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Abstract 

While inhibition of T cell co-inhibitory receptors has revolutionized cancer therapy, the 

mechanisms governing their expression on human T cells have not been elucidated. Type 1 

interferon (IFN-I) modulates T cell immunity in viral infection, autoimmunity, and cancer, and 

may facilitate induction of T cell exhaustion in chronic viral infection1,2. Here we show that IFN-I 

regulates co-inhibitory receptors expression on human T cells, inducing PD-1/TIM-3/LAG-3 

while surprisingly inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I 

responses enabled the construction of dynamic transcriptional regulatory networks uncovering 

three temporal transcriptional waves. Perturbation of key transcription factors on human primary 

T cells revealed both canonical and non-canonical IFN-I transcriptional regulators, and identified 

unique regulators that control expression of co-inhibitory receptors. To provide direct in vivo 

evidence for the role of IFN-I on co-inhibitory receptors, we then performed single cell RNA-

sequencing in subjects infected with SARS-CoV-2, where viral load was strongly associated 

with T cell IFN-I signatures. We found that the dynamic IFN-I response in vitro closely mirrored 

T cell features with acute IFN-I linked viral infection, with high LAG3 and decreased TIGIT 

expression. Finally, our gene regulatory network identified SP140 as a key regulator for 

differential LAG3 and TIGIT expression. The construction of co-inhibitory regulatory networks 

induced by IFN-I with identification of unique transcription factors controlling their expression 

may provide targets for enhancement of immunotherapy in cancer, infectious diseases, and 

autoimmunity. 
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Main  

Immune checkpoint blockade targeting T cell co-inhibitory receptors has revolutionized cancer 

treatment. While signals such as IL-27 are associated with T cell expression of co-inhibitory 

receptors, in mice3,4, the regulatory mechanisms of co-inhibitory receptors induction in human T 

cells are still unknown. Type 1 interferon (IFN-I) are induced during chronic viral infection, 

autoimmunity, and cancer5-7, and accumulating evidence suggests that IFN-I may have 

immunomodulatory function beyond their conventional role of promoting generation of effector T 

cells8-11. Notably, continuous exposure to IFN-I is implicated to promote T cell exhaustion, which 

is marked by aberrant expression of co-inhibitory receptors (i.e. PD-1, TIM-3, LAG-3, and TIGIT) 

in chronic viral infection and cancer11-16. However, whether IFN-I facilitates induction of immune 

checkpoint molecules and T cell function, directly or indirectly, has not been investigated.  

 

The impact of IFN-β on co-inhibitory receptors in human T cells  

We have previously identified IL-27 as a crucial cytokine that promotes the induction of a co-

inhibitory receptor module, with T cell exhaustion in a murine tumor models3. Several reports 

have suggested that IL-27 functions downstream of IFN-β17, which is a major component of the 

IFN-I family. Thus, we hypothesized that IFN-β facilitates the induction of co-inhibitory receptors 

in humans. We first assessed the effect of IL-27 and IFN-β on induction of core co-inhibitory 

receptors (TIM-3, LAG-3, PD-1, and TIGIT) in vitro using human primary naïve CD4+ and CD8+ 

T cells (Supplementary Figure 1a). Both IL-27 and IFN-β promoted significantly higher TIM-3 

expression compared to control condition without addition of exogenous cytokines. Of note, IFN-

β induced more LAG-3 and TIM-3 expression compared to IL-27 in both CD4+ and CD8+ T cells 

(Figure 1a, b, Supplementary Figure 1b). Unexpectedly, both IL-27 and IFN-β suppressed the 

expression of TIGIT in CD4+ and CD8+ T cells (Supplementary Figure 1c). We also observed 

the increased production of IL-10 by IFN-β; however, IL-10 induction by IL-27 was modest in our 
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in vitro culture settings, which may reflect the difference between mouse and human T cell 

responses toward IL-27 stimulation (Supplementary Figure 1d). To determine whether these 

observations stemmed from the effect of IFN-β on cellular proliferation, we performed a 

proliferation assay using cell trace violet dye. We found there was no differences in cellular 

division in naïve CD4+ T cells between control and the IFN-β condition. Additionally, there was 

even less proliferation of memory CD4+ T cells in the IFN-β condition, indicating that the 

induction of co-inhibitory receptors by IFN-β is not driven by a state of higher proliferation in T 

cells (Supplementary Figure 2), consistent with previous studies18,19. We further determined the 

impact of IFN-β treatment on gene expression kinetics for co-inhibitory receptors by qPCR. 

