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Abstract

The current COVID-19 pandemic caused by a novel coronavirus SARS-CoV-2 urgently calls for 

a working therapeutic. Here we report a computation-based workflow for efficiently selecting a 

subset of FDA-approved drugs that can potentially bind to the SARS-CoV-2 main protease MPRO. 

The workflow started with docking (using Autodock Vina) each of 1615 FDA-approved drugs 

to the MPRO active site. This step selected 62 candidates with docking energies lower than −8.5 

kcal/mol. Then, the 62 docked protein-drug complexes were subjected to 100 ns of molecular 

dynamics (MD) simulations in a molecular mechanics (MM) force field (CHARMM36). This 

step reduced the candidate pool to 26, based on the root-mean-square-deviations (RMSDs) 

of the drug molecules in the trajectories. Finally, we modeled the 26 molecules by a pseudo-

quantum mechanical (ANI) force field, and ran 5-ns hybrid ANI/MM MD simulations of the 

26 protein-drug complexes. ANI was trained by neural network models on quantum mechanical 

density functional theory (wB97X/6-31G(d)) data points. An RMSD cutoff winnowed down 

the pool to 12, and free energy analysis (MM/PBSA) produced the final selection of 9 

drugs: dihydroergotamine, midostaurin, ziprasidone, etoposide, apixaban, fluorescein, tadalafil, 

rolapitant, and palbociclib. Of these, three are found to be active in literature reports of 

experimental studies. To provide physical insight into their mechanism of action, the interactions 

of the drug molecules with the protein are presented as 2D-interaction maps. These findings and 

mappings of drug-protein interactions may be potentially used to guide rational drug discovery 

against COVID-19.
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Introduction

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2 with crown-like 

spikes on the surface (Figure 1), is wreaking havoc on the whole world1. Since the outbreak 

of COVID-19 in late 2019, more than 36 million cases have been reported with over 1 

million fatalities (source: Worldometer, Oct 8th, 2020). Coronaviruses can infect mammals 

and can then easily mutate to enable transfer from animals to humans2. SARS-CoV-2 

spreads mainly from human to human and is rapidly becoming the world’s leading cause of 

death. Currently, no targeted vaccines or treatments are as yet available for SARS-CoV-2, 

and there is an urgent need to develop them. The aim of the present study is to use 

computational approaches to explore protein-drug interactions that can be useful in the fight 

against COVID-19.

The main protease, or MPRO, of SARS-CoV-2 was identified shortly after the outbreak 

and its crystal structure was solved (Protein Data Bank (PDB) entry: 6LU7)3. There are 

now significant efforts aimed at developing drugs that can inhibit MPRO. However, no 

inhibitors against MPRO or other targets are available to treat COVID-19, as drug discovery 

is an expansive and time-consuming process4. When a new target protein is identified, 

a potential shortcut is to test, or repurpose, drugs that are FDA-approved. The concept 

of drug repurposing has proven to be successful in the past and is the most convenient 

method for screening drugs for novel diseases. Computations based on drug repurposing 

have identified the HIV antivirals Lopinavir and Ritonavir as potentially effective against 
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COVID-19 5–6. The latter group and others have conducted drug repurposing computational 

analyses specifically targeting MPRO 6–9.

With the current advances in computational techniques in combination with physical 

chemistry methods that utilize machine learning algorithms, we are witnessing numerous 

impressive predictions in the field of drug discovery. These computations are used for 

screening and prediction of binding affinities and to generate fingerprint interactions with 

target proteins10. Protein-drug docking and molecular dynamics (MD) simulations can 

reveal interaction fingerprints that potentially hold key to design other potent drugs11. The 

accuracy of MD simulations relies on the parameterization of the forcefields12. Classical 

molecular mechanics (MM) forcefields, such as CHARMM13, AMBER14, and OPLS15, 

can probably model 99% of the properties of biomolecular systems by solving Newton’s 

equation of motion. However, the crucial 1% involves quantum chemistry (i.e., electronic 

and nuclear interactions) and is beyond the realm of classical forcefields16. Quantum 

chemistry methods, in particular density functional theory (DFT) and highly accurate 

coupled cluster (CCSD(T)/CBS), can provide accurate solutions to Schrödinger’s equation, 

but are too expensive both for large systems and for large-scale uses on even relatively small 

systems. To bridge the gap, machine learning methods, especially those based on neural 

networks, with augmentations in data, have become powerful to improve scalability without 

sacrificing accuracy17–18. Recently, the Roitberg group developed a suite of ANI forcefields, 

including ANI-2x and ANI-1ccx, that uses neural network-based training19–20. ANI-2x was 

trained on millions of small molecules, covering C-H-N-O-S-F-Cl atoms, against their DFT 

energies, whereas ANI-1ccx was trained on 500 thousand CCSD(T)/CBS data points but 

limited to C-H-N-O atoms. ANI-2x has similar accuracy to DFT but is 106 times faster, a 

speed that matches classical force fields. While DFT is limited approximately to 500 atoms 

and CCSD(T)/CBS to 10 atoms, ANI can be used on systems with ~10,000 atoms19–20. 

