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Abstract

Recent studies have postulated that the human motor control system recruits groups of muscles 

through low-dimensional motor commands, or muscle synergies. This scheme simplifies the 

neural control problem associated with the high-dimensional structure of the neuromuscular 

system. Several lines of evidence have suggested that neurological injuries, such as stroke or 

cerebral palsy, may reduce the dimensions that are available to the motor control system, and these 

altered dimensions or synergies are thought to contribute to impaired walking patterns. However, 

no study has investigated whether impaired low-dimensional control spaces necessarily lead to 

impaired walking patterns. In this study, using a two-dimensional model of walking, we developed 

a synergy-based control framework that can simulate the dynamics of walking. The simulation 

analysis showed that a synergy-based control scheme can produce well-coordinated movements of 

walking matching unimpaired gait. However, when the dimensions available to the controller were 

reduced, the simplified emergent pattern deviated from unimpaired gait. A system with two 

synergies, similar to those seen after neurological injury, could not produce an unimpaired walking 

pattern. These findings provide further evidence that altered muscle synergies can contribute to 

impaired gait patterns and may need to be directly addressed to improve gait after neurological 

injury.
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1. Introduction

Locomotion is a complex motor task which requires precise coordination of highly nonlinear 

and redundant musculotendinous units. The redundancy of the musculotendinous units, 

where the number of muscles crossing each joint exceeds the kinematic degrees of freedom, 

provides a flexible but intricate mechanism for controlling the human body. Prior research 

analyzing muscle activity with surface electromyography (EMG) recordings suggests that 
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the human central nervous system may reduce motor control complexity by recruiting 

muscles through individual motor commands sent to weighted groups of muscles (Ivanenko, 

et al., 2005; Tresch, et al., 1999; Davis & Vaughan, 1993). This results in a low dimensional 

control space that may be represented by a small set of muscle synergies. In this manuscript, 

a muscle synergy (sometimes called module or motor primitive) is defined as a weighted 

group of muscles that are activated together during functional motor tasks. The complex 

muscle activation patterns during walking, and their variability across walking speeds, can 

be accounted for by independent control of muscle synergies (Cappellini, et al., 2006). 

Muscle synergies can be identified by applying various factorization techniques to EMG 

data (e.g., factor analysis, independent component analysis, and nonnegative matrix 

factorization). The muscle synergies identified during walking have relatively consistent 

muscle organizations and activation patterns regardless of the technique used (Tresch, et al., 

2006), and appear to be organized around functional motor tasks of walking (e.g., body 

support and forward propulsion) (Ting & Macpherson, 2005; Neptune, et al., 2009).

Several research studies have reported that four to six functionally relevant muscle synergies 

are needed to describe muscle activity during unimpaired walking (Clark, et al., 2010; 

Ivanenko, et al., 2006; Cappellini, et al., 2006). Motor control complexity increases during 

human development (Dominici, et al., 2011), and may be reduced following a neurological 

injury (Ivanenko, et al., 2013). Individuals who have impaired walking due to a stroke 

(Clark, et al., 2010), incomplete spinal cord injury (Fox, et al., 2013) or cerebral palsy 

(Steele, et al., 2015) recruit fewer muscle synergies compared to unimpaired individuals. 

Often, in individuals who have had a stroke, the impaired synergies resemble merging of 

specific unimpaired synergies (Clark, et al., 2010). Similar conclusions have been drawn for 

upper-extremity movements after stroke (Cheung, et al., 2012; Roh, et al., 2015). Altered 

synergies have been hypothesized to contribute to not only impaired movement, but also the 

increased muscle activity and greater energetic costs commonly observed among individuals 

with neuromuscular disorders compared to unimpaired individuals (Rose, et al., 1990; 

Steele, et al., 2017; Kramer, et al., 2016; van der Krogt, et al., 2012).

Using computer simulations of musculoskeletal models, previous studies have provided 

evidence that synergy-based control can produce well-coordinated steady-state forward 

walking (Neptune, et al., 2009; Allen & Neptune, 2012; Sartori, et al., 2013). Synergy-based 

control has been previously used to incorporate subject-specific motor impairments in 

control to simulate impaired walking patterns (Meyer, et al., 2016; Walter, et al., 2014). 

