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Abstract

The lattice Boltzmann method (LBM) is a popular alternative to solving the Navier-Stokes 

equations for modeling blood flow. When simulating flow using the LBM, several choices for inlet 

and outlet boundary conditions exist. While boundary conditions in the LBM have been evaluated 

in idealized geometries, there have been no extensive comparisons in image-derived vasculature, 

where the geometries are highly complex. In this study, the Zou-He (ZH) and finite difference 

(FD) boundary conditions were evaluated in image-derived vascular geometries by comparing 

their stability, accuracy, and run times. The boundary conditions were compared in four arteries: a 

coarctation of the aorta, dissected aorta, femoral artery, and left coronary artery. The FD boundary 

condition was more stable than ZH in all four geometries. In general, simulations using the ZH 

and FD method showed similar convergence rates within each geometry. However, the ZH method 

proved to be slightly more accurate compared with experimental flow using three-dimensional 

printed vasculature. The total run times necessary for simulations using the ZH boundary 

condition were significantly higher as the ZH method required a larger relaxation time, grid 

resolution, and number of time steps for a simulation representing the same physiological time. 

Finally, a new inlet velocity profile algorithm is presented for complex inlet geometries. Overall, 

results indicated that the FD method should generally be used for large-scale blood flow 

simulations in image-derived vasculature geometries. This study can serve as a guide to 

researchers interested in using the LBM to simulate blood flow.
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1 | INTRODUCTION

In computational fluid dynamics (CFD), inlet and outlet boundary conditions play a key role 

in determining the fidelity of fluid simulations and correctly describing patient 

hemodynamics.1 Accurate and precise CFD simulations have the potential to provide 

clinicians with predictive tools that aid treatment planning, risk stratification, and surgical 

decision-making. Personalized three-dimensional (3D) simulations based on patient imaging 

data enable characterization of physiological pressure and velocity fields. From these fields, 

critical metrics such as wall shear stress and fractional flow reserve, which are associated 

with disease localization and progression, can be derived on a per-patient basis.2

For researchers looking to simulate blood flow in realistic vascular geometries, the lattice 

Boltzmann method (LBM) is an attractive approach3,4 because it easily handles complex 

geometries and efficiently scales across many processors.5–7 These advantages have led to 

biomedical applications of the LBM such as modeling clot formation and deposition, 

hemodynamic patterns in stented cerebral aneurysms, and patient-specific drug targeting.
8–10 For example, HemeLB, a large-scale LBM solver, has been extensively applied to study 

vascular modeling and angiogenesis.11 Additionally, several LBM solvers have been coupled 

with fluid-structure interaction models and used for biologically relevant problems like 

modeling cancer cell transport.12 In spite of the increasing number of applications of LBM 

in blood flow analysis, there does not exist a unified scheme for implementing inlet and 

outlet boundary conditions. This leads to difficulty in appropriate treatment of boundaries 

when simulating physiological flow in an anatomically realistic geometry. Inaccurate 

implementations may lead to problems such as unrealistic flow distributions, 

nonphysiological velocity and pressure profiles, and imprecise wall deformation predictions.
13–15 The objective of this work is to numerically evaluate the application of different inlet 

and outlet conditions in image-derived CFD simulations using the LBM.

Inlet and outlet conditions are both mathematically and physically relevant because the type 

of condition helps determine the specific solution. Despite the small volume fraction of the 

total fluid domain, the numerical effects of the inlet and outlet conditions propagate 

throughout the geometry. Therefore, thorough examination of inlet and outlet conditions is 

necessary to derive well-posed numerical solutions. In the LBM, boundary conditions are 

applied to mesoscopic particle populations, in contrast to traditional flow solvers where 

boundary conditions are applied to macroscopic variables. The greater number of particle 

populations compared with macroscopic variables leads to the problem of nonuniqueness. 

Thus, many different inlet and outlet boundary conditions have been proposed16 with 

potentially varying accuracy and stability.17 Several prior LBM studies have performed 

numerical tests analyzing the effects of relaxation rates and collision operators on the 

stability of the LBM.18,19 However, these studies performed a linear stability analysis and 

did not take into account the influence of inlet and outlet boundary conditions. In this work, 

we focus exclusively on the numerical impacts of inlets and outlets including stability, 

convergence, and accuracy.