Moreover, with a speed comparable to classical forcefields, ANI is suitable for large-scale 

uses such as in drug screening or refinement.

Here we report computational drug repurposing against the MPRO protein using a workflow 

that encompasses several levels of sophistication, from docking all the way to MD 

simulations with the ANI-2x force field. Starting with 1615 FDA-approved drugs, docking 

selected the 62 most promising candidates. MD simulations with the CHARMM36 MM 

force field trimmed this list down to 26. Hybrid ANI/MM MD simulations produced a final 

list of 9 drugs, of which 3 are found to be active according to literature reports. Free energy 

analysis (based on MM/PBSA) and interaction mapping provided additional insight into the 

mechanism of target inhibition and guidance for rational drug discovery against COVID-19.

Computational Methodologies

Molecular Docking.

The crystal structure of MPRO (PDB entry 6LU7 chain A)3 was downloaded from the RCSB 

Protein Data Bank. To prepare MPRO for docking, we used AutoDock Tools (ADT)21 to 

assign charges and atom/bond types. For drug repurposing, we chose a database of 1615 

drugs that are FDA-approved and readily available in the market. We obtained docking ready 

drugs from ZINC1522 and used open babel codes23 to perform file format conversion from 

Gupta and Zhou Page 3

ACS Comb Sci. Author manuscript; available in PMC 2023 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SDF (structure data file from ZINC15) to PDBQT (used by Autodock Vina24). Screening 

against MPRO was performed using Autodock Vina, based on a 28 × 28 × 28 Å3 grid box 

centered at the active site, i.e., the pocket where the N3 inhibitor was bound in the crystal 

structure. Docking of each drug produced a score for filtering as well as a pose for further 

validation by MD simulations.

Classical Molecular Dynamics Simulations.

All MD simulations were conducted using NAMD25. We used the CHARMM-GUI 

Webserver26 to generate the CHARMM36m parameters and topology files for the protein, 

and the SwissParam server27 to generate topology and parameters for the drugs. Each 

protein-drug complex (produced by Autodock Vina) was solvated in a triclinic box using 

the TIP3P water model28. 0.15 M ions (Na+ and Cl−) were added to provide charge 

neutralization and electrostatic screening. The systems were subjected to 5000 steps of 

steepest descent energy minimization and equilibration under constant NVT (1 ns ) and 

constant NPT (2 ns). During the equilibration, position restraints were applied to both 

protein and drug molecules. The temperature (303 K) and pressure (1 atm) were controlled 

by the Langevin and Langevin piston methods29. The particle mesh Ewald method was used 

to treat long-range electrostatic interactions30. A 100-ns production run was then carried 

out for each equilibrated system at constant NPT without restraints. Snapshots were evenly 

sampled from 20 to 100 ns of the production run to (1) calculate average lig-RMSD, i.e., 

average (over 8000 snapshots) of the root-mean-square-deviations of the drug, after aligning 

the protein secondary structural elements to the snapshot at 20 ns; and (2) carry out MM/

PBSA analysis (over 800 snapshots; see below).

Hybrid ANI/MM Molecular Dynamics Simulations.

We combined the accurate ANI-2x forcefield for drugs with the CHARMM36m/TIP3P 

forcefields for proteins and solvent to run hybrid ANI/MM MD simulations31 of the MPRO-

drug complexes (Figure 2), as implemented in the NAMD package32. In these hybrid 

ANI/MM simulations, the total potential energy (U) of the system was defined as the sum 

of the energies of the ANI region (i.e., the drug molecule) and the MM region (protein and 

solvent) and the interaction energy between the drug and the MM region31:

U r = UANI rANI + UMM rMM + UANI/MM rANI, rMM (1)

The UANI/MM rANI, rMM  term comprised MM nonbonded interactions between the MM region 

and the drug, i.e., Coulombic and Lennard-Jones interactions between the ANI atoms and 

MM atoms31:

UANI/MM rANI, rMM = ∑
i

MM
∑

j

ANI qiqj

4πεrij
+ 4εij

σij

rij

12
− σij

rij

6
(2)

Starting from the last snapshot of the classical MD simulations, we ran 5 ns of ANI/MM 

MD simulations for each selected protein-drug complex. The NAMD input script for the 

ANI/MM simulations is listed in Supporting Information. From the 5 ns simulations, we 

Gupta and Zhou Page 4

ACS Comb Sci. Author manuscript; available in PMC 2023 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sampled 2500 snapshots to calculate the average lig-RMSD (with the final snapshot of the 

classical MD simulations as the reference).