However, whether altered synergies, such as those commonly observed after neurological 

injury, can control unimpaired gait remains unknown. The answer to this question can 

provide useful insight into the neurological complexity required for walking. Specifically, 

the ability of a simulation to achieve unimpaired gait using “impaired” synergies may 

suggest that unimpaired gait is feasible despite the neurological injury and may be obtained 

through targeted treatments such as strength training or orthopaedic surgery. However, the 

impaired synergies may require greater muscle activity or energetic cost to achieve this 

unimpaired gait pattern. Alternatively, failure to achieve an unimpaired gait with impaired 

synergies would suggest that altered motor control enforces fundamental constraints or 

reflects compensatory strategies that underlie impaired gait. These constraints or 
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compensations must be acknowledged and addressed in the treatment of non-neurological 

issues to achieve unimpaired walking.

In the present study, we combined muscle synergy theory with musculoskeletal simulation 

and optimal control theory to develop a synergy-based controller that can simulate the 

forward dynamics of walking. Muscle synergies were identified by applying factorization 

techniques to model-based muscle excitations. Each synergy was then controlled through a 

low-dimensional set of motor commands computed by a synergy-based controller. Unlike 

previous studies (Neptune, et al., 2009; Sartori, et al., 2013) that assumed a fixed number of 

synergies, this research examined multiple potential synergy solutions to determine whether 

a given number of synergies could achieve unimpaired gait. This research aimed to use 

synergy-based control to (a) investigate whether an unimpaired gait can be achieved from 

low-dimensional control spaces represented by altered muscle synergies, (b) analyze the 

kinematics and muscle activities resulting from synergy-based control, and (c) evaluate the 

effort required by the resulting gait pattern to examine how muscle recruitment may change 

with synergy-based control, and whether these changes contribute to a less-efficient gait 

pattern. Addressing these aims will enhance our understanding about the impacts of altered 

synergies from neurological injuries on impaired gait, and the implications of these 

synergies on treatment planning.

2. METHODS

2.1. Musculoskeletal model

A dynamic model of human walking in the sagittal plane, similar to the planar model of 

Geyer and Herr (2010), was implemented in MATLAB (Mathworks, Inc) (Fig. 1). The 

model consisted of seven rigid body segments connected to each other via hinge joints. The 

segments included an upper-extremity segment (i.e., head, arm, and trunk), two thighs, two 

shanks, and two feet. This model had nine kinematic degrees-of-freedom (DOF) and was 

actuated with eight Hill-type musculotendinous units per leg. The musculotendinous units 

were designed to mimic the rectus femoris (RF), hip flexors (iliopsoas, HFL), gluteus 

maximums (GLU), vastus medialis (VAS), biarticular hamstrings (HAM), gastrocnemius 

(GAS), tibialis anterior (TA), and soleus (SOL). The musculotendinous unit model and its 

parameters, including musculotendinous path and moment arm curves, muscle activation 

time constants, maximum isometric force, tendon slack length, optimal fiber length, and 

maximum shortening velocity of all muscles except RF, were based on Geyer & Herr 

(2010). Similar to (Dorn, et al., 2015), we added RF to Geyer and Herr’s model to include 

the dynamics of a hip and knee biarticular muscle.

To simulate foot-ground interaction, the model incorporated ten elements, with continuous 

coulomb friction (Brown & McPhee, 2016) evenly distributed along the foot. This differs 

from Geyer and Herr’s model that used two nonlinear viscoelastic spherical contact 

elements. The normal force between the foot and ground was calculated based on the Hunt-

Crossley model described in Geyer & Herr (2010); however, the stiffness in this equation, 

through trial and error, was changed to 848,500 N/m to avoid unrealistically bouncy foot 

movements and sharp peaks in ground reaction forces in the simulations (Dorn, et al., 2015).
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2.2. Neuromuscular controller

Direct collocation (DC) was employed to track joint trajectories of an unimpaired, bilateral 

symmetric gait cycle (Ackermann & Van den Bogert, 2010). Briefly, DC converts the 

trajectory tracking problem to a nonlinear program by discretizing the states (18 generalized 

coordinates and velocities corresponding to kinematic DOFs, 16 muscle contractile element 

lengths, 16 muscle activations) and inputs (16 neural excitations), and transcribing dynamic 

equations of motion to algebraic constraints using the implicit Euler method by means of a 

51-node temporal grid for half a gait cycle (assumed symmetry). Since unimpaired gait is 

symmetric, assuming symmetry reduced simulation complexity without loss of fidelity. The 

dynamic equations of motion of the musculoskeletal model were generated using the 

symbolic modeling engine MapleSim (Maplesoft, Inc). The discretized motor control inputs 

and states, and the initial joint angles and angular velocities were optimized using an interior 

point optimization (IPOPT) solver in MATLAB, such that the difference between simulated 

and desired kinematics and the neural excitation effort were minimized. The IPOPT solver is 

well suited for solving large-scale nonlinear optimization problems (Wächter & Biegler, 