When choosing inlet and outlet boundary conditions for an LBM-based simulation, a range 

of options exist.17 In general, LBM boundary conditions can be broadly classified into two 
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categories: one where only the unknown particle populations are replaced and a second 

where all particle populations are replaced. For example, commonly used methods that 

replace only the unknowns are the Inamuro, Bouzidi-Firdaouss-Lallemand (BFL), Guo-

Zheng-Shi (GZS), and Zou-He (ZH) boundary conditions,20 whereas regularized and finite 

difference (FD) boundary conditions are examples that replace all particle populations.17 

However, the Inamuro boundary condition is not commonly used for physiological flows 

because it is not explicit in 3D. Other methods in this category such as the BFL and GZS 

boundary conditions require implementation of intricate linear or quadratic interpolation 

schemes. Additionally, the regularized boundary condition remains limited in 3D vasculature 

due to the need for complex numerical schemes to treat edges and corners.21 Another 

example of a proposed inlet and outlet boundary condition is the nonlinear FD scheme, but 

this scheme has only been presented in literature for numerical experimentation.17 For these 

reasons, LBM simulations in vascular geometries have extensively used ZH7,22,23 and 

FD24,25 schemes. Therefore, we focus this study on ZH and FD boundary conditions 

because they are widely implemented in biomedical applications, and they are representative 

of the two broad categories of boundary condition implementations in LBM.

Previous studies have compared LBM boundary conditions in two-dimensional or idealized 

conditions (eg, previous studies17,20,26,27) and different types of wall boundary conditions in 

simplified biological models.28 However, there have been no extensive inlet and outlet 

boundary condition comparisons in image-derived hemodynamic simulations. Such 

simulations consist of complex vasculatures and realistic flow rates. Due to the geometric 

complexity and flow characteristics of patient hemodynamics, the implementation and 

selection of accurate inlet and outlet conditions is a nontrivial task. Thus, a comparison in 

image-derived 3D vasculature will enable researchers to accurately implement LBM 

simulations that are best suited to study particular diseases. In this study, we restrict our 

comparison with the ZH29,30 and FD17,31 schemes, two of the most widely used inlet and 

outlet conditions in image-derived geometries across different scales. In idealized 

geometries, the ZH and FD methods differ in their computational loads, numerical stability, 

convergence, and accuracy.17

This work builds on existing studies by evaluating the suitability of ZH and FD inlet and 

outlet conditions in human vascular geometries, using physiological flow parameters. We 

compare numerical stability, convergence, accuracy and computational performance in four 

image-derived geometries: a coarctation of the aorta (CoA), dissected aorta (DA), femoral 

artery (FA), and left coronary artery (LCA). Analyzing several different cases is important 

because the choice of inlet and outlet boundary condition may depend on the vessel 

geometry and disease application. The variety of vasculature used in this study represents 

various flow regimes and hemodynamic patterns. Additionally, we present a parallel 

algorithm to define a velocity profile for complex inlet geometries. This study will serve as a 

guide to researchers developing LBM applications for physiological blood flow simulations.
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2 | METHODS

2.1 | Geometries

Blood flow was simulated in four vascular geometries—a CoA, DA, FA, and LCA—

illustrated in Figure 1. This set of geometries was chosen because it represents a wide range 

of diseased and healthy vasculatures, as well as flow at a range of Reynolds numbers.

• The CoA was derived from MRA data, has a 65% coarctation, and obtained from 

the Open Source Medical Software repository.32

• The DA was derived from CTA data, segmented with Materialise Mimics, and 

obtained from the Department of Surgery at Duke University Hospital with 

appropriate institutional review board (IRB) approval.

• The FA was derived from CTA data and obtained from the OSIRIX DICOM 

Image Library.

• The LCA was derived from CTA data, segmented with Materialise Mimics, and 

obtained from Brigham and Women’s Hospital with appropriate IRB approval.

2.2 | Lattice Boltzmann method

Blood flow was simulated with HARVEY, a massively parallel hemodynamics application.33 

HARVEY implements the LBM, a mesoscopic solver for the Navier-Stokes equations.4 The 

LBM represents fluid points with a probability distribution function fi(x, t), denoting the 

likelihood that a particle is at grid point x, at time t, and traveling with discrete velocity ci 

around a fixed Cartesian grid:

fi x + ci, t + 1 − fi(x, t) = − Ω fi(x, t) − fi
eq(x, t) . (1)

At each time step, two key processes occur: streaming and collision. During streaming, the 

particles travel by discrete velocities to neighboring nodes defined by the lattice 

discretization. In collision, the particle distribution relaxes toward the Maxwell-Boltzmann 

equilibrium distribution, which can be approximated with fi
eq:

fi
eq = wiρ 1 + ci ⋅ u

cs2
+ uu: cici − cs2I

2cs4
, (2)

for lattice weights wi and lattice speed of sound cs = 1
3 . HARVEY uses a single relaxation 

time Bhatnagar-Gross-Krook (BGK) collision operator34:

Ω f, feq = ω = 1
τ . (3)

The relaxation time τ is related to the lattice Boltzmann (LB) viscosity (νLB) of the fluid:
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vLB = cs2 τ − 1
2 . (4)

The LB viscosity is given as an input into the simulation, and the time step dt is computed 

with the following equation:

dt = vLBdx2

v , (5)

where ν is the kinematic viscosity and dx is the grid spacing between lattice points in 

physical units. Macroscopic values including fluid density ρ and velocity u are recovered 

from the distribution functions according to the following equations:

ρ = ∑
i

fi, (6)

u = 1
ρ ∑

i
cifi . (7)

A detailed description of the LBM can be found in Krüger et al.16

HARVEY uses a standard D3Q19 lattice with uniform grid spacing and a half-way bounce-

back boundary condition at the vessel walls (Figure 2). Prior to simulating flow, all variables 

are nondimensionalized using dt, dx, and the physical fluid density. After the simulation is 

complete, the nondimensional variables are redimensionalized for analysis.

2.3 | Modeling assumptions

To simplify the experimental design for this study, we assumed that vessel walls are rigid 

and flow is Newtonian. Rigid walls are a common assumption when modeling blood flow in 

vasculature.35–37 Furthermore, based on the high shear rates in the arteries used in this work, 

a Newtonian assumption for blood flow is valid. Simulating blood flow in small arteries with 

lower shear rates often requires a non-Newtonian model, such as the Carreau-Yasuda or 

power law model.38,39 Blood exhibits non-Newtonian behavior from red blood cell 

aggregation that typically occurs at low shear rates. A common assumption for blood flow is 

to assume non-Newtonian behavior at shear rates less than 100 s−1, often found in distal 

segments of vasculature like arterioles.40–44 All pulsatile simulations were performed for 

one cardiac cycle, and constant flow simulations were analyzed once steady state was 

achieved.

2.4 | Inlet and outlet conditions

In this study, the ZH and FD boundary conditions were compared in the four geometries 

described above. The main purpose of these boundary conditions is to derive the distribution 

functions at each inlet and outlet when implemented as Poiseuille velocity or pressure 
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profile. The methods described in this section pertain to straight (flat) boundaries. Here, we 

describe the general methods for implementing each boundary condition in HARVEY.

2.4.1 | Implementing the Zou-He boundary condition—The fundamental idea of 

the Zou-He boundary condition is to solve for the unknown distributions by bounce-back of 

the nonequilibrium component of the distribution function.29 In conjunction with a 

correction for the transverse momentum, this boundary condition has been generalized in a 

D3Q19 lattice by Hecht and Harting.30 The ZH boundary condition is local in its operations 

and thus can be easily implemented in parallel. Additionally, it is highly accurate in simple 

geometries.17 However, the relaxation times for which ZH algorithms are stable is limited to 

low Re and may present problems in vasculature in large arteries where high Re prevail.40

The ZH method replaces only the unknown distributions at each node; in the case of a 

D3Q19 lattice, there will be five unknown distributions after the streaming step. The 

following equation is used to calculate the unknown distributions:

f−i = fi − 2wiρ
cs2

ci ⋅ u − ρ
3 ti ⋅ u + 1

2 ∑
j = 0

18
fj ti ⋅ cj 1 − cj ⋅ n , (8)

where fi represents the distributions streaming into the boundary, f−i denotes the bounce-

back populations, cj are the direction vectors, n is the outward normal vector, and ti is 

computed as follows:

ti = ci − ci ⋅ n n . (9)

By the continuity relation, three of the four macroscopic variables—density ρ and the three 

components of velocity u—in Equation 8 may be specified, while the last is computed from 

the distribution function. In this study, we specify the complete velocity u for inlet 

conditions, whereas density ρ and the transverse velocity u|| are specified at the outlet.

2.4.2 | Implementing the finite difference boundary condition—While originally 

introduced by Skordos,31 the FD boundary condition implementation in this study is based 

on Latt et al.17 In this implementation, a regularization procedure replaces all components of 

the distribution function, both known and unknown. This procedure requires the 

computation of the strain rate tensor using a finite difference scheme. As a result, the FD 

boundary conditions offer greater numerical stability in simple geometries, but the inherent 

nonlocality of the method results in an increased computational load and more complicated 

parallelization schemes.

Unlike the ZH method, the FD approach replaces all the distributions at each node:

fi = fi
eq − ρ wi

cs2ω
Qi:S, (10)

where S is the strain rate tensor defined by
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S = 1
2 ∇u + (∇u)T , (11)

and Qi is defined by

Qi = cici − cs2I, (12)

where I is the identity matrix. Note that the : is used for a contraction between two tensors. 