Gene expression dynamics for core co-inhibitory receptors (HAVCR2, LAG3, PDCD1) were 

upregulated by IFN-β for most time points. In contrast TIGIT was downregulated, which was 

confirmed by protein expression using flow cytometry (Figure 1c, d). We examined the 

expression of other co-inhibitory receptors, and found IFN-β induced co-expression of multiple 

co-inhibitory receptors (e.g. HAVCR2, PDCD1, LAG3), but inhibited expression of others (TIGIT, 

CD160, BTLA) (Figure 1e). Collectively, these data elucidate a role for IFN-β as a cytokine that 

can directly control multiple co-inhibitory receptors in both human CD4+ and CD8+ T cells in vitro.  

 

Transcriptomic dynamics of IFN-β response at high temporal-resolution 

To uncover the regulatory mechanisms underlying the IFN-β response in human primary T cells, 

we generated a transcriptional profile at high temporal resolution. We used bulk mRNA-seq at 

ten time points along a 96-hour time course with and without IFN-β treatment (Supplementary 

Figure 3a). To avoid inter-individual variation, we selected one healthy subject whose T cells 

exhibited a stable response to IFN-β, and repeated the experiment three times at a two-week 

interval for each experiment. We identified 1,831 (for CD4+ T cells) and 1,571 (for CD8+ T cells) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.30.362947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.30.362947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5

differentially expressed genes (DEGs) across time points with IFN-β treatment, revealing a 

temporal shift of gene expression patterns in both CD4+ and CD8+ T cells (Figure 2a, 

Supplementary Figure 3b, Methods). The genome-wide transcriptional profiles from three 

independent experiments demonstrated highly replicative results across time points (Figure 2b). 

Specifically, three transcriptional waves were observed during 96 hours of IFN-β response: early 

phase (1-2h), intermediate phase (4-16h), and late phase (48-96h). As expected, we observed 

abundant induction of classical IFN stimulated genes (ISGs) (i.e., IFI6, MX1/2, RSAD2, 

STAT1/2/3, SP100/110/140), which peaked at the early-intermediate phase. IFN-I induced 

cytokines produced by T cells (IFNG, IL10, GZMB, PRF1) were also upregulated at 

intermediate-late phase (Figure 2c, Supplementary Figure 3c). Interestingly, OSM, which is 

reported to amplify IFN-β response and suppress Th17 differentiation20, was significantly 

induced by IFN-β from the early phase, and maintained induction in all time points 

(Supplementary Figure 3c). Among DEGs, we identified dynamic expression of 134 TFs for 

CD4+ T cells and 100 TFs for CD8+ T cells, which were both up- and down-regulated over the 

course of differentiation (Figure 2c).  

 

Lentiviral shRNA based genetic perturbation 

To narrow the list of TFs for perturbation, we prioritized TFs that are differentially expressed in 

both CD4+ and CD8+ T cells. We then further selected TFs associated with: 1) human tumor 

infiltrating T cells (TILs)21-24; 2) HIV specific T cell signature in progressive patients25; and 3) IL-

27 driven co-inhibitory regulators3 (see Methods). We confirmed that these TFs are identified as 

interferon stimulated genes (ISGs) in human immune cells by the Interferome dataset26 (Figure 

3a). In total, 31 TFs were listed as candidates based on the overlap between ISG, TIL and IL-27 

signatures and we chose 19 of them for perturbation. Since TCF-1 (encoded by TCF7) and 

Blimp-1 (encoded by PRDM1) are known to express functionally distinct isoforms, we also 
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targeted a unique sequence for the long isoforms (TCF7L and PRDM1L, respectively), resulting 

in perturbation of 21 different targets in total. 