2006). The neural excitation effort was defined as the summation of neural excitations 

squared over a full gait cycle (Ackermann & Van den Bogert, 2010). This measure was used 

to quantify and compare the required neural excitation of the emergent gait patterns. The 

desired kinematics consisted of the sagittal plane trajectories of hip, knee, and ankle angles, 

and trunk rotational and translational movements. Thus, the cost function was defined as:

J = ∫
t = 0

t = tf

∑
i = 1

16
ui2 + w ∑

j = 1

9
θj − θj, desired

2 dt (1)

where u are neural excitations, θ and θdesired are the kinematic state variables and their 

desired trajectories, respectively, and i and j are the indices for individual muscles and 

kinematic state variables. The parameter w is a weighting factor whose value was set to 1000 

to weigh the tracking term against the physiological term in the cost function, and was 

manually tuned to find acceptable joint trajectories and control profiles (Umberger, 2010).

We performed tracking simulations with two different motor control strategies: (1) 

individual muscle control, in which motor control inputs were sent to each muscle 

independently, and (2) synergy-based control, in which muscles were controlled via low-

dimensional signals (i.e., synergy activations). In synergy-based control, two sets of 

simulations with fixed and flexible synergies were performed. In synergy-based control with 

fixed synergies, the muscles in each synergy were activated together with a fixed ratio (i.e., 

synergy weights), and their synergy activation profiles were optimized. While in synergy-

based control with flexible synergies, the synergy weights were also allowed to deviate from 

the original weights during the optimizations. In this simulation, the deviation from the 

original synergy weights was penalized by including a lightly weighted error term (i.e., the 

difference between the original and flexible synergy weights) in the cost function. In the 

synergy-based control simulations, the desired kinematics trajectories were set to those 

derived from the individual muscle control simulations. This ensured that the simulation 

results were comparable between individual and synergy-based control. The root-mean-

Meharbi et al. Page 4

J Biomech. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



square of tracking error (RMSE) was used to compare the emergent simulated kinematics, 

and to verify whether the low-dimensional control spaces represented by altered synergies 

could produce an unimpaired gait. Figure 2 summarizes the procedures used in this study for 

developing synergy-based controllers to simulate unimpaired gait.

2.3. Non-negative matrix factorization

Muscle synergies used for the synergy-based control simulations were identified by applying 

a non-negative matrix factorization (NNMF, Lee & Seung, 1999) algorithm to model-based 

neural excitations (u) from the tracking simulation with individual muscle control in 

MATLAB. The NNMF algorithm computes the fixed ratios with which muscles are 

activated in each synergy (W), and the temporal synergy activations (C) such that the 

excitations u = W × C + error. Here, W is m × n matrix where m and n are respectively the 

number of muscles and synergies, and C is an n × t matrix where t represents the number of 

sample points in a full gait cycle. Thus, each column of W represents the relative weighting 

of individual muscles in each synergy, and each row of C represents the activation levels of 

the specific synergies over the full gait cycle. The NNMF algorithm was repeated with 

random initial guesses, and the result with the minimum error was selected. The NNMF 

algorithm in MATLAB was configured to use the multiplicative update algorithm, where the 

maximum number of iteration was 5000, the termination tolerance on change of size of the 

residual and relative change in elements of W and C were 10−7, and NNMF was repeated 

with 500 random initial guesses. The total variance accounted for (tVAF) by n synergies was 

defined by tVAFn = 1 − (W × C − u)2/ u2. We repeated this analysis by incrementally 

increasing the number of synergies from two to five. These synergies were consecutively 

included in the synergy-based controller to investigate the impacts of reduced synergies on 

gait patterns.

2.4. Experimental data

Two separate studies were used to evaluate simulate kinematics and EMG activations. The 

average kinematics of eight healthy subjects were used from a prior study that measured 

kinematics using a marker-based motion capture system (Liu, Anderson, Schwartz, & Delp, 

2008). Muscle excitation patterns were evaluated by comparing to the on-off activation 

patterns during unimpaired gait as reported in Winter (1987). The muscles were assumed to 

be “on” during walking when their EMG activity was above the 15% threshold of their 

maximum activity over the gait cycle.

