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Abstract

Rapid advances in next-generation sequencing technologies have dramatically changed our ability 

to perform genome-scale analyses. The human reference genome used for most genomic analyses 

represents only a small number of individuals, limiting its usefulness for genotyping. We designed 

a novel method, HISAT2, for representing and searching an expanded model of the human 

reference genome, in which a large catalogue of known genomic variants and haplotypes is 

incorporated into the data structure used for searching and alignment. This strategy for 

representing a population of genomes, along with a fast and memory-efficient search algorithm, 

enables more detailed and accurate variant analyses than previous methods. We demonstrate two 

initial applications of HISAT2: HLA typing, a critical need in human organ transplantation, and 

DNA fingerprinting, widely used in forensics. These applications are part of HISAT-genotype, 

with performance not only surpassing earlier computational methods, but matching or exceeding 

the accuracy of laboratory-based assays.

Introduction

Advancements in sequencing technologies and computational methods have enabled rapid 

and accurate identification of genetic variants in the human population. Detailed individual 
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genomic data along with relevant clinical and environmental information promise to help 

improve predictions for cancer risk, inform lifestyle choices, generate more accurate clinical 

diagnoses, reduce adverse drug reactions and other negative side effects of treatments, and 

improve patient outcomes through better-targeted therapies. Although massive sequencing 

projects over the past decade such as the 1,000 Genomes Project1, 2, GTEx3, 

GEUVADIS4, 5, and the Simons Simplex Collection (SSC)6, 7 have generated trillions of 

reads that are available from public archives8, our ability to make use of these enormous data 

sets is still quite limited. One important limitation is that most analyses must rely on the 

alignment of sequencing reads against the human reference genome9 (currently GRCh38), 

which does not reflect genetic diversity across individuals and populations. Sequences from 

other humans, particularly those not included in the samples used for constructing the 

human reference, may align incorrectly or not at all when they originate from a region that 

differs from the reference genome. This reliance on a single reference genome can introduce 

significant biases in downstream analyses, and it can miss important disease-related genetic 

variants if they occur in regions not present in the reference genome.

A series of large-scale projects in recent years have yielded >110 million SNPs (in dbSNP10) 

and >10 million structural variants (in dbVar11). Although these variants represent a valuable 

resource for genetic analysis, current computational tools do not adequately incorporate 

them. To address these challenges, we have developed a novel genome indexing scheme that 

uses a graph-based approach to capture a wide representation of genetic variants with very 

low memory requirements. Over a decade ago, adaptation of the Burrows-Wheeler 

Transform and Ferragina Manzini Index (BWT/FM)12, 13 in linear reference based 

alignment programs such as SOAP14, Bowtie15, and BWA16 has enabled two or three 

magnitudes faster alignment than preceding alignment programs such as BLAT17 and 

MAQ18, with similarly low memory requirements. We have built a new alignment system, 

HISAT2, that enables fast search through its graph index. And now, in contrast to other 

graph aligner development approaches that use memory demanding k-mer based indexes 

such as in vg19 and bpa aligner20, we are the first to implement a Graph FM (GFM) index, 

which makes HISAT2 currently the most practical method available for aligning raw 

sequencing reads to a graph that captures the entire human genome along with a large 

number of variants.

Our graph-based alignment approach enables much higher alignment sensitivity and 

accuracy than standard, “linear” reference-based alignment approaches, especially for highly 

polymorphic genomic regions. Representing and searching through the numerous alleles of 

even one gene has long been a challenge, requiring a large amount of compute time and 

memory. For example, the HLA-A gene, which must be matched precisely between donors 

and recipients of organ and stem cell transplants, has over 3,000 identified alleles. 

Computational methods have so far focused on genotyping only one or a few genes because 

whole-genome genotyping has simply been impractical. Using HISAT2 as a foundation, we 

developed HISAT-genotype to compute the HLA type and the DNA “fingerprint” of a 

human using standard whole-genome sequencing data. Because HISAT-genotype works well 

for multiple highly diverse genes and genomic regions, we expect that it will be 

straightforward to extend it to many more known variants in human genes. HISAT2 and 

HISAT-genotype are open-source software freely available at https://
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daehwankimlab.github.io/hisat2/ and https://daehwankimlab.github.io/hisat-genotype, 

respectively.

Algorithmic details

Here we describe the algorithms underlying HISAT2 and HISAT-genotype. HISAT2 

implements a novel graph-based data structure along with an alignment algorithm to enable 

fast and sensitive alignment of sequencing reads to a genome and a large collection of small 

variants. In addition, HISAT2 implements a new indexing algorithm for repeat sequences in 

a genome in which alignments of a repetitive read are projected to one location and later are 

fully recovered. HISAT-genotype uses HISAT2 as an alignment engine along with additional 

algorithms to perform HLA-typing and DNA fingerprinting analysis.

Graph representation of human populations and alignment (HISAT2)

The reference human genome used by most researchers, currently version GRCh38, was 

assembled from data representing only a few individuals, with over 70% of the reference 

genome sequence coming from one person9,21. By its very design, the reference does not 

include genomic variants from the human population. Sequence alignment protocols based 

on this single reference genome are sometimes unable to align reads correctly, especially 

when the source genome is relatively distant from the reference genome22, 23. HISAT2 

begins by creating a linear graph of the reference genome, and then adds insertions, 

deletions, and mutations as alternative paths through the graph. Figure 1a and b illustrate 

how variants are incorporated using a very short reference sequence, GAGCTG. In the graph 

representation, bases are represented as nodes and their relationships are represented as 

edges. The figure shows three variants: a single nucleotide polymorphism where T replaces 

A, a deletion of a T, and an insertion of an A. Although the example shows only 1-base 

polymorphisms, HISAT2 can incorporate insertions of up to 20 bps and deletions of any 

length.

