and
equally weighting period-specific SC estimates across
periods.

◦ SC-Wt-2: weighting clusters within each period by the
inverse mean square prediction error of the SC fit and
weighting period-specific SC estimates by the total
number of cases in that period.

We did not consider the horizontal crossover method
because it is not well suited to capture indirect effects and
is highly sensitive to time trends (22). While time to infec-
tion might be more representative (than time to symptom
onset) of the underlying transmission dynamics, it is difficult
to observe, so we considered the more reasonable study
outcome of time to symptom onset. It is assumed in this
model that symptom onset and beginning of infectiousness
are the same and that an individual will not be reinfected
after symptom onset. To account for the delay in symptom

onset (and thus the delayed effect of the intervention), we
removed the first period on intervention for each cluster
from all SWT analyses. For the time-to-event analyses, we
removed any infections that occur within the first 6 days (the
average incubation time) of trial enrollment or of beginning
the intervention.

For NPWP and SC, we took the log risk ratio of the
mean intervention cluster outcome compared with the mean
control (or synthetic control) cluster outcome within each
period. For periods with zero cases among either the control
clusters or intervention clusters, we added one-half case and
one-half noncase to each arm so that a period-specific effect
estimate could be computed. Failure to do so results in non-
computable effect estimates. Periods with zero cases in both
arms do not contribute to the effect estimate. For hypothesis
testing, we used asymptotic inference for MEM and MEM-
CP and permutation inference for SWT-PH, NPWP, and SC
(20–22). Permutation inference was not done for the MEM
and MEM-CP methods because of the high computational
burden of these methods. All code is available at https://
github.com/leekshaffer/SW-CRT-outbreak.

RESULTS

VE estimates and power by analysis method

Figure 1 shows the median and first and third quartiles

of the VE estimates, calculated as 1 − eθ̂, where θ̂ is the
estimated hazard ratio (IRT, CRT, and SWT-PH), odds ratio
(SWT MEM and MEM-CP), or risk ratio (SWT NPWP
and SC) across 1,000 simulations. We show main results
for R0 = 2.47 and direct VE = 0.6 for the IRT, CRT, and
SWT-A (Figure 1A) and SWT-B (Figure 1B) designs. Note
that while these effect measures are not equivalent, they are
approximately equal under the rare disease assumption given
that the incidence rate is low in each cluster period (1).

These results demonstrate that the IRT has the least vari-
ability among estimates and is centered near the true direct
VE. Because the control individuals in the IRT benefit from
the indirect effect of being in the same cluster as vaccinated
individuals, the estimated VE is slightly below the true direct
VE. The CRT estimates a higher effectiveness; it captures
some indirect effects but with higher variability. The SWT
results are very dependent on the analysis method chosen,
but all have higher variability than the CRT results and have
a lower median estimate. Among SWT results, a higher
effect is estimated when weighting across periods by the
total number of cases in a given period than when weighting
equally. A higher effect is generally also estimated for SWT-
A than for SWT-B, except for SWT-PH, which has compa-
rable medians between the 2 SWT designs.

Figure 2 shows the empirical power (Figure 2A,
VE = 0.6) and empirical type I error (Figure 2B, VE=0) for
asymptotic inference for the IRT, CRT, MEM, and MEM-CP
analyses and permutation inference for the SWT-PH, NPWP,
and SC analyses. As seen in other settings, the asymptotic
inference for MEM and MEM-CP leads to greatly inflated
type I error (over 25%) and is omitted from the figure (14, 20,
22); while not shown, the asymptotic inference for SWT-PH
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Figure 1. Estimates by model for an analysis of vaccine efficacy
(VE) in an outbreak setting. Median and interquartile range (IQR)
of VE estimates for direct VE of 0.6 (vertical line) and a basic
reproduction number, R0, of 2.47 for individually randomized trial
(IRT) analyzed with stratified Cox model, cluster-randomized trial
(CRT) analyzed with a Cox model with a gamma-distributed shared
frailty, and stepped wedge trials with 4 clusters crossing over every
28 days (SWT-A) (A) and with 1 cluster crossing over every 7 days
(SWT-B) (B) analyzed by a Cox model with a gamma-distributed
shared frailty (SWT-PH), mixed effects model (MEM), mixed effects
model with cluster-period random effect (MEM-CP), nonparametric
within-period method equally weighted across periods (NPWP-1)
and weighted across periods by total case count (NPWP-2), and
synthetic control method equally weighted across clusters and peri-
ods (SC-1), equally weighted across clusters and weighted across
periods by total case count (SC-2), weighted across clusters by
inverse mean square prediction error and equally weighted across
periods (SC-Wt-1), and weighted across clusters by inverse mean
square prediction error and across periods by total case count (SC-
Wt-2).