The strain rate tensor S is calculated at each node with a finite difference method that is first 

order in the normal direction and second order in the tangential direction. While the strain 

rate tensor can be computed locally in the LBM, using velocity gradients from the 

neighboring nodes increases the stability of the simulation.

2.5 | Velocity profile algorithm for irregular inlets

Applying patient-tuned boundary conditions has been shown to improve fidelity and 

accuracy of cardiovascular simulation parameters like helical flow patterns, wall shear stress, 

and pressure gradients.45 Recently, 3D phase contrast MRI, commonly referred to as 4D 

MRI, has enabled the acquisition of patient-specific velocity profiles.46 However, patient-

specific inflow profiles based on 4D MRI are not typically available. Further, 4D MRI data 

is challenging to use in CFD simulations because of low resolutions, high signal-to-noise 

ratio, and diagnostic variations arising from respiratory motion, changes in heart rate, and 

patient position.47,48 Thus, specifying physiological velocity conditions at the inlet is a 

nontrivial task, particularly in complex vascular geometries. A variety of inlet velocity 

conditions, such as parabolic or Womersley profiles, are employed in hemodynamic 

simulations.49 Applying a physiological flow profile to the inlets of vascular geometries is 

straightforward if the inlets are approximately circular, as is the case in the CoA, FA, and 

LCA (Figure 1). To implement a parabolic flow profile in these inlets, a naive 

implementation would be to determine the velocity u as a function of the geometric center 

and radius of the inlet.

However, for an irregular inlet shape like that of the DA geometry, a more flexible notion is 

required for determining the location of maximum velocity. One approach would involve 

solving a Poisson-like equation over the surface of the inlet. However, this is a heavy 

solution to a problem for which an exact solution is not required. Thus, we approximate the 

velocity profile shape based on the local inlet topology (Figure 3). Such an adaptive 

approach is implemented by computing the inlet velocity at each point as a function of its 

distance d to the nearest wall. For an irregular inlet, the maximum velocity umax should be 

assigned to the point that is farthest from its nearest wall dmax. The velocities at the 

remaining points are described by the following equation:

u = umax − umax 1 − d
dmax

2
. (13)
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This algorithm does not require circular inlets, allowing the computation of an accurate 

velocity profile for diseased vasculature with complex inlets. In the case of circular inlet, 

dmax is equal to the radius.

In parallel implementations, the inlet points may be stored on many different processors, and 

each point’s nearest wall point can also be on a separate processor. Additionally, the point at 

dmax will only be available to other points on its own processor. To solve these problems, 

Message Passing Interface (MPI) collectives were used to communicate the locations of the 

wall points and dmax to each processor owning points on the boundary. The time complexity 

of our algorithm is O(MN) where M is the number of wall points at the inlet and N is the 

number of inlet points. Solving a Poisson equation over a rectangular 2D domain with a fast 

Fourier transform has a time complexity of O(NlogN). However, this algorithm is computed 

only once before the simulation, so runtime is not a critical factor. Instead, we note that the 

advantage of our algorithm is that we avoid the unnecessary implementation of a parallel 

Poisson-like solver.

To demonstrate the usefulness and validate the novel adaptive inlet velocity profile 

algorithm, we performed three set of numerical tests. First, we applied the algorithm to the 

DA where the inlet geometry is irregular. Figure 4 shows the inlet velocity profile in the DA. 

In contrast to the naive implementation, we were able to retrieve the no-slip boundary 

conditions at the wall and a parabolic profile with maximum velocity at the point farthest 

from any wall.

In our second test, we simulated flow through a pipe and compared the results using the 

adaptive approach with the naive implementation in HARVEY by computing the relative 

error E at slices along the geometry. For the set of lattice points i in the slice, the relative 

error E of the velocity profile along a slice was computed with the following equation:

E =
∑i uir − ui

2

∑i uir
2 , (14)

where u and ur are the current and reference velocities, respectively.50,51 The naive 

implementation was previously validated by comparing simulated flow with experimental 

flow through 3D printed vasculature using particle image velocimetry (PIV).25 Results 

showed that flow through the pipe in the two implementations was nearly identical (error E 
< 1.0e-10). Finally, to ensure the algorithm was implemented correctly in parallel, velocity 

profiles in the pipe were compared between simulations with one, two, four, and eight 

processors where the simulation with one processor was used as the reference for error 

computation. Results show that the velocity profiles were identical for any number of 

processors (error E < 1.0e-10), thus validating the parallel implementation specifically when 

the inlet area was split on different processors.