MM/PBSA Free Energy Calculations.

To compute the MM/PBSA free energy of protein-drug binding, we used CaFe (open source 

code for calculation of free energy) developed by Liu et al.33. MM/PBSA is an endpoint 

method for estimating binding free energies, by combining the molecular mechanics term 

for the gas-phase energy and Poisson-Boltzmann and surface area terms for polar and 

nonpolar solvation energies, respectively. Specifically, the MM term Δ UANI/MM was similar to 

UANI/MM rANI, rMM  in equation (2) but the interaction was limited to between drug and protein 

atoms. The PB term, Δ Gsol
polar, was obtained by the APBS program34 (interfaced to CaFe), 

where the boundary conditions were set to Debye-Hückel values and charges were mapped 

to grids using cubic B spline. The SA term, Δ Gsol
nonpolar, was calculated with the surface tension 

set to 0.00542 kcal/mol/Å2 and an offset of 0.92 kcal/mol. Finally, the binding free energy 

was summed and averaged over saved snapshots:

Δ Gbind = Δ H − T Δ S ≈ Δ UANI/MM + Δ Gsol
polar + Δ Gsol

nonpolar
(3)

The MM/PBSA calculations were done on simulations of the complex only. Because 

of inaccuracy in conformational entropy calculations, we did not include such entropic 

contributions. Neglect of entropy tends to make larger ligands overly favorable. The same 

energy function was used whether the snapshots were from the classical MD simulations or 

from hybrid ANI/MM simulations. For the latter, we sampled 500 snapshots from the 5 ns 

trajectories.

Results

Our computational drug repurposing workflow against MPRO, the main protease of SARS-

CoV-2, started with docking 1615 FDA-approved drugs (downloaded in dock ready form 

from ZINC15) to the active site of the MPRO crystal structure, using AutoDock Vina. 

Docking for each drug produced a score, representing the binding energy, and a pose for 

the protein-drug complex. After ranking the docking scores, we selected 62 candidates with 

scores equal to or less than −8.5 kcal/mol for further evaluations.

To assess the reliability of the docking step, we exhaustively searched the literature for 

experimental information on the inhibitory activities of the 62 candidates. We found 10 of 

the 62 candidates with reported IC50 or KD data against MPRO, and divided the 10 into three 

categories according to efficacy: active (A) with IC50 < 10 μM; or KD < 100 μM; moderately 

active (MA) with 10 μM < IC50 < 20 μM or 100 μM < KD < 200 μM; and inactive (I) 

with IC50 > 20 μM or KD > 200 μM3, 35–36. Among the docking-selected candidates, 3, 3, 

and 4 are in the A, MA, I categories, respectively. The A-category drugs are atovaquone 

(IC50 = 1.5 μM)37, midostaurin (KD = 43.5 μM)35, and tadalafil (KD = 52.2 μM)35. The 

MA-category drugs are dihydroergotamine (KD = 107.6)35, simeprevir (IC50 = 13.74 μM)36, 

and mefloquine (IC50 = 14.1 μM)38. The I-category drugs are pimozide (IC50 = 42 μM)39, 
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itraconazole (IC50 = 111 μM)39, amphotericin B (reported as “did not inhibit SARS-CoV-2 

infection”)40, and azelastine (IC50 = 20-100 μM)41.

As negative control, we took a random sample of 62 drugs that were filtered by the 

docking step (i.e., with score > −8.5 kcal/mol; Supporting Information Table S1), and 

searched for experimental information on them. Only two of these drugs were found in 

experimental studies. Elbasvir “did not inhibit SARS-CoV-2 infection” 40, which suggests 

that it is inactive against MPRO. On the other hand, quinidine showed some activity in a 

SARS-CoV-2 replication inhibition assay 42, but the possible target proteins were unknown. 

Taken together, we conclude that the docking step is successful in selecting candidates that 

are likely to be effective in inhibiting MPRO, albeit with a tendency to also predict false 

positives.