3. RESULTS

The kinematics predicted by individual muscle control closely matched those observed in 

unimpaired gait. The average RMSE of hip, knee, and ankle kinematics compared to 

experimental data were 3.1°, 2.0°, and 2.1°, respectively over a gait cycle (Fig. 3, left). 

Simulated model-based neural excitations were consistent with on-off activity of muscles 

from EMG data during unimpaired gait (Fig. 3, right). In the simulations, RF was negligibly 

active, and the HFL was activated earlier than expected from experimental EMG recordings.
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The muscle synergies extracted by the NNMF algorithm from the model-based neural 

excitations had a total variance accounted for (tVAF) greater than 0.97 when three or more 

synergies were identified (0.98 and 0.99 for four and five synergies, respectively) and 0.87 

when two muscle synergies were identified (Fig. 4b). The VAFs of individual muscle were 

greater than 0.80 for all muscles in five, four, and three synergies solutions. The two synergy 

solution described over 0.80 of VAF for all muscles except for TA, which dropped to 0.30. 

In the five-synergy solution (first column in Fig. 4a), the first synergy (ankle plantarflexor: 

SOL and GAS), second synergy (hip and knee extensors: VAS, GLU, and SOL), third 

synergy (hip flexor: HFL), fourth synergy (ankle dorsiflexor-hip flexor: TA, HFL), and fifth 

synergy (hip extensor: HAM, GLU) accounted for 0.60, 0.16, 0.16, 0.11, and 0.10 of the 

total variation in individual muscle excitations, respectively. In the four-synergy solution, the 

ankle dorsiflexor-hip flexor synergy merged with the hip flexor and the hip extensor 

synergies, and in the three-synergy solution, the three aforementioned synergies formed one 

combined synergy (second and third columns in Fig. 4a). The independent burst of synergy 

activation during late swing and early stance disappeared in the two-synergy solution, 

resulting in lower tVAF.

Compared to synergy-based control with five fixed synergies, the tracking performance of 

control with two fixed synergies was significantly degraded. The RMSE of hip, knee, and 

ankle kinematics between individual muscle and two-synergy control were 4.9°, 5.8°, and 

21.8°, while they were 0.1°, 0.2°, and 0.2° between individual muscle and five-synergy 

control, respectively. With the fixed two-synergy control, the hip flexion and ankle 

dorsiflexion angles were outside of 1SD of unimpaired gait for 30% and 60% of gait cycle, 

respectively. The neural excitation effort for fixed two-synergy control was increased by 

50% compared to five-synergy control (Fig. 3). The neural excitation effort of SOL and 

GAS had large increases of 98% and 93%, while TA had a reduction of 71%.

The simulated kinematics with the flexible two-synergy control showed improvement in 

tracking compared to the original fixed two-synergy control (RMSE of hip 6.5%, knee 1.3%, 

and ankle 15.7% were reduced compared to the original two-synergy control); however, the 

ankle still failed to track the unimpaired trajectory (Fig. 5). The flexible synergy weights 

adjusted such that, in the extensor synergy, the weight of TA notably increased while VAS 

and HAM decreased, and synergy activation during stance phase increased (Fig. 6). A small 

increase of synergy activation during swing reduced the ankle tracking error while the total 

muscle excitation effort increased.

The simulation results showed that synergy activation and muscle neural excitation patterns 

change during control with a reduced number of synergies, and they may not match the 

synergy activation patterns computed by NNMF from model-based neural excitations of 

unimpaired gait. The optimal synergy activations predicted by the five-synergy control with 

fixed synergies were highly correlated with those extracted using NNMF algorithm from 

model-based neural excitations of tracking an unimpaired gait (average Pearson correlation 

coefficient, p = 0.96). However, there was less correlation between the synergy activations of 

the two-synergy control and the NNMF-identified two-synergy solution from unimpaired 

gait. In the two-synergy control, the optimal synergy activation corresponding to the flexor 

synergy (SOL, GAST, and HFL) had two consecutive bursts that may separately correspond 
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to ankle plantar flexor and hip flexor synergies. Similarly, the optimal activation of the 

extensor synergy (TA, VAST, HAM, and GLU) had a large burst of synergy activations in 

stance and a small burst later in swing that may correspond to the hip and knee extensors 

and ankle dorsiflexion synergies, respectively.