3 | NUMERICAL RESULTS

Blood flow was simulated in a CoA, DA, FA, and LCA using the ZH and FD inlet and outlet 

boundary conditions. In each simulation, the same type of boundary condition was applied at 
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the inlet and outlets. The ZH and FD boundary conditions were evaluated by computing 

their influence on accuracy, numerical convergence, numerical stability, and computational 

performance in the vascular geometry. For most of the simulations, blood was assumed to 

have dynamic viscosity 4 cP and physical density 1060 kg/m3.52 However, when comparing 

results with in vitro experiments, the viscosity was set to 2.05 cP with an inlet velocity of 7.6 

cm/s to match the experimental parameters. All simulations were performed with Intel Xeon 

E5–2699V4 processors and 56 Gb/s Infiniband interconnect on the Duke Compute Cluster.

3.1 | Numerical stability

Numerical stability is necessary to obtain usable simulation results. An LBM simulation is 

said to be stable if the total variation of the distribution function from the equilibrium 

distribution remains bounded.18 Because blood flow simulations often require significant 

computational resources, stability testing is also important to determine the lowest resolution 

possible while maintaining a stable and convergent simulation. Many studies have focused 

on the stability of the LBM method, while neglecting the impacts of boundary conditions.
18,19 Other groups studied the LBM in idealized geometries for benchmark flows and 

demonstrated that numerical stability is strongly dependent on the boundary conditions.17,20 

However, it is not currently known how the stability of complex image-derived simulations 

compares with idealized benchmark models. We predicted that stability would differ 

significantly from idealized models at the inlets and outlets due to complex inlet and outlet 

geometries and physiological flow profiles. These differences arise from anatomic variations 

such as curved boundaries, vessel tortuosity, and branching patterns in addition to time-

varying pulsatile flows. In this section, we assess the influence of inlet and outlet conditions 

on the stability of simulations in complex vascular geometries.

To determine stability for the ZH and FD, flow was simulated in each geometry over a range 

of resolutions with steady and pulsatile flow. The pulsatile flow waveform used in each 

geometry was based on the aorta inflow waveform provided by Figuero et al.53 In this study, 

resolution is defined as the number of grid points across the diameter of the inlet. The 

maximum Re at the inlet that produced a stable simulation for a given geometry and 

resolution was recorded. For pulsatile flow, the waveform was scaled based on the desired 

Re. For a given geometry, the LB viscosity was held constant over all resolutions considered. 

Further, for steady flow simulations, the LB velocity was set to 0.075 at the lowest grid 

resolutions for each geometry to minimize compressibility effects.17

Results from the stability analysis are depicted in Figure 5. In all four geometries, the FD 

condition demonstrated stability at significantly higher Re than the ZH condition. Beyond a 

certain resolution, the maximum stable Re for the ZH condition increased only modestly. 

Conversely, the stability region increased more significantly for the FD condition at high 

resolutions. Interestingly, the stability differences between pulsatile and steady flow 

depended on the geometry: In the CoA and LCA, steady flow was more stable, but an 

opposite trend occurred in the DA and FA.
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3.2 | Convergence

Temporal and spatial convergence rates for blood flow simulations are important to reach the 

solution in a reasonable time. Temporal convergence ensures that we reach steady state 

starting from quiescent flow. Spatial convergence provides a mesh-independent solution, 

which we can achieve by refining the grid until the discretization error asymptotically 

decreases to zero. Specifically, by analyzing and comparing the grid convergence, we can 

estimate the order of accuracy and whether that is influenced by either of the boundary 

conditions in complex geometries. In idealized geometries, the ZH and FD conditions were 

found to have similar second-order rates of spatial convergence, but the ZH condition was 

more accurate at a given resolution in some instances.17 However, in complex, image-

derived, vascular geometries, whose flow results are strongly influenced by boundary 

conditions, it is difficult to demonstrate numerical convergence.54 In this section, we assess 

the influence of inlet and outlet conditions on the temporal and spatial convergence of 

simulations in the CoA, FA, and LCA. Since flow regimes in CoA and DA are similar, the 

DA was omitted from this study. For the sake of simplicity, we restrict this comparison to 

steady flow.

As flow in complex geometries does not have an analytical solution, we used a high-

resolution grid as the reference solution for spatial convergence and a long simulation for 

temporal convergence. A physical resolution of 50μm was used as the reference for each 

geometry, corresponding to 135, 63, and 53 grid points across the inlets of the CoA, FA, and 

LCA, respectively. Error, computed with Equation 14, is measured over a cross-sectional 

slice of each geometry, corresponding to the dotted lines in Figure 1. The simulation 

duration determined from the temporal convergence test was subsequently used as the 

duration of the spatial convergence test. To ensure a clear comparison, the Re and LB 

viscosity were kept constant between numerical tests with a given inlet and outlet condition. 