Considering the majority of these regulators are induced at the early (1-2h) and 

intermediate (4-16h) phases, it was important to perform gene deletion prior to T cell receptor 

activation. For human primary T cells gene knockdown, we adopted lentiviral delivery of 

shRNAs with lentiviral gene product X (Vpx) containing virus-like particles (VLPs) system to 

efficiently transduce lentivirus into unstimulated primary human naïve T cells27,28 (Figure 3b). 

Spinoculation with Vpx-VLPs significantly increased the number of GFP expressing T cells 

(~30-60%) compared to normal LV particle transduction without Vpx-VLPs (~1-5%), and 

resulted in successful transduction of lentiviral vectors into non-blasting/quiescent cells 

(Supplementary Figure 4a). We achieved efficient knockdown of at least 60% gene expression 

for 21 target TFs in human naïve CD4+ T cells (Figure 3c).  

To identify the effect of perturbation for each regulator, Principal Component 

Analysis (PCA) was applied to changes in RNA expression associated with each transcription 

factor knock down (Figure 3d). PC1 divided the impact of perturbation into two modules of 

regulators; BATF, MAF, ETS2, HOPX, SP140, BCL3, ID3, and BATF3 constitute ‘IFN-I regulator 

module 1’, and IRF1, IRF2, IRF4, STAT1, STAT3, ARID5A, ARID5B, TCF7, PRDM1, PRDM1L, 

KLF5, and TCF7L constitute a distinct ‘IFN-I regulator module 2’. To visualize the contribution of 

the selected genes to the PCs and the directionality of the contribution, a PCA biplot analysis 

was adopted. We found that ISGs are divided into two groups; classical ISGs that are correlated 

with ‘IFN-I regulator module 1’ (depicted in green arrows in Figure 3e), and ISGs that are 

correlated with ‘IFN-I regulator module 2’ (depicted in orange arrows in Figure 3e), which is 

predominantly in PC1. These results suggest that ISGs are bi-directionally regulated by different 

modules of TFs (Supplementary Figure 4b). Furthermore, these modules contributed differently 

to the regulation of co-inhibitory receptors; TIGIT, CD160, BTLA as one module and LAG3, 

HAVCR2, PDCD1 as another module (Figure 3f, Supplementary Figure 4c). Within ‘IFN-I 
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regulator module 1’, STAT3 positively regulated HAVCR2 but not LAG3 and PDCD1 expression, 

which is predominantly contributed by PC2 in the biplot (Figure 3f). Taken together, our 

perturbation with Vpx-VLP system elucidated two distinct TF modules simultaneously regulating 

opposing IFN-I target genes, which sheds light on the central roles of non-canonical IFN-I 

induced regulators in human T cells.   

 

Dynamic transcriptional regulatory network of IFN-β response 

To characterize the impact of differentially expressed transcription factors (DETFs) in response 

to IFN-β, we generated transcriptional regulatory networks describing TFs and their target 

genes for each of the transcriptional waves identified (Figure 4a, Methods). When comparing 

the three regulatory networks, early and late networks had similar numbers of TFs (46 and 42 

TFs, respectively), while the intermediate network contained 73 TFs (Figure 4b, top). 

Interestingly, the ratio between up and down-regulated TFs differs between the three regulatory 

waves. The early and intermediate network contained more up-regulated TFs than down-

regulated TFs; in contrast, the late network had more down-regulated than up-regulated TFs. 