Figure 2. Power and type I error by model for an analysis of
vaccine efficacy in an outbreak setting. Empirical power for direct
vaccine effect of 0.6 (A) and empirical type I error for direct vaccine
effect of 0 (B) with a basic reproduction number, R0, of 2.47 for
individually randomized trial analyzed with stratified Cox model (IRT),
cluster-randomized trial analyzed with a Cox model with a gamma-
distributed shared frailty (CRT), and stepped wedge trials with 4
clusters crossing over every 28 days (SWT-A) and with 1 cluster
crossing over every 7 days (SWT-B) analyzed by a Cox model
with a gamma-distributed shared frailty (SWT-PH), mixed effects
model (MEM), mixed effects model with cluster-period random effect
(MEM-CP), nonparametric within-period method equally weighted
across periods (NPWP-1) and weighted across periods by total case
count (NPWP-2), and synthetic control method equally weighted
across clusters and periods (SC-1), equally weighted across clusters
and weighted across periods by total case count (SC-2), weighted
across clusters by inverse mean square prediction error and equally
weighted across periods (SC-Wt-1), and weighted across clusters
by inverse mean square prediction error and across periods by total
case count (SC-Wt-2). Four type I error values greater than 10% are
denoted by “+” in (B): SWT-A MEM (72%), SWT-B MEM (72%), SWT-
A MEM-CP (28%), and SWT-B MEM-CP (52%). The horizontal line
in (B) denotes the nominal type I error of 5%.
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leads to inflated error similar to that for MEM. The
permutation inference for SWT-PH, NPWP, and SC has
greatly reduced power compared with the IRT and CRT
methods, with less than 50% power to detect a true direct
vaccine effect of 0.6 compared with over 90% for the CRT
and nearly 100% for the IRT. The NPWP-2 method achieves
greater power in SWT-B than in SWT-A, but this is not the
case for NPWP-1. SC-1 and SC-2 perform comparably to
NPWP-1 and NPWP-2, respectively, but the SC-Wt methods
have noticeably lower power. SWT-PH performs similarly
to NPWP-1 and SC-1, which is not as high as NPWP-2 and
SC-2.

VE estimates and power by R0

Figure 3 demonstrates the effect of R0 on the median
VE estimate (Figure 3A) and empirical power (Figure 3B)
among these methods for the true direct VE = 0.6. Figure 4
shows the same results for true direct VE = 0.8. For com-
parison, Figure 5 shows the same results for the null setting
where the true direct VE = 0. For both nonzero VE values,
as R0 increases, both the estimated VE and the power of
all of the SWT-A and SWT-B methods decrease. The same
trend occurs for the CRT, although it maintains nearly 100%
power when VE = 0.8 for all R0 values considered here. The
IRT approach maintains its estimate and power throughout.
The SWT methods decrease much more quickly than the
CRT method, although there is no noticeable difference in
this regard among the various SWT methods. For higher R0
values, the epidemic is passing so quickly through the com-
munities that many communities have already experienced
the epidemic before crossing over to the intervention, thus
reducing the power of the SWT methods to detect effects.
Throughout, the various SWT methods perform similarly.
While these figures display only SWT-PH, NPWP-2, and
SC-2, the same trends held for NPWP-1 and SC-1. Similar
trends, but with lower power throughout, held for SC-Wt-1
and SC-Wt-2.