The corresponding values of Re and τ can be found in Table 2 for each geometry.

Results for temporal and spatial convergence are shown in Figures 6 and 7, respectively. All 

simulations had small errors, on the order of 0.01, at longer times scales and higher grid 

resolutions. In the LCA, a smaller geometry, there were no significant convergence 

differences between simulations using the ZH and FD method. However, in the CoA and FA, 

results demonstrate that the ZH and FD method converged with different relative error for 

both spatial and temporal convergence. In spatial convergence tests, the order of accuracy 

lies between first and second order.

3.3 | Experimental validation

CFD simulations approximate analytical solutions and include errors resulting from 

discretization, iteration, and modeling.54 However, vascular flow is complex, and analytic 

solutions often do not exist. To address this challenge, we 3D printed the FA and used PIV to 

compare experimental and simulated hemodynamics; 3D printing allows for an accurate 

physical representation of the geometry while providing a controllable environment with 

known and easily tunable parameters. The experimental setup that we used for this work was 

previously described in detail by Gounley et al.25 We initially chose to use the FA and CoA 

for experimental comparison because we were interested in comparing geometries with high 
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Re, often leading to more complex flow patterns. However, stability results in the preceding 

section demonstrated that the ZH boundary condition was unstable at the Re necessary for 

flow in the CoA. Thus, PIV comparisons were only performed for the ZH and FD boundary 

conditions in the FA.

In these simulations, relative error was calculated with respect to PIV results. Velocity 

magnitude u was recorded at the vessel bifurcation as indicated by the line depicted in 

Figure 8. Temporal and spatial convergence results are shown in Figure 8. ZH and FD 

boundary conditions demonstrated similar spatial and temporal convergence. Results showed 

that the relative error for temporal and spatial convergence was between 0.01 and 0.1. This 

could result from minor differences in the PIV setup and CFD simulations, particularly at 

the outlet boundary conditions and inherent error resulting from 3D printing. Thus, we note 

similar accuracy between the ZH and FD boundary conditions.

3.4 | Computational performance

For a given number of time steps and grid resolution, the overall simulation run times are 

generally not influenced by the inlet and outlet boundary conditions, as the inlets and outlets 

comprise only a small percentage of the total volume. This was confirmed with strong and 

weak scaling tests (data not shown). Therefore, the run times exclusively at the inlets and 

outlets were computed in each geometry. For a given geometry, the resolution and number of 

time steps were held constant between simulations using the ZH and FD method. All 

simulations for these tests were performed with one processor. As demonstrated in Table 1, 

the percentage of run time spent at the inlets and outlets is less than 0.5%.

Additionally, overall run time comparisons were performed with physiological Re. Blood 

flow was simulated for a physical time of one second. As indicated by the stability plots 

(Figure 5), the FD method is significantly more stable than ZH leading to large differences 

in grid resolution. However, the ZH method also needed a higher relaxation time τ, which 

increased Δt according to Equations 3 and 4. Both of these factors were considered when 

choosing the number of steps corresponding to a physical time of 1 second. Table 2 

summarizes the runtime results. The ZH method run times were approximately three orders 

of magnitude higher than FD method for the CoA and FA and approximately two orders of 

magnitude higher for the LCA.

4 | DISCUSSION

Our main objective in this study was to evaluate ZH and FD boundary conditions to 

determine their suitability when simulating blood flow in image-derived vasculature using 

the LBM. The LBM is an attractive approach for blood flow simulations as it is easily 

parallelized and implemented in complex geometries. Additionally, the LBM is becoming 

heavily used for hemodynamics, and thus, it is important to understand the stability and 

computational trade-offs of different boundary condition for physiological cases. While 

there are other boundary conditions, as described in Latt et al17 and Nash et al,20 here we 

restrict our comparison with the ZH29,30 and FD17,31 schemes, since the purpose of this 

study is to facilitate implementation of the LBM in patient geometries across different 

scales. Further, boundary conditions in the LBM are broadly categorized based on the 
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treatment of particle populations on the boundary node by replacing either all or only the 

unknown particle populations.17 The FD and ZH schemes are representative of these two 

categories, as described in Section 2.4. Although the FD and ZH boundary conditions have 

been compared in simple geometries, we have not found any work extensively comparing 

these two schemes in complex arterial vasculature.17,20

Four image-derived geometries, representing diseased and healthy vasculature were used in 

this work: a CoA, FA, DA, and LCA. Both boundary conditions were compared in each 

geometry with respect to stability, convergence, accuracy, and computational performance, 

all common and important metrics when evaluating numerical algorithms. The main purpose 

of this work is to serve as a guide to researchers to determine which boundary conditions to 

use when simulating blood flow with the LBM.