Thus, IFN-I induced differentiation involves dominance of up-regulated TFs in the first 16 hours, 

replaced by the dominance of down-regulated TFs after 48 hours. We next ranked the TFs 

based on the enrichment of their target genes and their centrality in the networks (Methods), 

highlighting the significance of each TF to the network (Figure 4b, middle). In the early 

regulatory network, MYC and CDKN1B/KDM5B were among the most dominant up and down-

regulated TFs, respectively, in this transcriptional wave. These data indicate that T cell 

metabolic activation, cell cycle regulation, and transcriptional activation are promoted by IFN-

β treatment29,30. Interestingly, FLI1, which is novel as a IFN-I downstream TF and was recently 

reported to control effector response in T cells31, also dominantly regulated the early 

transcriptional wave. In the intermediate regulatory network, MYC, MAF, IRF1, AFF1, ATF3, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.30.362947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.30.362947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 8

and TBX21 were among the most dominant up-regulated TFs for this transcriptional wave. In 

the late network, effector function related regulators are upregulated (PRDM1, RUNX2, MAF, 

BCL3); in contrast, the TFs associated with Treg differentiation and maintenance (STAT5A, 

FOXP1, MYB) were down-regulated, suggesting the skewed differentiation toward effector-like 

signature. 

To further study the relationships between the DETFs, we generated hierarchical backbone 

networks in order to represent their relationships (Figure 4b, bottom). Interestingly, the top TFs 

in all transcriptional time waves were down-regulated in response to IFN-β, while TFs lower in 

the network hierarchy were more up-regulated. A few examples from the early transcriptional 

wave hierarchical backbone include CDKN1B and MAZ, which appeared at the top of the 

hierarchy, whereas KLF5, MYC, and FLI1 were lower in the hierarchy. It was of interest that 

these TFs were also highly dominant in the regulatory network. These data suggest that loss of 

suppression of TFs at higher hierarchy triggers the activation of downstream effector TFs under 

IFN-I response, which was also observed in the intermediate and late regulatory network. The 

elucidation of this backbone network enables us to shed light on the regulatory interactions 

within each component of the transcriptional network, providing further depth to the extent of 

interactions within the network. 

While T cell differentiation under IFN-β is characterized by three major transcriptional 

waves, we hypothesized that there are key TFs that bridge each wave to the next. To this end, 

we specifically identified TFs that participate in more than one of these transcriptional waves, 

and termed these ‘Bridging TFs’ (Figure 4c). Examples of dominant ‘Bridging TFs’ between 

early and intermediate waves include KLF5 and STAT2. Examples of intermediate to late waves 

include MAF, PRDM1, and MYB. Finally, there are TFs that were upregulated throughout the 

entire differentiation; such as STAT1, HIF1A, and TBX21. Generally, ‘Bridging TFs’ tend to be 

more dominant than other TFs; thus, it is possible that ‘Bridging TFs’ play an important role in 
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the transition between different transcriptional waves. Indeed, our perturbation experiment 

demonstrated the critical roles of those ‘Bridging TFs’ in the regulation of ISGs and co-inhibitory 

receptors (Figure 4c). Our computational analysis revealed the temporal dynamics of complex 

regulatory interactions during the IFN-I response and highlighted the usefulness of our approach 

in discovering this new aspect of IFN-I induced transcriptional regulation.  

 

In vivo validation of regulatory modules controlling IFN-I/co-inhibitory receptors axis in 

human T cells 

As it was important to provide direct in vivo evidence for the role of IFN-I on T cell co-inhibitory 

receptor expression, we sought to validate our regulatory network in the human setting where 

the IFN-I response of T cells is induced acutely. As acute viral infections are strongly associated 

with IFN-I responses, we examined a number of clinical models where viral infection is closely 

linked to IFN-I T cell response. We found that our analysis of single cell RNA seq (scRNA-seq) 

analysis of T cells in COVID-19 patients revealed an extremely high correlation between viral 

load and IFN-I score (r=0.8) and time difference between paired samples and the respective 

change in IFN-I score (r=0.97)32, providing a unique opportunity to generate a rich dataset to 

determine whether the in vitro T cell response to IFN-I can be validated during an acute viral 

human infection strongly associated with a IFN-I signal.   