In the genome graph data structure, any path in the graph defines a string of bases that occur 

in the reference genome or one of its variants. For example, the path G -> A -> G -> C 

defines the string GAGC. Strings can be ordered lexicographically; e.g., AGC comes before 

GTG, which comes before TGZ. A special symbol, Z, is used to indicate the end of the 

graph and to properly sort strings. To allow fast alignment of queries (reads) to the genome 

graph, we first convert the graph into a prefix-sorted graph using a method developed by 

Sirén et al24. This prefix-sorted graph is more efficient for search and storage. The prefix-

sorted graph is equivalent to the original one in the sense that they define the same set of 

strings. In a prefix-sorted graph, nodes are sorted such that any strings from a node with a 

higher lexicographic rank appear before any strings from a node with a lower rank. For 

example, any string from the node ranked first (node A in Figure 1c), such as AGCTGZ, 

comes before any strings from any other nodes. An equivalent table for this prefix-sorted 

graph is shown in Figure 1d. The table stores two types of information. For outgoing edges, 

given node rankings 1 to 11, the label of each node is stored according to the number of 

outgoing edges it has. Here node rankings are also referred to as node IDs. For example, 

node 1 has one outgoing edge, from A to G, so this node’s label A is stored once, as shown 
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in the first row under “First” of the “Outgoing edge(s)” columns. Node 3 has three outgoing 

edges, so this node’s label C is stored 3 times. For incoming edges, given the node rankings, 

the labels of the preceding nodes are stored. For example, node 1 has one incoming edge 

from the node labeled G, so this G is stored once, in the first row under “Last” of the 

“Incoming edge(s)” columns. Node 5 has two incoming edges from nodes labeled A and T, 

so A and T are stored accordingly.

Although edges are not directly stored using node IDs as depicted in Figure 1d, we can 

implicitly construct the edge information using a very important property of the table 

representation, called Last-First (LF) mapping. The Last-First mapping property says that 

the ith occurrence of a certain label in the last column corresponds to the ith occurrence of 

that label in the first column. For example, Node 3 in Figure 1d has an incoming edge from 

the node labeled G. This is the second occurrence of G in the last column of the table, which 

corresponds to node 5 in the first column, as shown with two blue arrows that are connected 

by a dotted line in Figure 1. This indirect representation of edges leads to a substantial 

reduction in memory requirements for storing the table. The table representation can be 

further compacted using the scheme illustrated in Supplementary Figure 1.

To further improve both speed and accuracy, we modified the hierarchical indexing scheme 

from HISAT25 to create a Hierarchical Graph FM index (HGFM). In addition to the global 

index for representing the human genome plus a large collection of variants, we built 

thousands of small indexes, each spanning ~57 Kb, which collectively cover the reference 

genome and its variants (Figure 2a). This approach provides two main advantages: (1) it 

allows search on a local genomic region (57,344 bps), which is particularly useful for 

aligning RNA-seq reads spanning multiple exons, and (2) it provides a much faster lookup 

compared to a search using the larger global index, due to the local index’s small size. In 

particular, these local indexes are so small that they can fit within a CPU’s cache memory, 

which is significantly faster than standard RAM.

Our implementation of this new scheme uses just 6.2 GB for an index that represents the 

entire human genome plus ~14.5 million common small variants, which include ~1.5 million 

insertions and deletions available from dbSNP (version 144). The incorporation of these 

variants requires only 50~60% more CPU time compared to HISAT2 (among the fastest 

alignment programs) searching the human genome without variants, and it obtains greater 

alignment accuracy for reads containing SNPs (Supplementary Tables 1-4). Additional 

details about sequence search via graph index and about the algorithms to handle 

mismatches and indels are given in Online methods and our earlier work on HISAT25.

Indexing Repeat Sequences (HISAT2)

Based on sets of 100-bp simulated and 101-bp real reads that were used in our evaluation 

(see Results and Supplementary Note), we found that 2.6-3.4% and 1.4-1.8% of the reads 

were mapped to ≥5 locations and ≥100 locations, respectively. For such reads, commonly 

used alignment programs report only one or a few randomly chosen locations. BWA-mem 

has a user option (-a) that enables reporting up to 500 alignments of a read. Even if a 

program could report all alignments, though, attempting to do so would likely consume a 

prohibitive amount of disk space. In order to address this issue, we have developed a novel 
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indexing and alignment strategy in which we combine a set of identical sequences from the 

reference genome into one representative sequence, which we called a repeat sequence, and 

directly align reads to that repeat sequence, resulting in one repeat alignment per read (see 

Online Methods for details and Figure 2b).

HISAT2 has an option to report repeat alignments as shown in Figure 2c and d. If a read 

matches a repeat sequence, then the read is aligned to just one location (the repeat sequence) 

instead of being aligned to the corresponding real locations of the genome. This dramatically 

decreases the number of alignments that must be reported. For example, in one of our 

simulated read sets (10 million 100-bp reads), the total number of alignments was 

108,698,299 when all alignments were reported. When we combined alignments to identical 

sequences in the reference genome, the total number of alignments decreased to 10,618,348 

and the alignment file size (in SAM format) decreased from 29.5 GB to 3 GB. The HISAT2 

package includes programs and application programming interfaces (API) for C++, Python, 

and JAVA that rapidly retrieve genomic locations from repeat alignments for use in 

downstream analyses such as variant calling, peak calling, and differential gene expression 

analysis.

Identification of sequences of genes and genomic regions (HISAT-genotype)

Building on the HISAT2 graph representation, we then set out to create an algorithm to 

perform genotyping from a shotgun sequencing data set, focusing initially on two distinct 

applications of genotype: (1) the human HLA region, a highly variable region that is used to 

determine compatibility between donor and recipient in organ transplants, and (2) DNA 

fingerprinting, in which 13 specific regions are tested to determine if a DNA sample matches 

a particular subject.

There is currently no centralized database for the many known genomic variants in human 

populations. Instead, each database has its own data format and naming conventions. To 

address this challenge, we parsed exterior databases (e.g. IMGT/HLA26 and CODIS27) for 

human genes or genomic regions and converted them into an intermediate format upon 

which several HISAT-genotype algorithms are conveniently built. We created a graph 

genome, called a Genotype genome, which is specifically designed to aid in carrying out 

genotyping as illustrated in Figure 3. In addition to variants and haplotypes, the genotype 

genome includes some additional sequences inside the consensus sequence shown in yellow, 

resulting in substantial differences in coordinates with respect to the human reference 

genome. Thus, it is important to note that a Genotype genome should not be used for 

purposes other than genotyping analysis.

In contrast to linear-based representations of the human reference augmented by sequences 

representing gene alleles, graph representations are much more efficient in terms of memory 

usage and/or alignment speed, as illustrated in Supplementary Figure 2. When working with 

whole-genome sequencing data, using the right reference/index is crucial. Much greater 

alignment accuracy can be achieved by using a reference that most closely matches the 

genome from which reads originated. Using the wrong reference (e.g. just a few genes 

instead of the whole genome) can lead to reads being incorrectly aligned, as depicted in 

Supplementary Figure 3. Once reads are extracted that belong to a particular gene or 

Kim et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genomic region using a Genotype genome, HISAT-genotype performs two further 

downstream analyses based on the read alignments: (1) typing and (2) gene assembly. 

Typing is the process of identifying the two alleles (or the one allele if homozygous) for a 

particular gene that best match a given sequencing data set.