In order to reduce the pool of drug candidates and hopefully filter out the false 

positives from the docking step, we turned to MD simulations with a classical forcefield 

(CHARMM36m), starting with the docking-generated pose for each drug. We were able to 

obtain parameters for 58 of the 62 drug candidates from the SwissParam server 27. For each 

of the 58 protein-drug complex, we carried out 100 ns classical MD simulations. From the 

last 80 ns of the simulations, we calculated the average lig-RMSD and MM/PBSA binding 

free energies for each of the 58 drug candidates (Fig. 3). We then used lig-RMSD as a 

filter: drug with lig-RMSD > 4 Å, indicating unstable binding, were filtered, while drugs 

with lig-RMSD < 4 Å, of which there were 26, were selected for further evaluation in the 

next step. Comparing the 26 selected candidates against the 10 drugs with experimental 

information for MPRO binding, one (pimozide) of the 4 drugs in the I category was correctly 

filtered, but we also lost one (atovaquone) in the A category and one (simeprevir) in the 

MA category. So the retained drugs in the A, MA, and IA categories were 2, 2, and 3, 

respectively. The docking scores, lig-RMSDs, and 2D structures of the selected 26 drugs are 

shown in Supporting Information Table S2.

To further winnow down the list of candidate drugs and potentially refine the protein-drug 

poses, we ran 5 ns hybrid ANI/MM MD simulations. Filtering first by the average lig-

RMSD, at a 5 Å cutoff, selected 12 drugs (Figure 4). All the three drugs in the I category 

were now correctly removed, along with one in the MA category. So now two active drugs 

and one moderately active drug, but no inactive drugs, were in the selection. We also added 

a second filter, by MM/PBSA binding free energy. Three of the 12 drugs with MM/PBSA 

binding free energy > 0 kcal/mol were further removed. The final set of 9 drugs still contain 

the experimentally validated two active ones (midostaurin and tadalafil) and one moderately 

active one (dihydroergotamine). Moreover, two of the active drugs, dihydroergotamine and 

midostaurin, have the lowest MM/PBSA binding free energies, −17.9 and −16.2 kcal/mol, 

respectively, among the final set of 9 drugs. The 3D structures of dihydroergotamine and 

midostaurin bound to MPRO are shown in Figure 5.

The MM/PBSA binding free energies and their decompositions for the 26 candidates 

evaluated by ANI/MM MD simulations are listed in Supporting Information Table S3. 

We also compared these results with the counterparts calculated from the classical MD 

simulations (Figure 3). For all the 9 drugs in the final selection, the MM/PBSA binding 
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free energies improved on going from the classical MD simulations to ANI/MM MD 

simulations, with an average decrease of −3.0 kcal/mol. (Supporting Information Table S4). 

In comparison, among the 17 filtered candidates, 9 had increases in MM/PBSA binding 

free energies on going from the classical MD simulations to ANI/MM MD simulations. So 

the ANI/MM MD simulations clearly improved both the reliabilities of the drug selection 

and the interactions of the selected drugs with the target proteins. This is especially notable 

since the MM/PBSA energy function was the same and it was the refined protein-drug 

configurations that were responsible for the enhanced protein-drug binding stability in the 

ANI/MM MD simulations.

To gain further insight into the enhanced protein-drug interactions by ANI, we compared 

the last snapshots from the classical and ANI/MM MD simulations of the final 9 drugs. 

The results are presented as 2D interaction maps in Figure 6. ANI/MM produced additional 

interactions (hydrogen bonding and nonbonded interactions) not sampled in classical MD 

simulations. For example, dihydroergotamine formed additional hydrogen bonds, whereas 

midostaurin formed additional nonbonded interactions in the ANI/MM snapshots. Thus ANI 

was indeed able to refine protein-drug poses.

Discussion and Conclusion

We have presented an investigation on the development of potential inhibitors against the 

main protease of SARS-CoV-2 using a computational drug repurposing approach. The 

scientific community is devoting a tremendous amount of effort to characterizing potential 

drugs to inhibit this virus, yet much more information and effort is required before a unique 

treatment can be approved43. Systematic studies on the interactions of viral proteins with 

FDA-approved drugs are crucial for understanding the binding behaviors of these proteins 

and can aid in accelerating the development of biochemical assays44. MD simulations with 

classical forcefields can describe many important drug-protein interactions, but they tend 

to miss crucial details at the electronic and nuclear levels16. These missed details can be 

recovered when classical forcefields are combined with quantum calculations such as DFT 

and CCSD(T)/CBS that can provide the most accurate descriptions of electronic and nuclear 

effects for small drug molecules. In this work, a neural network-trained force field was used 

to study interactions of repurposed drug molecules with the MPRO protein. The workflow 

developed in this study (Figure 7), the interaction maps, and the structures of selected 

protein-drug complexes may be useful for designing novel drugs that can be used against 

COVID-19.