By using our scRNA-seq data, we subclustered T cell populations into 13 subpopulations 

and identified five CD4+ T cell and five CD8+ T cell subsets (Figure 5a, Supplementary Figure 5a, 

b). We first focused on total CD4+ T cells and CD8+ T cells and confirmed that the IFN-I 

response signature is higher in progressive patients who required admission to the ICU and 

eventually succumbed to the disease (Figure 5b). Expression of co-inhibitory receptors differed 

across disease conditions, but the trend was conserved between CD4+ and CD8+ T cells. We 

observed a strikingly similar pattern of co-inhibitory receptor expression with IFN-I stimulation in 
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vitro and in vivo. Indeed, we observed the upregulation of ‘IFN-I up co-inhibitory receptors’ 

(LAG3/HAVCR2) and the downregulation of ‘IFN-I down co-inhibitory receptors’ 

(TIGIT/LAIR1/SLAMF6) in T cells from COVID-19 patients (Figure 5c, d). As expected, ‘IFN-I up 

co-inhibitory receptors’ were positively correlated with canonical ISGs expression, but ‘IFN-I 

down co-inhibitory receptors’ were not, suggesting that there are different regulatory 

mechanisms dictating co-inhibitory receptor expression patterns (Figure 5e). Next, we 

investigated which subpopulation of CD4+ and CD8+ T cells is more affected by the IFN-I 

response, and computed the IFN-I score across subpopulations for each T cell subtype in 

COVID-19 patients (Figure 5f). Within the subpopulations that exhibited higher IFN-I scores, 

dividing CD4+/CD8+ T cells and ISG+ CD8+ T cells were uniquely increased in COVID-19 

patients, particularly in severe patients32,36. Moreover, these subpopulations and effector T cells 

expressed higher level of co-inhibitory receptors and ‘IFN-I regulator module-1’ compared to the 

other subpopulations (Figure 5g, Supplementary Figure 5c).  

We then examined which subpopulations were more enriched in the three transcriptional 

waves of IFN-I response. DEGs specific for each wave were used to compute the scores for the 

CD4+ and CD8+ T cell subpopulations in COVID-19 patients (Table 1, Methods). We found that 

T cells induced in vitro with IFN-I strongly mirrored the intermediate wave score on dividing 

CD4+ and CD8+ T cells, and the late wave score on effector CD4+ T cells and ISG+ 

CD8+/effector CD8+ T cells (Figure 5h) in COVID-19 patients. Given that expansion of dividing 

CD4+/CD8+ T cells are a unique characteristic of COVID-19 patients, we applied the 

intermediate phase IFN-I regulatory network with the dividing CD4+ T cell gene expression 

signature to examine the relationships between regulators and target genes in this 

subpopulation. This analysis highlights the regulators that function in establishing the 

characteristics of the dividing CD4+ T cell population under IFN-I response in vivo 

(Supplementary Figure 5d). As LAG-3 is the most upregulated co-inhibitory receptor in the 
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dividing CD4+ T cell population, we utilized the network analysis to elucidate the specific 

regulation of LAG3 and TIGIT that were regulated in an opposite manner under IFN-I response 

both in vivo (Figure 5c, d) and in vitro (Figure 1). Analysis of the intermediate wave gene 

regulatory network demonstrated that SP140 is a bi-directional regulator for LAG3 and TIGIT 

under IFN-I response, which is supported by the observation in COVID-19 patients, where 

elevated SP140 and LAG3 but decreased TIGIT expression were demonstrated (Figure 5c, d, i, 

j, Supplementary Figure 5c). In addition, the late wave network demonstrated the complex 

interaction of regulators for LAG3, HAVCR2, and PDCD1, in which BCL3 and STAT3 are 

highlighted as validated positive regulators on LAG3 and HAVCR2 respectively (Figure 5k). 

Importantly, both BCL3 and STAT3 were highly elevated in T cells in COVID-19 patients (Figure 

5j). This can be highly relevant to effector T cells development under acute viral infection in 

which those co-inhibitory receptors play critical role on regulating effector function33 and, of note, 

the late wave signature was enriched in effector T cells in COVID-19 (Figure 5h). These findings 

strongly suggest that in vitro regulatory network can be utilized as a strong tool to explore 

human acute viral response in vivo.  