When paired-end reads of ≥100 bp with a sequencing depth of at least 30-50x coverage are 

used, HISAT-genotype is frequently able to assemble full-length alleles and determine 

whether they are novel by comparing the assembled alleles with known alleles in the 

database, as described below.

Instead of directly assembling reads based on overlaps among reads, HISAT-genotype splits 

aligned reads into fixed length segments called k-mers, as in done in de Bruijn graph 

assemblers28,29. These k-mers form an assembly graph (Figure 4) that enables the 

systematic assembly of alleles by handling noise and resolving assembly ambiguities.

Figure 4 illustrates the assembly of two distinct alleles using the k-mer assembly graph. 

HISAT-genotype assumes that each locus should have at most two alleles, which means that 

one of the three k-mers in Figure 4a needs to be removed. HISAT-genotype uses the number 

of reads that support each k-mer to make this choice. For example, if the k-mers shown in 

green and yellow are supported by 3 reads each, while the k-mer in red is only supported by 

one read, the program removes the k-mer in red. After noise removal (Figure 4b), it is not 

yet clear which k-mers are linked to other k-mers from the same allele (e.g., the yellow and 

green nodes). Read pair information is then used to resolve this ambiguity. Suppose there are 

three pairs that support CGC and CCG in green, as shown at the top of the figure. Drawing 

upon this read-pair information, we can resolve the ambiguity as illustrated in Figure 4c. 

Read pairs are not always sufficient to separate alleles; for example, two known alleles 

A*01:01:01:01 and A*11:01:01:01 of NA12878 have the same ~1,200 bp sequence in the 

middle, while typical Illumina read pairs are separated by 600 bp or less. In order to fully 

assemble alleles, HISAT-genotype makes use of alleles in the database to combine partial 

alleles into full-length alleles. As our results show, this approach enables HISAT-genotype to 

assemble correctly all HLA-A alleles for the Platinum genomes used in our experiments, 

although this strategy can introduce a bias toward known alleles.

Due to many variants including insertions and deletions incorporated in the Genotype 
genome, a read can be locally aligned in multiple ways at approximately the same location 

(Figure 4a), where only one alignment is actually correct. If a program selects an incorrect 

alignment, then that may in turn lead to choosing the wrong allele. HISAT-genotype handles 

such cases by choosing the most likely alignment using the aforementioned statistical model 

and EM method.

Results

Here we demonstrate HISAT2’s performance on aligning sequences to the human genome, 

comparing it to the two most widely used alignment programs, BWA-mem30 and Bowtie231, 

and to vg19, the only other graph-based alignment program available. We did not include 

HISAT25 in our evaluation because HISAT2 is a variant-aware version of HISAT with 
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almost identical performance in terms of alignment quality, runtime, and memory usage 

when aligning to a linear reference. We used four sets of 20 million simulated 100-bp 

paired-end reads (10 million pairs) and one set of 20 million real 101-bp paired reads (10 

million pairs), which are the first 20 million reads from a larger set taken from NA1287832. 

We generated the four simulated data sets from the human reference genome (GRCh38) as 

follows (1) reads including known variants with no sequencing errors (2) reads including 

known variants with 0.2% per-base sequencing errors, (3) reads with no sequencing errors 

and no known variants (perfect reads), and (4) reads with 0.2% per-base sequencing errors 

and no known variants. The reads in data sets 1, 2, and 4 include up to 3 differences with 

GRCh38. For more details of the simulation, see Supplementary Note.

We ran two versions of HISAT2, HISAT2.Graph, and HISAT2.Linear, which use a graph 

index and a linear index for alignment, respectively. vg was also run with a graph and a 

linear index, vg.Graph and vg.Linear. All programs were run with two different modes: 

default settings that usually allow one or a few alignments to be reported, and different 

settings that allow more alignments to be reported (we added the suffix “sensitive” to each 

program’s name to indicate the latter settings, e.g. Bowtie2.sensitive).

Overall, the graph-based aligners, HISAT2.Graph (both default and sensitive settings) and 

vg.Graph.sensitive, provide the highest alignment sensitivity (99.08-99.19% and 98.18%, 

respectively) on the simulated reads that include SNPs and sequencing errors (data set 2), 

followed by Bowtie2.sensitive (97.68%) and BWA-mem.sensitive (97.68%), 

HISAT2.Linear.sensitive (97.54%), HISAT2.Linear (default settings, 96.52%), Bowtie2 

(default, 95.99%), and BWA-mem (94.02%), as shown in Figure 5. HISAT2 processed 

36,735 pairs of reads per second (pps), using default settings for HISAT2.Linear. Other 

speeds were 24,941 pps in HISAT2.Linear.sensitive, 28,729 pps in HISAT2.Graph, and 

21,207 pps in HISAT2.Graph.sensitive. Bowtie2 and BWA-mem process 5,663 to 10,917 

pps, while vg processes only 1,012 to 1,346 pps. Bowtie2 requires the smallest amount of 

memory (3.4 GB), followed by HISAT2.Linear (4.5 GB), and BWA-mem (5.7 to 6.2 GB). 

Graph-based aligners (HISAT2.Graph and vg) require more RAM, with HISAT2.Graph 

requiring slightly more memory (7.9 GB) than the linear-based aligners, and vg requiring 29 

GB.

Programs did not perform differently between data sets 1 and 2. On reads that do not include 

SNPs (data sets 3 and 4), all programs with sensitive settings provide relatively high 

alignment sensitivity (Supplementary Table 2). For example, HISAT2, BWA-mem.sensitive, 

Bowtie2.sensitive, and vg.Linear.sensitive align the highest number of pairs (98.70 to 

99.99% on data set 3 and 98.61 to 99.81% on data set 4). The results for data set 3 (perfect 

reads) demonstrate that HISAT2 correctly maps almost all read pairs (99.99%) including 

those that are mapped to ≥500 locations, while the second best program, BWA-

mem.sensitive, correctly aligns 99.46% of the pairs.

The incorporation of known variants into its index enables HISAT2.Graph to align reads 2-3 

times faster than Bowtie2 and BWA-mem, which have to separately deal with mismatches 

due to sequence variation using time-consuming alignment algorithms (e.g. dynamic 

programming and seed chaining). Though the simulated reads only differ from the reference 
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genome by a maximum of 3 edits, HISAT2.Graph is even more effective at aligning reads 

that include many known variants, as illustrated in our HLA and DNA fingerprinting 

analysis below, while linear genome based aligners may have difficulty aligning such 

divergent reads.