Time-varying vaccine effects and weighting of vertical
SWT methods

The vertical methods for analysis of SWTs allow the
investigator to specify the weighting across periods and, to
some extent, clusters in the study. These choices can have
a substantial effect on the overall estimated effect, as well
as the power of the analysis. Figure 6 displays the estimated
period-specific treatment effect (on the VE scale) for SWT-
A (Figure 6A) and SWT-B (Figure 6B), analyzed by NPWP,
SC, and SC-Wt. In both panels, for all 3 methods, there
is a clear trend of maximum effect estimate early in the
trial (although not at the very beginning for SWT-B) and
a declining effect as the trial continues. For SWT-B, the
negative effect estimates early in the trial are likely due to the
very small number of clusters on intervention at that point,
which can lead to a few simulations with a high number
of early cases in those clusters having a big effect on the
averages presented here. Later in the trial, clusters that were
on control throughout are more likely to have exhausted

Figure 3. Estimates and power by basic reproduction number, R0,
and model for an analysis of vaccine efficacy (VE) in an outbreak
setting for direct VE of 0.6. Median VE estimate (A) and empirical
power (B) for direct VE of 0.6 (horizontal line in (A)) versus R0,
for individually randomized trial (IRT) analyzed with stratified Cox
model (squares, solid line), cluster-randomized trial (CRT) analyzed
with a Cox model with a gamma-distributed shared frailty (circles,
dashed line), and stepped wedge trials (SWT-PH) with 4 clusters
crossing over every 28 days (SWT-A, filled points) and with 1 cluster
crossing over every 7 days (SWT-B, unfilled points) analyzed by
a Cox model with a gamma-distributed shared frailty (diamonds,
dotted line), nonparametric within-period method weighted across
periods by total case count (NPWP-2; upward triangle, dash-dotted
line), and synthetic control method equally weighted across clusters
and weighted across periods by total case count (SC-2; downward
triangle, long-dash line).

the susceptible population than clusters already intervened-
upon, leading to lower incidence in the control clusters than
the intervention clusters at that point.
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Figure 4. Estimates and power by basic reproduction number, R0,
and model for an analysis of vaccine efficacy (VE) in an outbreak
setting for direct VE of 0.8. Median VE estimate (A) and empirical
power (B) for direct VE of 0.8 (horizontal line in (A)) versus R0,
for individually randomized trial (IRT) analyzed with stratified Cox
model (squares, solid line), cluster-randomized trial (CRT) analyzed
with a Cox model with a gamma-distributed shared frailty (circles,
dashed line), and stepped wedge trials with 4 clusters crossing over
every 28 days (SWT-A, filled points) and with 1 cluster crossing
over every 7 days (SWT-B, unfilled points) analyzed by a Cox
model with a gamma-distributed shared frailty (SWT-PH; diamonds,
dotted line), nonparametric within-period method weighted across
periods by total case count (NPWP-2; upward triangle, dash-dotted
line), and synthetic control method equally weighted across clusters
and weighted across periods by total case count (SC-2; downward
triangle, long-dash line).

DISCUSSION

The statistical performance of the SWT analysis meth-
ods considered here in simulated outbreaks highlights the

Figure 5. Estimates and type I error by basic reproduction number,
R0, and model for an analysis of vaccine efficacy (VE) in an outbreak
setting for direct VE of 0. Median VE estimate (A) and empirical
type I error (B) for direct VE of 0 (horizontal line in (A)) versus R0,
for individually randomized trial (IRT) analyzed with stratified Cox
model (squares, solid line), cluster-randomized trial (CRT) analyzed
with a Cox model with a gamma-distributed shared frailty (circles,
dashed line), and stepped wedge trials with 4 clusters crossing over
every 28 days (SWT-A, filled points) and with 1 cluster crossing
over every 7 days (SWT-B, unfilled points) analyzed by a Cox model
with a gamma-distributed shared frailty (SWT-PH; diamonds, dotted
line), nonparametric within-period method weighted across periods
by total case count (NPWP-2; upward triangle, dash-dotted line),
and synthetic control method equally weighted across clusters and
weighted across periods by total case count (SC-2; downward trian-
gle, long-dash line). The horizontal line in (B) denotes the nominal
type I error of 5%.