 

Discussion 

Here, our systematic, computational and biological approach identifies IFN-I as a major driver of 

co-inhibitory receptor regulation in human T cells. While classical ISG induction has been 

extensively studied, those investigations have focused primarily on the canonical JAK-STAT 

pathway downstream of IFN-I receptor. Given that IFN-I exhibits multiple functions in context-

dependent roles, a more complex understanding of the IFN-I response beyond this canonical 

pathway with a more extensive analysis of ISG transcriptional regulation in T cells is critical for 

elucidating the mechanism of co-inhibitory receptor regulation.  
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In these studies, we build a dynamic gene regulatory network that controls IFN-I response, 

and identified key regulatory modules of ISG transcription in T cell responses to IFN-β. Our 

approach unveiled two mutually antagonistic modules of ISG regulators, which, when acting 

concordantly, may explain how the harmonized IFN-I induced T cell response is achieved. 

Within the two modules, we highlighted SP140 as a potential regulator that controls LAG3 and 

TIGIT in an opposing manner, and STAT3 as a unique positive regulator for TIM-3. These 

findings provide novel insight into the landscape of the ISG transcriptional network, and sheds 

light on the large contribution of the noncanonical IFN-I pathway during IFN-I response in T 

cells34-36. Although the newly identified regulators (e.g. SP140, BCL3) in this study are not 

necessarily directly downstream of the conventional JAK/STAT pathway and may act differently 

depending on the context, they are nevertheless attractive targets for manipulation of specific 

downstream functional molecules such as co-inhibitory receptors in T cells.   

We demonstrate the relevance of our in vitro T cell IFN-I response by integrating scRNA-

seq from COVID-19 patients, where a predominant T cell IFN-I response was observed. 

Intriguingly, the expression pattern of co-inhibitory receptors on T cells in vitro are highly 

replicated in severe COVID-19 cases, and classical ISGs were well correlated with one module 

of co-inhibitory receptors (LAG3/PDCD1/HAVCR2), but not with the other modules 

(TIGIT/CD160/BTLA/LAIR1). While dynamics of IFN-I on T cells from COVID-19 patients should 

be taken into account with higher temporal profiling, we confirmed that the IFN-I response was 

clearly reduced at a later time point; thus, our data based on earlier collection of blood should 

reflect the active ISG transcriptomics during human acute viral response. Given the IFN-I 

response has been shown to contribute to chronic viral infection and cancer, the novel 

regulators we identified can be examined in these diseases. Further investigations of factors 

that characterize acute viral infections is likely to differ from chronic viral infections and will be of 

interest to explore in the context of long-term human infections not well modeled by COVID-19. 
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In conclusion, our systems biology approach identifies the cytokine signals and regulatory 

mechanisms that drive expression of co-inhibitory receptors in humans, and provides a pathway 

to comprehensively capture the dynamics of their expression in humans. Our results will also 

advance the understanding of the host immune response to a variety of viral infections, and 

could serve as a resource for mining of existing datasets. Uncovering novel ISG regulators 

controlling co-inhibitory receptors will create a foundation for further development of new 

therapeutics for a multitude of different malignant and infectious diseases.  
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Figure legends 

 

Figure 1 

IFN-β differently regulates LAG-3, TIM-3, PD-1 and TIGIT in human T cells 

Effects of IFN-β on LAG-3, TIM-3, PD-1, and TIGIT expression on human naïve CD4+ and CD8+ 

T cells cultured with anti-CD3/CD28 for 96h in the absence (Control) or with 500 U/ml IFN-β 

(IFN-β). a, Representative histograms of flow cytometry analysis (left), quantitative expression 

for LAG-3, TIM-3, and PD-1 expression on naïve CD4+ T cells (n = 6 - 8) (right). b, 

Representative contour plots of flow cytometry analysis on surface LAG-3, TIM-3, and PD-1 

(left), quantitative analysis for LAG-3, TIM-3, and PD-1 triple-positive cells in naïve CD4+ T cells 