Supplementary Table 3 shows the results of all the aligners using a real set of paired-end 

reads. Because we do not know the true alignments for these reads, we evaluated 

performance using the accumulated alignment ratio with edit distance (0 to 6) in both reads 

of a pair, pairs processed per second, and memory requirements. The overall alignment 

ratios were similar among the programs, ranging from 92.3% to 93.1%. HISAT2.Graph and 

vg.Graph have a higher number of pairs aligned at small (0-2) edit distances. For example, 

HISAT2.Graph and vg.Graph (default settings) aligned 78.7% and 78.0% of pairs perfectly 

(e.g. zero edit distance) while others aligned 67.0-67.6%. This is mainly because 

HISAT2.Graph does not impose an edit distance “penalty” for mismatches due to known 

SNPs while others do impose a penalty.

To demonstrate applications of HISAT2, we conducted and describe the results from two 

experiments: (1) genotyping the human leukocyte antigen genes (HLA-A, HLA-B, HLA-C, 

HLA-DQA1, HLA-DQB1, and HLA-DRB1); and (2) evaluating DNA fingerprinting loci 

using 13 markers plus the sex-determining marker gene Amelogenin, which are markers 

widely used in criminal forensics to identify individuals. We selected HLA genes because 

they are among the most diverse human genes, and selected DNA fingerprinting loci because 

they are short tandem repeat (STR) regions considerably differing in length among 

individuals. Algorithms to perform these two genotyping assays were implemented in 

HISAT-genotype, as described in the Online methods section.

HLA typing for a family of 17 genomes.

The IMGT/HLA Database26 encompasses >16,000 alleles of the HLA gene family. We built 

a HISAT2 index of the human genome that incorporates all of these variants, which 

increased the computational resource requirements only slightly as compared to an index 

without the variants. For highly polymorphic regions such as those containing the HLA 

genes, HISAT2 is more sensitive than other short-read aligners; e.g., on one of our data sets, 

HISAT2 maps up to twice as many reads to the HLA genes as Bowtie231 (Supplementary 

Table 4).

The HLA allele nomenclature uses a set of four numbers from left to right to designate 

alleles first classified by (1) allele group according to serological and cellular specificities, 

then further sub-grouped by (2) protein sequence, and similarly subcategorized according to 

(3) coding and then (4) noncoding sequences; e.g., HLA-A*01:01:01:01 is a specifier for 

one allele of the HLA-A gene. HISAT-genotype reports alleles for all four fields, unlike 

many other programs, which tend to report a subset of the numbers (typically the first two 

numbers). We conducted computational experiments using Illumina’s Platinum Genomes 

(PG), which consists of 17 genomes (CEPH pedigree 1463, Supplementary File 2) that have 

been sequenced previously (whole genome sequencing data are available32, hereafter 

referred to as PG data). Alleles of HLA-A, HLA-B, and HLA-C for the NA12878, 

NA12891, and NA12982 genomes have been identified previously using targeted 
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sequencing33. A recent study34 reported the alleles of all six HLA genes for the 17 genomes 

by applying several computational methods to the PG data, with the results corresponding to 

the pedigree. Our experiments show that HISAT-genotype’s results exactly match known 

alleles and computationally identified alleles of the six genes for the 17 genomes. HISAT-

genotype’s speed surpasses other currently available methods, primarily due to HISAT-

genotype’s alignment engine, HISAT2 (Supplementary Table 5 and Supplementary File 3).

In addition to identifying alleles for each genome, HISAT-genotype is the first method that 

can use raw whole-genome sequence data to assemble and report full-length sequences for 

both alleles of each of the 6 HLA genes, including exons and introns (Supplementary File 4 

shows the full assembly output for the HLA-A genes of NA12892). The complete sequences 

of HLA-A reported by HISAT-genotype on the 17 genomes are all in perfect agreement with 

those previously reported. Its assembled sequences for HLA-B, HLA-C, HLA-DQA1, and 

HLA-DQB1 are nearly identical to the previously reported ones. The sequences assembled 

for HLA-DRB1 are accurate but somewhat fragmented, consisting of a small number of 

contigs. Greater read lengths should enable HISAT-genotype to produce complete sequences 

for the HLA-DRB1 gene.

HLA typing analysis at a population scale (917 genomes).

In a separate experiment, we compared HISAT-genotype with the Omixon genotyping 

system35, an established commercial platform, using whole genome sequencing (WGS) data 

from the Consortium on Asthma among African-ancestry Populations in the Americas 

(CAAPA)36 (Supplementary File 5). Table 1 shows a high concordance rate between the two 

methods for the allele group and protein sequences (the first two numbers of the HLA 

classification); more specifically, a concordance of ≥0.97 for genotyping of HLA-A, HLA-

B, HLA-C, and HLA-DQA1; 0.91 for HLA-DQB1; and 0.87 for HLA-DRB1. Tests using 

the CAAPA data also revealed a handful of novel alleles of HLA-A and other HLA genes 

(Figure 6 and Supplementary File 6. ).

In addition to the PG data sets, we evaluated our method using simulated data sets and 

compared the results of our method with those from Kourami, a recently published HLA 

typing method. In order to generate simulated reads, we first randomly chose 175-200 pairs 

of alleles each from HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, and HLA-DRB1, 

resulting in a total of 1151 allele pairs. Then we generated reads from each pair of alleles 

that uniformly cover each allele with 20x coverage. Each allele pair was processed according 

to the recommended steps for HISAT-genotype and Kourami. We found that 311 of the allele 

pairs contained at least one allele that was not in Kourami’s database. Thus, we split the data 

into Kourami-present alleles and all allele pairs and analyzed each, taking Kourami’s 

ambiguous allele grouping (G groups) into consideration. As Kourami’s typing uses only 

exonic sequences, that program groups together alleles with the same exonic sequences but 

different intronic sequences, then names the groups with the common prefix of the grouped 

alleles and a ‘G’ suffix. For the Kourami-present 840 allele pairs, HISAT-genotype correctly 

identified 99.42% at three-field resolution while Kourami identified 99.04% (Supplementary 

Table 6). These values change to 99.50% and 91.91% respectively when looking at all 1151 

allele pairs.
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HISAT-genotype and Kourami have similar calling statistics when G grouping is taken into 

consideration and only using alleles that are in Kourami’s database. This similarity breaks 

down when alleles that are not in Kourami’s default database are tested and/or if we do not 

take into consideration Kourami’s ambiguous sequence groupings. This highlights an 

advantage in using HISAT-genotype in obtaining more direct results with no groupings and 

more alleles available to call by default. Additionally, HISAT-genotype can report up to four-

field resolution and does so correctly 97.42% of the time when looking at all 1151 allele 

pairs (Supplementary File 7).

DNA fingerprinting.