4. DISCUSSION

This study demonstrated that impaired motor control, modeled as a reduced number of 

synergies, could not accurately track an unimpaired gait pattern. This finding can be used to 

inform our understanding of how altered synergies may contribute to impaired gait after 

neurologic injury with implications for treatment planning. For example, these results 

suggest that treatments that target only orthopaedic problems without considering 

underlying neurological capacity are unlikely to succeed in producing unimpaired post-

treatment gait patterns. Recent research has indicated that there are minimal changes in 

synergies after orthopaedic surgery and other treatments common in cerebral palsy. These 

treatments also have inconsistent outcomes between individuals (Hicks, et al., 2011). These 

unsatisfactory outcomes may be tied to the underlying neuromuscular control strategy that is 

not addressed by surgical intervention. This simulation framework may provide new tools to 

identify and optimize individualized treatments targeted at the neurological impairment to 

improve walking ability.

The simulation results of control with two synergies demonstrated that, with this reduced 

control space, the synergy-based controller failed to accurately track unimpaired gait 

kinematics, especially at the ankle, and had inferior tracking performance compared to 

control with five fixed synergies (Fig. 3). This observation suggests that even if the motor 

system can optimize the neural commands based on the confined control space, there would 

be no command that can achieve an unimpaired gait in the two synergies control space. To 

further test the robustness of this conclusion, we also conducted a post-hoc analysis to test 

additional sets of synergies within the two synergies control space. Specifically, we removed 

the lightly-weighted error term on synergy weights from the objective function with flexible 

synergies and initiated the optimization with different sets of random synergy weights. 

Despite expanding our search space with these changes, we still found the two-synergy 

solution could not track unimpaired kinematics and converged to similar synergy weights 

and activation profiles. Interestingly, the weights of the two synergy solution were also 

similar to prior experimental analyses of synergies from rhythmic-stepping in infants, 

children with cerebral palsy, and adult stroke survivors (Dominici, et al., 2011; Steele, et al., 

2015; Clark, et al., 2010). It is plausible that the objective of the human control system is not 

to create an “unimpaired gait”, but rather to minimize some physiological cost. Further 

research might explore the optimality of the simulated walking patterns with altered 

synergies in terms of energy consumption and predict patterns that minimize this cost for 

subject-specific muscle synergies.

The neural excitation effort of tracking unimpaired kinematics in the reduced control space 

represented by two synergies was largely increased compared to the control space 

represented by five synergies or by individual muscles. This may provide an explanation on 

why it is more difficult to achieve an unimpaired gait following a neurological injury, and 
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also accords with earlier observations, which showed that energy cost tends to be larger for 

individuals with a neuromuscular disorder such as CP (Rose, et al., 1990; Steele, et al., 

2017) or stroke (Kramer, et al., 2016), or with functional weakness, which may be a 

consequence of poor motor control (van der Krogt, et al., 2012). However, additional 

analyses that also incorporate other factors such as weakness or poor balance are needed to 

understand the mechanisms with which impaired neuromuscular control impacts metabolic 

energy consumption.

The simulation with flexible synergies aimed to investigate the effect of muscle synergy 

reorganization and neuroplasticity in an impaired low-dimensional control space on tracking 

performance and walking patterns. Previous studies evaluating EMGs during walking 

observed that the muscle activity patterns and the synergy weights could be changed when 

the biomechanical demands of walking were altered (e.g., walking with added trunk load or 

with a weight support system) (McGowan, et al., 2010; McGowan, et al., 2008). By allowing 

the synergy weights in the flexible two-synergy control to change, we deviated from the 

typical definition of muscle synergy and shifted towards other studies that allow some 

flexibility in synergy structure and weights (Ivanenko, et al., 2005). However, the simulation 

results further support the conjecture that there were no muscle synergy configurations 

within this lower dimensional control space that could accurately track the unimpaired gait 

kinematics.

It is important to note the limitations of the methods of this research when interpreting the 

simulation results. The musculoskeletal model represents the dynamics of walking in the 

sagittal plane and neglects the contributions of muscle forces to the frontal and transverse 

planes. Thus, this model cannot capture motor control strategies used by the central nervous 

system to stabilize the body in three-dimensions. While two synergies were unable to 

accurately track unimpaired gait with this simplified model, if greater complexity were 

added (e.g., more muscles or 3D-kinematics) then three or more synergies may also struggle 

to accurately track unimpaired gait. We also assumed symmetry between the right and left 

legs, which may not be a valid assumption for individuals with unilateral cerebral palsy or 

stroke. Determining whether applying impaired synergies for one leg prevents unimpaired 

walking kinematics remains unknown. The muscle synergies used in this research were 

identified by applying NNMF to the model-based neural excitations predicted by individual 

muscle control for tracking the kinematics of an unimpaired gait. The identified model-

based synergy activations and weights were relatively similar to those identified from EMG 

in prior studies (Clark, et al., 2010; Ivanenko, et al., 2006), suggesting the sagittal-plane 

walking model can simulate the neural control requirements of support and progression 

during gait. Other factors that may contribute to impaired gait, such as weakness, spasticity, 

or poor balance were not included in this study to focus on the impacts of altered synergies. 