4.1 | Numerical stability, convergence, and run times are key factors that help distinguish 
Zou-He and finite difference boundary conditions

The numerical stability of ZH and FD boundary conditions was compared in the CoA, DA, 

FA, and LCA. Results showed that the ZH boundary condition is significantly less stable 

than FD in all geometries, agreeing with previous studies that tested stability in simple 

geometries under idealized settings.17 In particular, Latt et al17 showed that the FD method 

could be used to simulate flows with Re nearly two orders of magnitude higher than the ZH 

method.

When increasing the Re with ZH boundary conditions, instabilities began to arise first at the 

inlets and outlets. However, with the FD boundary condition, instabilities at high Re 

originated in narrow sections of the blood vessel. Thus, when using the ZH method, the 

stability limit was imposed by the inlet and outlet boundary conditions. In contrast, the 

stability limit for the FD method was imposed by other simulation parameters such as the 

BGK collision operator or the wall boundary condition. At the narrow sections of blood 

vessels, greater instabilities in the LBM arise because of the increase in local Re and Mach 

number. The half-way bounce-back boundary condition at the wall is likely the origin of the 

instabilities at high Re in narrow sections.21 Peak flow rates for steady and pulsatile flow 

were the same resulting in similar stability. The Re that can reasonably be achieved using the 

ZH boundary is significantly lower than typical Re for many of the major arteries. For 

example, the Re in the aorta and FA can reach over 10 000 and 1000, respectively.40 High 

Re can also arise in physiological conditions such as hyperemia or the state of maximum 

vasodilation, which is important to noninvasively compute diagnostic metrics such as 

fractional flow reserve.2 These values are achievable using the FD method but generally not 

with the ZH method at similar grid resolutions. At high resolutions, the ZH method could be 

used in small blood vessels with lower Re. For example, the coronary and middle cerebral 

arteries can have Re less than 200 and 100, respectively, and may be well suited for the ZH 

method.55,56 Similarly, Re in microcapillary networks typically lies between 1 and 10. 

However, in these flow regimes, a non-Newtonian model may be necessary.57

Convergence of FD and ZH boundary conditions was similar in each geometry tested. Our 

results showed similar convergence rates for all geometries tested with ZH and FD methods. 

Latt et al17 showed second-order convergence in an idealized setting, but we see a slightly 
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lower convergence likely due to the complexity of the geometries, leading to first-order 

convergence of the half-way bounce-back boundary conditions at the walls. While we 

exclusively used half-way bounce-back boundary conditions for this study, we note that a 

full-way bounce-back scheme at the walls is first-order accurate in idealized geometries and 

unlikely to improve convergence.58 Additionally, the overall errors were similar between the 

FD and ZH boundary conditions but differed between geometries (Figures 6 and 7). The 

variable errors between geometries are not surprising as each geometry is complex and 

different in both shape and size. Errors in the CoA and FA had higher variation than the 

LCA possibly due to higher Re and more complex flow patterns. While convergence tests 

showed that our simulations approached high-resolution reference solutions, experimental 

validation was also important to show that results agree with in vitro or in vivo flow. In vitro 

blood flow experiments were performed with 3D printed vasculature using PIV, as in vivo 

velocities and pressures were not available. The FA and CoA were optimal choices for 

experimental comparisons because of their high Re. However, the ZH method was 

consistently unstable under physiological Re in the CoA. Therefore, only the FA was used 

for in vitro comparisons. The particular velocity profile line used for the comparisons was 

chosen near the bifurcation in the FA where flow patterns are known to be complex. Both 

FD and ZH boundary conditions showed similar accuracies in the FA (Figure 8).

The third distinguishing factor, run time, was highly variable between ZH and FD boundary 

conditions. Initially, we computed run times exclusively at the inlets and outlets of each 

geometry. All parameters were held constant between FD and ZH simulations. In Table 1, 

we showed that the inlet and outlet run times comprise only a small fraction of the total 

runtime, although the FD method consumed a greater percentage of the total runtime in 

every geometry. This result is expected for physiological flows. The runtimes needed for 

accurate simulations are highly dependent on the stability of the boundary condition. To 

analyze overall runtimes, blood flow was simulated with the FD and ZH methods using the 

same Re for a physiological time of 1 second. The ZH method was less stable and therefore 

required a higher relaxation time τ, grid resolution, and number of time steps to achieve the 

same physiological time. The runtimes in each geometry were nearly three orders of 

magnitude larger with the ZH method as compared with the FD method. This result is an 

important distinguishing factor that clearly demonstrates the strength of the FD method in 

imaged-derived vasculature with high Re flows. While the time spent in boundary conditions 

themselves is longer for the FD method, the run time is significantly reduced overall because 

of lower resolutions.