DNA fingerprinting analysis has been widely used in criminal investigations and paternity 

testing since its introduction in the mid-1980’s. It considers a set of 13 highly polymorphic 

regions that in combination can identify individuals or their close relatives. The billions of 

reads in a whole-genome sequencing run include those from the 13 genomic regions used for 

DNA fingerprinting analysis. In addition to running HISAT-genotype on the WGS data, we 

performed traditional wet-lab based DNA-fingerprinting using DNA samples of the 17 PG 

genomes (Epstein-Barr virus transformed B-lymphocytes), which were purchased from the 

Coriell Institute, and a DNA fingerprinting kit, PowerPlex® Fusion System from Promega.

HISAT-genotype’s initial results for the PG data almost perfectly match our wet-lab results 

for 11 out of 13 DNA fingerprinting loci on all 17 genomes and correctly determines sex 

(using the Amelogenin locus) for all 17 genomes (Supplementary File 8 and Supplementary 

File 9). In order to identify the potential sources of the discrepancies for the loci that were 

not in perfect agreement, we examined the raw PG sequencing data and found that the NIST 

database used by HISAT-genotype (Supplementary File 10) was missing some alleles of the 

17 PG genomes (Supplementary File 11). After incorporating the missing alleles, HISAT-

genotype’s results perfectly match the wet-lab results for all but 8 cases, which are indicated 

in bold and italics in Table 2.

Assuming there are no germline and somatic mutations in the PG cell lines, an analysis of 

the 8 disagreements indicates that HISAT-genotype is correct in all 8 cases. For example, on 

genome NA12886 at locus D5S818, HISAT-genotype reports two alleles 10 and 12, and the 

wet-lab method reports three alleles 9, 10, and 12. The pedigree information (Supplementary 

File 2) shows that NA12886’s father (NA12877) has two alleles 10 and 11, and the mother 

(NA12878) has homozygous allele 12, suggests that allele 9 detected by the wet-lab method 

is likely a false positive. Another example is NA12877’s D3S1358 locus, for which HISAT-

genotype gives more specific results that consist of two different alleles 16 and 16’, which 

are of the same length but are slightly different in their sequences (allele 16: TCAT followed 

by three repeats of TCTG, then followed by twelve repeats of TCTA; and allele 16’: TCAT 

followed by two repeats of TCTG, then followed by thirteen repeats of TCTA). Because the 

two alleles have identical lengths, the wet-lab method cannot distinguish them and reports 

just one allele.

In summary, HISAT-genotype produces highly accurate results for both HLA typing and 

DNA fingerprinting using whole-genome shotgun data. Compared to both targeted 

sequencing and wet lab methods, HISAT-genotype either matches or exceeds their 
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performance, sometimes discovering novel variants that could not be detected by alternative 

techniques.

Discussion

Our original implementation of the Graph FM index in the HISAT2 system enables the use 

of the smaller amount of memory typically available on a conventional desktop, compared to 

the 20 GB of RAM or more required by other graph aligners. Through algorithmic 

innovations, HISAT2 processes sequencing reads as fast as widely used linear aligners such 

as Bowtie2 and BWA-mem. HISAT2 uses whole genome, target captured, or transcriptome 

sequencing reads produced by Illumina sequencers. HISAT2 allows by default three 

mismatches (or similarly 3 edit distance), which can be changed to allow more differences, 

though this requires more runtime. We plan to expand the program to make use of long reads 

produced by Oxford Nanopore and PacBio sequencers, and linked reads by the 10X 

Genomics Chromium platform. The current version of HISAT2 allows small variants, and 

we plan to expand it to incorporate structure variants.

With graph representation and search capability made feasible by HISAT2 and other graph 

aligners, one may contemplate incorporating all known variants including rare ones into an 

all-in-one pan genome graph representation. Though this idea is understandably appealing, it 

may generate more problems than it would solve, as reads would likely map to more and 

often wrong locations, in addition to generating performance issues such as slow runtime 

and high memory requirements. Instead of creating such an exhaustive representation, a 

graph with common small variants may be more practical, as it covers 93% of known 

variants of the NA12878 genome (one of the Platinum genomes) and is expected to cover a 

similar percentage of other human genomes as variant databases (e.g. dbSNP) accommodate 

more human populations. Instead of one representation, having dozens or hundreds of 

reference genomes combined with sets of relevant variants using graph representations may 

be the more appropriate course to take. Our preliminary work shows that HISAT2 with its 

graph genome of common SNPs was able to identify more known SNPs (not including 

indels) of the NA12878 genome (99.4%) than Bowtie2 and BWA (98.9-99.1%) (see 

Supplementary Note). In particular, HISAT2 assigns the same alignment score whether or 

not reads include known variants, enabling less biased downstream analysis. HISAT2 is 

more capable than linear aligners when reads involve many differences with respect to the 

linear reference genome.

We have demonstrated the effectiveness of HISAT-genotype for typing and assembling HLA 

genes. HISAT-genotype will be expanded upon to enable typing and phasing of all regions in 

the human genome with the end goal of producing a fully phased individual genome, set of 

genotypes, and annotations. We plan to augment HISAT-genotype’s assembly algorithm to 

handle more than two copies of certain genes or genomic regions (e.g. copy number 

variations). HISAT-genotype’s output will include haplotype resolved variants in the VCF 

format37 and full-length gene sequences in the FASTA format to maximize compatibility 

with other genomics software. The personal genome will be a valuable reference for aligning 

other sequencing technologies more reliably (e.g. RNA-seq) while the set of genotypes will 

be useful for researchers studying disease linkage.
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We anticipate that with appropriate modification of HISAT2, graphs can be created for 

individual human’s diploid genome. Given a list of variants and haplotypes for a diploid 

genome assembly, we first will choose a set of chromosomes as a backbone sequence and 

incorporate small variants from their sister chromosomes into the backbone using a graph. 

Structural variants such as long insertions and inversions will be appended to the backbone 

properly. This graph representation/index combined with a repeat index can also be 

effectively used for representing an individual’s diploid genome. We are actively developing 

simple, reliable tools to convert coordinates and annotations between any human genome. 

These tools will enable easy query and interpretation of a personal graph genome.

Online methods

Graph FM index and sequence search through the index

In order to perform the LF mapping, the number of times that a “Last” column label of a 

given row r occurs up to and including r needs to be identified, which involves counting 

occurrences from the top of the table down to row r. This counting would be prohibitively 

time-consuming for the 3-Gb human genome. To accelerate the process, the table is 

partitioned into small blocks of only a few hundred rows each. Additional numbers are 

stored within each block recording the number of occurrences of a specific base that appear 

up to that block. We also optimized the local counting process, where we count the number 

of times a specific base appears within that block. This overall indexing scheme is called a 

Graph FM index (GFM) (Supplementary Figure 4). Supplementary Figure 5 illustrates how 

a query that contains a known one-base insertion is aligned to the genome using a GFM.