drawbacks of the SWT design for the assessment of vaccines
and other preventive measures during infectious disease
outbreaks. Because of the high spatiotemporal variance of
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Figure 6. Period-specific estimates by period and model for an analysis of vaccine efficacy (VE) in an outbreak setting. Average period-specific
VE estimate by period for stepped wedge trials with 4 clusters crossing over every 28 days (SWT-A) (A) and 1 cluster crossing over every 7
days (SWT-B) (B) with VE = 0.6 and a basic reproduction number, R0, of 2.47, analyzed by nonparametric within-period method (NPWP),
synthetic control (SC) method weighted equally across clusters, and SC method weighted across clusters by inverse mean square prediction
error (SC-Wt). Values less than −0.2 are truncated to −0.2 for legibility.

outbreaks, asymptotic inference on MEM or PH models of
SWTs might have greatly inflated type I error. This is espe-
cially true when the outbreak has a high R0, resulting in rapid
spread within communities. And while permutation infer-
ence of purely vertical analysis methods (like the NPWP
method and SC methods) or of PH models can preserve
type I error, they have greatly reduced power compared with
analysis methods for other trial designs.

The time trend in the number of intervention and control
clusters removes the overall exchangeability of the inter-
vention and control groups in an SWT and results in time-
dependent cluster-level intervention effects. The flattening

of the epidemic curve due to the intervention leads to an
apparent decreased effectiveness of the intervention in later
periods—the intervention clusters still have more remaining
susceptible individuals than the control clusters. The exis-
tence of a contrast is also dependent on the timing of the
crossovers relative to the outbreak onset. If the crossovers
occur too early, before the onset, then there will be few
events in the control condition. If the crossovers occur too
late, after the outbreaks have passed, then there will be few
events in the intervention condition. Either result will reduce
power and lead to potential bias from the handling of cluster
periods with zero cases. These timing effects weaken a key
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advantage of randomization: that it ensures comparability
between the 2 groups (3).

Results of an SWT will thus be inherently limited by
the duration and timing of the trial, decreasing the gen-
eralizability of these results. Additionally, the results of
these vertical analysis methods are very dependent on the
weighting scheme used to combine period-specific estimates
and on the period length. It might be difficult to select the
optimal weighting method a priori because it likely depends
on the temporal variation of incidence in the setting under
study, leading to more researcher degrees of freedom in the
analysis. While the design might provide useful information
on the relative effects of intervening at different points in
the outbreak, it provides less clear evidence on the overall
efficacy of the intervention, and the generalizability of the
results might suffer. More research is needed to under-
stand the trends in the estimated effect and power to detect
an effect as the timing and duration of a CRT or SWT
vary.

The NPWP and SC methods also allow investigators to
consider VE on other scales, such as the risk difference scale
(22, 23). These results might be of interest to policy makers
and might be better suited to settings with very few outcomes
in the intervention arm. In particular, when the VE is close to
1, and thus few cases are likely to occur in the intervention
arm, the log-link methods used here to handle zero-case
periods might bias the results toward the null, and another
approach should be used.

These simulated results focus narrowly on the statistical
properties of the design. The ethical concerns, including
the effect on trial participants and the speed with which
a conclusion is reached, are also crucial considerations (3,
7, 30, 31). In addition, the logistics of implementing the
intervention might limit the choices available to trial design-
ers. However, these issues might be better solved with risk
prioritization in IRT or parallel-arm CRT designs rather
than SWTs (14, 30, 31). All of these factors should be
considered and appropriately weighed when designing a
trial.

Further research is needed to clarify the relative advan-
tages of various designs and analysis methods when a trial
starts at different points relative to the outbreak curve. In
addition, future work could consider methods to deter-
mine the relative benefits of beginning and ending inter-
ventions at different points. The stepped wedge design
could be useful for that purpose, given that it can provide
information on the time trends in intervention effective-
ness, but other designs might be valuable for this purpose as
well.

In conclusion, we have shown in simulated outbreaks
that, while permutation inference on proportional hazards
models and vertical methods to analyze SWTs can pres-
erve type I error and provide valid effect estimates, they
are less powerful than parallel-arm CRT designs, which
are themselves less powerful than IRT designs. Given
the primary purpose of a randomized trial to demonstrate
efficacy of the intervention, SWTs have serious statisti-
cal disadvantages compared with these other 2 designs
for evaluating vaccines during infectious disease out-
breaks.
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