Examining the impacts of these factors in combination with altered synergies may provide 

greater insight into the mechanisms contributing to impaired gait and increased energetic 

cost for individuals with neuromuscular disorders.

In this investigation, we examined whether unimpaired gait kinematics can be achieved from 

lower dimensional control spaces that are commonly observed after neurological injuries. In 

accordance with previous studies (Neptune, et al., 2009; Sartori, et al., 2013), the present 
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results demonstrated that synergy-based control could produce well-coordinated forward 

walking. However, lower-dimensional control spaces represented with altered muscle 

synergies could not track an unimpaired gait, and resulted in elevated neural exertion levels. 

This finding suggests that if synergies are an underlying neural control mechanism, gait may 

be impaired due to the reduction of the number of synergies available to the neuromuscular 

system. Treatments that target the underlying neurological capacity to increase the number 

and complexity of muscles synergies may be required to improve an individual’s walking 

pattern. For example, the flexible synergy controller used in this research could be applied to 

identify rehabilitation targets that are customized to an individual’s unique gait pattern and 

control strategy. Alternatively, if synergies are challenging to alter, simulation could be used 

to help identify and guide optimal walking patterns for an individual’s neurological capacity. 

Determining the plasticity of synergies and potential changes in gait with targeted treatment 

remain open and important areas for future research.
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Figure 1: 
The two-dimensional sagittal-plane musculoskeletal model and the synergy-based control 

framework. The musculoskeletal model included flexion and extension of hip, knee, and 

ankle of each leg, and horizontal and vertical translations and rotation of trunk. The model 

had nine kinematic degrees-of-freedom (DOFs) and eight muscles per leg. The synergy-

based control applied a direct collocation algorithm to find the optimal synergy activation 

profiles and gait dynamics. All state and input variables including synergy activations and 

kinematics, and the dynamic equations of motion were discretized via a 51-node temporal 

grid for half a gait cycle. These variables were subsequently optimized such that both the 

differences between simulated and experimental kinematics, and the neural excitation effort 

over the gait cycle were minimized. Individual muscle excitations were calculated by adding 

the contribution of each synergy to that specific muscle.
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Figure 2: 
Study design and sequence of methods used in this research. First, we implemented a 

sagittal-plane model of walking and then performed individual muscle control to simulate an 

unimpaired gait and compute the model-based neural excitations. The NNMF algorithm was 

used to extract muscle synergies from the model-based neural excitations. These synergies 

were used in the synergy-based controllers to simulate the unimpaired gait pattern predicted 

by individual muscle control. In control with fixed synergies, both the number of synergies 

and their weights were embedded in the controller, while in control with flexible synergies, 

only the number of synergies was used.
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Figure 3: 
(left) Simulated kinematics with individual-muscle and fixed synergy-based control against 

experimental unimpaired kinematics. A controller with five muscle synergies closely tracked 

unimpaired gait kinematics while there were significant deviations from unimpaired 

kinematics in control with two synergies. The kinematics with both individual muscle 

control and five-synergy control are shown and are on top of each other. (right) Muscle 

neural excitations demonstrate similar activity to experimental periods of muscle activity 

(gray bars (Winter, 1987)).
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Figure 4: 
(a) Muscle synergy weights and activations with different number of synergies from 

individual muscle control. The number of synergies identified by NNMF for five to one are 

depicted from left to right. Muscle synergies were identified by applying NNMF to the 

neural excitations computed by individual muscle control. The bar plots on the left of each 

column represent the muscle weights within each synergy, and the waveform on the right is 

the synergy activation. (b) The total variance accounted for (tVAF) was greater than 0.95 for 

three or more synergies.
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Figure 5: 
Comparison of synergy weights and activations between the original fixed two-synergy 

control and when the synergy weights were optimized in the flexible two-synergy control.
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Figure 6: 
(left) comparison of kinematics and (right) muscle activities between the synergy-based 

control with the original fixed two synergies identified with NNMF algorithm and the 

flexible two synergies.
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