Indexing Repeat Sequences (HISAT2)

Given a read length R (e.g. 100-bp), we first build a k-mer table from the reference genome 

sequence and its reverse complement together, where k is set to R and each k-mer must 

appear at least C times (e.g. 5 times) to be included. Note that we use both strands of the 

genome as a read is mapped to the reference and/or its reverse complement. Although we 

can directly use this k-mer table for aligning reads of length R, it would require a large 

amount of memory to store the sequences of all k-mers and their corresponding genomic 

coordinates. To reduce the memory use, we combine k-mers that originate from the same 

regions when possible. For example, suppose that there are 1,000 identical regions 200-bp in 

length in a reference genome. Each region has 101 100-bp mers with each 100-mer present 

in the 1,000 regions. If we were to store all coordinates of each k-mer, then the number of all 

coordinates would be 101,000. However, if we can combine k-mers occurring in the same 

region into one sequence, then we simply need to store one coordinate per region, thus the 

number of coordinates would drop to 1,000. In practice, real genomes have identical 

sequences of varying lengths.

Supplementary Figure 6 illustrates how to merge k-mers into repeat sequences, where we 

can use any k as the initial value. This approach substantially reduces the number of 

coordinates to store. For example, the number of 100-mers that occur ≥5 times in the human 

reference genome is 4,000,527, with the average number of coordinates corresponding to 

each 100-mer as 19.1. This amounts to a total of 76,446,383 coordinates that we would store 
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using the naïve approach. If we allow k-mers to be extended to up to a certain length (e.g. 

300 bps), we reduce the number of coordinates to 2,825,142. We refer to both k-mers and 

extended k-mers as repeat sequences. When k-mers are extended up to 300 bps, the number 

of repeat sequences is reduced from 4,000,527 to 121,793.

This strategy guarantees that a read whose sequence is present ≥C times on the genome is 

mapped to all those locations. Similarly, a read pair in which both of its sequences are 

present ≥C times on the genome is mapped. More specifically, a read whose sequence is 

present n times (n ≥C) is mapped to only one repeat sequence. The portion of the repeat 

sequence matching the read exactly includes n coordinates. This approach works perfectly 

for a fixed read length, R, which is typical of experiments using Illumina sequencers, 

although reads of a length close to R can also be handled with slightly decreased alignment 

sensitivity. HISAT2 also allows for building indexes of various read lengths and using only 

one (or a few) of them on an actual run so that it requires only a small amount of additional 

memory.

We built a BWT/FM index and a minimizer-based k-mer table38 with a window size of 5 and 

k=31 on these repeat sequences to enable rapid alignment of 100-bp reads with up to 3 

mismatches.

HISAT-genotype’s typing algorithm

Because allele sequences may only be partially available (e.g., exons only), HISAT-genotype 

first identifies two alleles based on the sequences commonly available for all alleles, e.g. 

exons. For example, the IMGT/HLA database includes many sequences for some key exons 

of HLA genes, but it contains far fewer complete sequences comprising all exons, introns, 

and UTRs of the genes. So far 3,644 alleles have been classified for HLA-A. Although all 

alleles of HLA-A have known sequences for exons 2 and 3, only 383 alleles have full-length 

sequences available. The sequences for the remaining 3,261 alleles include either all 8 exons 

or a subset of them. HLA-B has 4,454 alleles, of which 416 have full sequences available. 

HLA-C has 3,290 alleles, with only 590 fully sequenced, HLA-DQA1 has 76 alleles with 53 

fully sequenced, HLA-DQB1 has 978 alleles with 69 fully sequenced, and HLA-DRB1 has 

1,972 alleles, with only 43 fully sequenced. During this step, HISAT-genotype first chooses 

representative alleles from groups of alleles that have the same exon sequences. Next it 

identifies alleles in the representative alleles that are highly likely to be present in a 

sequenced sample. Then the other alleles from the groups with the same exons as the 

representatives are selected for assessment during the next step. Second, HISAT-genotype 

further identifies candidate alleles based on both exons and introns. HISAT-genotype applies 

the following statistical model in each of the two steps to find maximum likelihood 

estimates of abundance through an Expectation-Maximization (EM) algorithm39. We 

previously implemented an EM solution in our Centrifuge system40, and we used a similar 

algorithm in HISAT-genotype, with modifications to the variable definitions as follows.
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The likelihood of a particular composition of allele abundance α:

L(α ∣ C) = ∏
i = 1

R
∑

j = 1

A αjlj
∑k

Aαklk
Cij

, where R is the number of reads, A is the number of alleles, αj is the abundance of allele j, 
with a sum of 1 for all A alleles, lj is the length of allele j, and Cij is 1 if read i is aligned to 

allele j and 0 otherwise.

Expectation (E-step):

nj = ∑
i = 1

R αjCij
∑k = 1

A αkCik

, where nj is the estimated number of reads assigned to allele j.

Maximization (M-step):

αj′ =
nj ∕ lj

∑k = 1
A nk ∕ lk

, where αj′ is the updated estimate of allele j’s abundance. α′ is then used in the next 

iteration.

HISAT-genotype finds the abundances α that best reflect the given read alignments, that is, 

the abundances that maximize the likelihood function L(α ∣ C) above by repeating the EM 

procedure no more than 1000 times or until the difference between the previous and current 

estimates of abundances, ∑j = 1
A ∣ αj − αj′ ∣, is less than 0.0001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We would like to express our thanks to Kathleen Barnes and Michelle Daya for sharing Omixon’s HLA results with 
us. We would like to thank Ben Langmead and Jacob Pritt for their invaluable contributions to our discussions on 
HISAT2. We also greatly appreciate the generosity of Gaudenz Danuser and Dana Reed in providing wet-lab bench 
space and equipment for us. This work was supported in part by the National Human Genome Research Institute 
(NIH) under grants R01-HG006102 and R01-HG006677 to S.L.S and by the Cancer Prevention Research Institute 
of Texas (CPRIT) under grant RR170068 to D.K. All authors read and approved the final manuscript.