4.2 | Conclusions and recommendations

The ZH and FD inlet and outlet boundary conditions used in the LBM were compared and 

evaluated in image-derived vasculatures. Comparisons included numerical stability, 

numerical convergence, accuracy, and run-time. Each of these factors is important in clinical 

applications to achieve fast and accurate simulations. To summarize our findings, we offer 

recommendations here as to which boundary condition to use when simulating blood flow. 

The main differences between simulations using the ZH and FD boundary conditions were 

stability and runtime, as convergence generally showed similar results. The FD method 

offered greater numerical stability, particularly at high Re, and significantly decreased 
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runtime (Figure 5, Table 2). Simulating flow at high Re is important in large arteries. Based 

on the stability plots, the FD boundary condition can simulate flow throughout all of the 

major arteries, including the aorta that contains the highest Re flows. However, simulations 

using the ZH method would only be sufficiently stable in small vasculature, with an 

increased runtime.

The FD method is a better choice to simulate blood flow in image-derived vasculature, 

particularly in large arteries, but the ZH method may be simpler to implement in parallel as 

all of the calculations are local (section 2.3.1). While, the ZH method was shown to have 

greater accuracy in idealized conditions, such as two-dimensional channel flow,17 we 

conclude that it may not be well suited for flow in large arteries. Overall, this study is 

intended to serve as a guide to researchers interested in using the LBM for physiological 

blood flow simulations.
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FIGURE 1. 
The geometries used in this study from left to right: coarctation of the aorta (CoA), dissected 

aorta (DA), femoral artery (FA), and left coronary artery (LCA). The inlets of each geometry 

are labeled. Notice the irregular inlet in the DA. The dotted lines indicate the slice locations 

for convergence tests (section 2.5.2)
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FIGURE 2. 
The D3Q19 lattice used in HARVEY
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FIGURE 3. 
A new velocity profile algorithm was developed for the inlet of the DA. The point depicted 

by umax describes the point farthest from its nearest wall. The distance between this point 

and its nearest wall is dmax, and we assign it a velocity of umax. The velocity u of the second 

point in this figure is computed based on its distance d from the nearest wall. This point 

represents any arbitrary point on the inlet
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FIGURE 4. 
The inlet velocity algorithm applied to the dissected aorta (DA) with tear in the center. The 

plot on the right shows the parabolic velocity profile along the DA inlet
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FIGURE 5. 
Stability analysis for coarctation of the aorta (top left), dissected aorta (top right), femoral 

artery (bottom left), and left coronary arteries (bottom right). Figures depict maximum stable 

Re as a function of grid resolution, where grid resolution is defined as the number of grid 

points across the diameter of the inlet. Note that the dissected aorta (DA) is significantly 

larger than the coarctation of the aorta (CoA) geometry explaining the higher grid 

resolutions in the DA
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FIGURE 6. 
Temporal convergence for (left to right) coarctation of the aorta (CoA), femoral artery (FA), 

and left coronary artery (LCA)
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FIGURE 7. 
Spatial convergence for (left to right) coarctation of the aorta (CoA), femoral artery (FA), 

and left coronary artery (LCA)
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FIGURE 8. 
Computational fluid dynamics (CFD)–particle image velocimetry (PIV) comparison: A, the 

femoral artery (FA) with slices for each boundary condition. B, The magnitude of velocity 

was plotted along the black lines shown in the slices. C, The temporal and spatial 

convergence analyzed with respect to the in vitro PIV-measured velocity profile
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TABLE 1

The combined run times at the inlets and outlets were computed as a percentage of the total tun times

Present of Total Run Time

BC CoA FA LCA

FD 0.47% 0.17% 0.28%

ZH 0.19% 0.068% 0.14%
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TABLE 2

Example simulations representing 1 second of total time

Tau Grid Resolution N Time Steps Run Time, s

Re FD ZH FD ZH FD ZH FD ZH

CoA 675.0 0.508 0.575 17 135 2564 16 000 4.98 7204.30

FA 157.5 0.508 0.575 11 63 5102 16 660 23.47 561.02

LCA 105.6 0.508 0.575 11 53 27 778 64 000 25.16 4626.83

Simulations using the ZH boundary condition require a higher relaxation time τ, grid resolution, and number of time steps. Average Re values over 
a cardiac cycle were chosen.
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