Our workflow encompasses computations at several levels of sophistication. Our starting 

point is a database of 1615 FDA-approved drugs. Using molecular docking, the number 

of candidate drugs was reduced to 62 with the best docking scores. To sample the 

conformational space of drug-protein complexes, MD simulations were conducted first using 

a classical force field alone, which were then combined with the neural network-trained 

force field ANI to provide an accurate description of the interaction profiles of the drugs 

with the protein. Whereas docking and classical MD simulations are routinely used in drug 

discovery, here we used hybrid ANI/MM MD simulations to investigate interactions that 

may be ignored by classical MD simulations but could prove useful for guiding experimental 
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drug design. Additionally, combining ANI/MM MD trajectories with endpoint MM/PBSA 

free-energy calculations assists in obtaining physically important information related to drug 

binding. The MM/PBSA calculations can be further improved in the future to handle the 

ANI/MM interactions.

We have used experimental information in the literature to assess each step of our workflow. 

Among the 62 docking-selected candidates, 10 compounds had experimental data on their 

MPRO binding affinities, with 6 active or moderately active and 4 inactive. We tracked 

whether these compounds were filtered or selected in each step of our workflow. Our final 

selection of 9 drugs contained three of the experimentally validated active or moderately 

active compounds and none of the inactive compounds. The workflow thus appears to 

be very effective according to this measure. Importantly, our ANI/MM MD simulations 

improved the binding stability of the 9 selected drugs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Replication cycle of SARS-CoV-2.
The virus invades a human cell by attaching its spike protein to a cell surface receptor (a). 

Upon entering the cell, the virus breaks up to release its genetic material (b). The viral 

RNA hijacks the ribosome of the host cell to produce viral proteins (c). Viral proteins and 

RNA are assembled into new viral particles, which are eventually released from the host cell 

to infect other cells (d). The vial main protease (MPRO) is essential for cleaving the viral 

polypeptide chain into functional proteins needed to assemble new viruses.
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Figure 2. Structure of MPRO and the system for ANI/MM MD simulations.
The system consists of a drug (red surface) bound to MPRO (cartoon representation), 

solvated with TIP3P water molecules and Na+ and Cl− ions (green and brown mesh bubbles) 

in a box shown with line representation. For the hybrid ANI/MM MD simulations, the 

protein and ions are modeled by the CHARMM forcefield, water is modeled as TIP3P, and 

ligand molecule is modeled by the ANI-2x force field.
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Figure 3. Average lig-RMSDs and MM/PBSA binding free energies for 58 drugs in classical MD 
simulations.
The blue bars represent drugs with an average lig-RMSD below 4 Å and green bars 

represent drugs with an average lig-RMSD above 4 Å. The orange bars represent average 

MMPBSA binding free energies (in kcal/mol) with standard deviations. The drugs are 

ordered according to docking scores. Not included are 4 drugs with no available force-field 

parameters.
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Figure 4. Average lig-RMSD and MM/PBSA binding free energies in ANI/MM MD simulations.
The blue bars represent selected drugs with average lig-RMSD below 5 Å and green bars 

represent filtered drugs with lig-RMSD above 5 Å. The orange bars represent average MM/

PBSA binding free energies with standard deviations. The drugs are ordered according to 

average lig-RMSD.
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Figure 5. 3D structures of dihydroergotamine and midostaurin in complex with MPRO.
The last snapshots of these complexes in ANI/MM MD simulations are shown. (a) 

Dihydroergotamine; (b) Midostaurin.

Gupta and Zhou Page 15

ACS Comb Sci. Author manuscript; available in PMC 2023 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 2D interaction maps of the final selection of 9 drugs with MPRO.
The last snapshots of classical and ANI/MM MD trajectories are used to generate the 2D 

interaction maps. Colored drops represent different properties of interacting residues of the 

protein. 1. Dihydroergotamine; 2. Midostaurin; 3. Ziprasidone; 4. Etoposide; 5. Apixaban; 6. 

Fluorescein; 7. Tadalafil; 8. Rolapitant; 9. Palbociclib. Drugs are in ascending orders of their 

ANI/MM MM/PBSA binding free energies.
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Figure 7. Computational drug repurposing workflow.
The number of selected compounds at each step is shown, with the corresponding method 

of selection indicated on the right. Shown the left are the numbers of experimentally studied 

compounds in three categories: A (active), MA (moderately active), and I (inactive), that are 

retained in each step.
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