References

1. Genomes Project C et al. A map of human genome variation from population-scale sequencing. 
Nature 467, 1061–1073 (2010). [PubMed: 20981092] 

Kim et al. Page 14

Nat Biotechnol. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Genomes Project C et al. An integrated map of genetic variation from 1,092 human genomes. 
Nature 491, 56–65 (2012). [PubMed: 23128226] 

3. Consortium GT The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580–585 (2013). 
[PubMed: 23715323] 

4. Lappalainen T et al. Transcriptome and genome sequencing uncovers functional variation in 
humans. Nature 501, 506–511 (2013). [PubMed: 24037378] 

5. t Hoen PA et al. Reproducibility of high-throughput mRNA and small RNA sequencing across 
laboratories. Nat Biotechnol 31, 1015–1022 (2013). [PubMed: 24037425] 

6. Sanders SJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated 
with autism. Nature 485, 237–241 (2012). [PubMed: 22495306] 

7. Krumm N et al. Excess of rare, inherited truncating mutations in autism. Nat Genet 47, 582–588 
(2015). [PubMed: 25961944] 

8. Leinonen R, Sugawara H, Shumway M & International Nucleotide Sequence Database, C. The 
sequence read archive. Nucleic Acids Res 39, D19–21 (2011). [PubMed: 21062823] 

9. Lander ES et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). 
[PubMed: 11237011] 

10. Sherry ST et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 29, 308–
311 (2001). [PubMed: 11125122] 

11. Lappalainen I et al. DbVar and DGVa: public archives for genomic structural variation. Nucleic 
Acids Res 41, D936–941 (2013). [PubMed: 23193291] 

12. Burrows MW, D. J. A block sorting lossless data compression algorithm. Digital Equipment 
Corporation (1994).

13. Ferragina P. M. G. Opportunistic data structures with applications; Proceedings 41st Annual 
Symposium on Foundations of Computer Science; 2000. 

14. Li R, Li Y, Kristiansen K & Wang J SOAP: short oligonucleotide alignment program. 
Bioinformatics 24, 713–714 (2008). [PubMed: 18227114] 

15. Langmead B, Trapnell C, Pop M & Salzberg SL Ultrafast and memory-efficient alignment of short 
DNA sequences to the human genome. Genome Biol 10, R25 (2009). [PubMed: 19261174] 

16. Li H & Durbin R Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754–1760 (2009). [PubMed: 19451168] 

17. Kent WJ BLAT--the BLAST-like alignment tool. Genome Res 12, 656–664 (2002). [PubMed: 
11932250] 

18. Li H, Ruan J & Durbin R Mapping short DNA sequencing reads and calling variants using 
mapping quality scores. Genome Res 18, 1851–1858 (2008). [PubMed: 18714091] 

19. Garrison E et al. Variation graph toolkit improves read mapping by representing genetic variation 
in the reference. Nat Biotechnol 36, 875–879 (2018). [PubMed: 30125266] 

20. Rakocevic G et al. Fast and accurate genomic analyses using genome graphs. Nat Genet 51, 354–
362 (2019). [PubMed: 30643257] 

21. Green RE et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010). 
[PubMed: 20448178] 

22. Lunter G & Goodson M Stampy: a statistical algorithm for sensitive and fast mapping of Illumina 
sequence reads. Genome Res 21, 936–939 (2011). [PubMed: 20980556] 

23. Degner JF et al. Effect of read-mapping biases on detecting allele-specific expression from RNA-
sequencing data. Bioinformatics 25, 3207–3212 (2009). [PubMed: 19808877] 

24. Siren J, Valimaki N & Makinen V Indexing Graphs for Path Queries with Applications in Genome 
Research. Ieee-Acm Transactions on Computational Biology and Bioinformatics 11, 375–388 
(2014). [PubMed: 26355784] 

25. Kim D, Langmead B & Salzberg SL HISAT: a fast spliced aligner with low memory requirements. 
Nat Methods 12, 357–360 (2015). [PubMed: 25751142] 

26. Robinson J et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 
43, D423–431 (2015). [PubMed: 25414341] 

27. Hares DR Expanding the CODIS core loci in the United States. Forensic Sci Int Genet 6, e52–54 
(2012). [PubMed: 21543275] 

Kim et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Luo R et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo 
assembler. Gigascience 1, 18 (2012). [PubMed: 23587118] 

29. Compeau PE, Pevzner PA & Tesler G How to apply de Bruijn graphs to genome assembly. Nat 
Biotechnol 29, 987–991 (2011). [PubMed: 22068540] 

30. Li H Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 
1303.3997 (2013).

31. Langmead B & Salzberg SL Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 
(2012). [PubMed: 22388286] 

32. Eberle MA et al. A reference data set of 5.4 million phased human variants validated by genetic 
inheritance from sequencing a three-generation 17-member pedigree. Genome Res 27, 157–164 
(2017). [PubMed: 27903644] 

33. Erlich RL et al. Next-generation sequencing for HLA typing of class I loci. BMC Genomics 12, 42 
(2011). [PubMed: 21244689] 

34. Lee H & Kingsford C Kourami: graph-guided assembly for novel human leukocyte antigen allele 
discovery. Genome Biol 19, 16 (2018). [PubMed: 29415772] 

35. Major E, Rigo K, Hague T, Berces A & Juhos S HLA typing from 1000 genomes whole genome 
and whole exome illumina data. PLoS One 8, e78410 (2013). [PubMed: 24223151] 

36. Kessler MD et al. Challenges and disparities in the application of personalized genomic medicine 
to populations with African ancestry. Nat Commun 7, 12521 (2016). [PubMed: 27725664] 

37. Danecek P et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). 
[PubMed: 21653522] 

38. Li H Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. 
Bioinformatics 32, 2103–2110 (2016). [PubMed: 27153593] 

39. Pachter L Models for transcript quantification from RNA-Seq. arXiv (2011).

40. Kim D, Song L, Breitwieser FP & Salzberg SL Centrifuge: rapid and sensitive classification of 
metagenomic sequences. Genome Res (2016).

Kim et al. Page 16

Nat Biotechnol. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Graph representation of indels and mutations and its tabular representation. Starting with a 

6-bp reference sequence, GAGCTG (a), the lower graph (b) incorporates three variants: a 

single nucleotide variant (A/T), a 1-bp deletion (T), and a 1-bp insertion (A). A prefix-sorted 

graph of the graph (c) has 11 nodes and 14 edges. Each node has a unique numerical node 

ID shown in blue to indicate its lexicographical order (1 being the first) with respect to the 

other nodes in the graph. The node labeled with ‘Z’ demarcates the end of the reference 

sequence. The table on the right (d) has two columns under Outgoing edge(s) that show the 

node IDs and their labels repeated according to the number of their outgoing edges (i.e. node 

3, labeled C, is repeated three times with 3 outgoing edges to nodes 7, 8, and 10, 

respectively). The table has two columns under Incoming edge(s) that show the node IDs 

and the 14 labels for the preceding nodes (i.e. G is the preceding label for node 1, A and T 

for node 5). The table is more compact in memory usage than the graph representation.
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Figure 2. 
Overview of HISAT2’s indexes and alignment output

(a) Hierarchical indexing in the hierarchical graph FM index (HGFM). Hierarchical 

indexing consists of two types of indexes: (1) a global index that represents the entire human 

genome and (2) 55,172 overlapping local indexes that collectively cover the genome plus all 

variants. When both are graph FM indexes, a genome plus a large collection of variants can 

be searched simultaneously. (b) A repeat index represents genomic sequences that are 

identical. (c) A read matching repeat sequences (e.g., Read3 and Read4) is aligned to just 

one location (the repeat sequence). (d) The corresponding genomic locations of repeat 

aligned reads are retrieved via APIs.
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Figure 3. 
Construction of the Graph Human Reference, i.e. a Genotype Genome. The figure illustrates 

how HISAT-genotype extends the human reference genome (GRCh38) by incorporating 

known genomic variants from several well-studied genes, DNA fingerprinting loci, and 

common small variants (i.e. variants with minor allele frequencies of ≥1%) from the dbSNP 

database. In a, the process begins with analyzing information found in the selected databases 

to construct consensus sequences. The IMGT/HLA database includes over 15,500 allele 

sequences for 26 HLA genes. A consensus sequence for each HLA gene is constructed 

based on the most frequent bases that occur in each position of the multiple sequence 

alignments. The NIST STRBase database contains allele sequences for 13 DNA 

fingerprinting loci. Because the sequences of the 13 loci are short tandem repeats, HISAT-

genotype chooses the longest allele for each locus as a consensus sequence. In b, the human 

reference is extended by replacing the HLA genes and 13 DNA fingerprinting loci with their 

consensus sequences. In c, the known genomic variants are then incorporated into the 

extended references using HISAT2’s graph data structure. Common small variants from 

dbSNP such as single nucleotide polymorphisms, deletions, and insertions, are also 

incorporated into the extended reference. In HISAT-genotype this graph reference is called a 

Genotype genome.
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Figure 4. 
HISAT-genotype’s assembly of two HLA-A alleles through a guided k-mer assembly graph

The figure shows an abridged example of HISAT-genotype’s assembly output – see 

Supplementary File 1 for the full assembly output for NA12878. The first two bands are two 

alleles predicted by HISAT-genotype, in this case A*01:01:01:01 in dark green and 

A*11:01:01:01 in dark yellow. Each blue stripe indicates where there is a specific genomic 

variant with respect to the consensus sequence of the HLA-A gene. (a) Shorter bands 

indicating read alignments whose color is determined according to their degree of 

compatibility with either of the initially predicted alleles. Reads equally compatible with 

both alleles are shown in white. Some reads can be locally aligned, i.e. aligned to virtually 

the same location with just different variants, such as when reads are aligned with or without 

deletions near their ends, displayed here in gray. (b) Since the two predicted (in fact true/

known) alleles share a large common sequence, read pair information is insufficient to fully 

separate the alleles. HISAT-genotype splits aligned reads into fixed length k-mers. In this 

simplified case, reads are 5 nucleotides long and k is 3. A pair of reads are aligned at the 3rd 

location and the 10th location of the graph representation for the HLA gene, respectively. 

When reads have divergent k-mers, the graph has a corresponding number of branches. One 

path traversing the graph from left to right constitutes one potential allele sequence. We call 

this a guided k-mer assembly graph, with guided emphasizing that k-mers are placed 

according to their aligned locations. The algorithmic details are given in the main text. (c) In 

addition, HISAT-genotype uses the predicted alleles to enable full-length assembly of both.
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Figure 5. 
Comparisons of HISAT2, Bowtie2, BWA-mem, and VG using 10 million simulated read 

pairs that include SNPs

Alignment sensitivity is defined as the number of correctly aligned read pairs divided by the 

total number of read pairs.

C: alignment sensitivity calculated based on any one of multiple alignments being correct.

UC: alignment sensitivity calculated based on pairs being uniquely aligned.

SC: alignment sensitivity similar to C, but calculated only for pairs with at least one read 

that includes one or more SNPs.

SUC: alignment sensitivity similar to UC, but calculated only for pairs with at least one read 

that includes one or more SNPs.

PPS: number of pairs processed per second.

The suffixes followed by program names stand for as follows: D for default alignment 

settings, S for sensitive alignment settings, L for linear genome alignment, and G for graph 

genome alignment.

We ran the programs on the same computer as described in Supplementary Table 7.
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Figure 6. 
A novel HLA-A allele identified with strong computational evidence. This figure shows an 

abridged example of HISAT-genotype's assembly output. At the top are shown the two 

initially predicted alleles, which are the best matches of the data to previously-known HLA-

A alleles. The green assembled allele at the bottom, which was generated de novo by 

HISAT-genotype’s assembler, has one variant different from the predicted allele, 

A*24:02:01:01. Two reads shown in green support the variant. See Supplementary File 6. for 

more detailed output from a similar case found in LP6005093-DNA_E03 (a CAAPA 

genome) at the 2,780th base.
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Table 1.

Concordance between HISAT-genotype and Omixon on HLA-typing of 917 genomes from the CAAPA 

(Consortium on Asthma among African-ancestry Populations in the Americas) collection. Concordance is 

calculated as the total number of alleles matched between both programs divided by the total number of 

alleles. For example, for the HLA-A gene, HISAT-genotype and Omixon agree on the allele group (the first 

number of the HLA type) for both alleles for 913 genomes, agree on one allele for 4 genomes, and agree on no 

alleles for 0 genomes. Thus, the concordance for HLA-A is 0.998 = (913 × 2 + 4) / (917 × 2). HISAT-genotype 

reports HLA types with all four fields specified (e.g., A*24:02:01:01), while Omixon reports HLA types with 

either two numbers (e.g. A*69:01) or three numbers (A*24:02:01); therefore matches were evaluated using 

only the first two numbers.

First number (e.g., A*01) First and second numbers (e.g., A*01:01)

Both
alleles

matched

One
allele

matched

No
allele

matched

Concordance Both
alleles

matched

One
allele

matched

No
allele

matched

Concordance

HLA-A 913 4 0 0.998 883 33 1 0.981

HLA-B 911 6 0 0.997 877 40 0 0.978

HLA-C 915 2 0 0.999 880 34 3 0.978

HLA-DQA1 884 33 0 0.982 868 45 4 0.971

HLA-DQB1 917 0 0 1 753 164 0 0.911

HLA-DRB1 861 56 0 0.97 698 205 14 0.873
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