(n = 8) (right). c, Gene expression kinetics of LAG3, HAVCR2, PDCD1, and TIGIT quantified by 

qPCR with 13 timepoints in naïve CD4+ T cells. Average expression values from two subjects 

are plotted. d, IFN-β induces LAG-3 but suppresses TIGIT expression on human naïve CD4+ 

and CD8+ T cells. Representative contour plots of flow cytometry analysis (left), quantitative 

analysis for TIGIT positive cells in naïve CD4+ T cells (n = 8) (right). e, Co-inhibitory receptors 

expression pattern under IFN-β treatment in naïve CD4+ T cells by qPCR (n = 4). Red and blue 

bars represent higher expression in IFN-β treatment and Control condition, respectively. Data 

was represented as mean +/- SD. **p < 0.01, ****p < 0.0001. Paired Student’s t test. 

 

Figure 2 

Three waves of dynamic transcriptomic changes by IFN-β in human T cells 

a, Gene expression profiles under IFN-β treatment in naïve CD4+ and CD8+ T cells. Differential 

expression of gene levels for eight time points with IFN-β stimulation (log2(expression)) are 

shown in heatmap. Based on the expression kinetics, the genes are clustered into four 

categories: early, intermediate, late, and bimodal (up regulated at early and late phase). 
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Representative individual gene expression kinetics from each cluster are shown (mean+/- SD). 

b, Correlation matrix of global gene expression representing three transcriptional waves on 

CD4+ (left) and CD8+ (right) T cells: early (1-2h), intermediate (4-16h), and late (48-96h). Eight 

timepoints with three replicates are shown. c, Temporal transcriptional profiles of differentially 

expressed genes for four categories are shown; transcriptional regulators (transcription factors), 

ISGs, co-inhibitory receptors, and key T cell associated factors for CD4+ (left) and CD8+ (right) T 

cells. 

 

Figure 3 

Perturbation of key transcription factors in quiescent human T cells 

a, Characterization of candidate TFs for perturbation. Perturbed TFs are listed based on overlap 

between differentially expressed TFs of CD4+ T cells and CD8+ T cells. Human ISG score (top; 

blue), human TIL co-inhibitory receptors score (green), HIV specific T cell signature genes in 

progressive patients (yellow), and IL-27 driven co-inhibitory receptor regulators (orange) are 

shown for each TFs. b, Experimental workflow of Vpx-VLP supported lentiviral shRNA 

perturbation. Ex vivo isolated naïve CD4 T cells were transduced with Vpx-VLPs, followed by 

two times of lentiviral particle transduction before starting T cell activation. T cells were 

stimulated with anti-CD3/CD28 in the absence or presence of IFN-β (500 U/ml) for 96h and GFP 

positive cells were sorted by FACS. RNAs were extracted from sorted cells and applied for 

mRNA-seq. Perturbation for all 21 shRNAs are performed with human CD4+ T cells isolated 

from the same individual as in Figure 2. c, Gene knockdown efficiency is shown as relative 

expression over scramble shRNA transduced controls. Dotted line represents 60% of gene 

knockdown. d-f, PCA plots and biplots based on differentially expressed genes by perturbation. 

d, PCA plot demonstrating the two modules of TF regulators on perturbation with 21 TFs. 

Characterization of shRNA-based gene knockdown for each TF being plotted. Labels represent 

perturbed TF gene names. ‘IFN-I regulator module 1’ is colored in green and ‘IFN-I regulator 
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module 2’ is in orange. e, f, PCA biplot showing differential regulation by modules of regulator 

TFs; e, for ISGs and f, for co-inhibitory receptors. Orange and green arrows (vectors) are 

highlighting two groups of genes effected inversely by the different modules of TFs.     

 

Figure 4 

Transcriptional regulatory network under IFN-I response 

a, Overview of regulatory network generation. A scheme of the pipeline, in order to generate 

preliminary regulatory network is generated from integrating the gene expression kinetics data 

coupled with TF-target gene datasets. The key regulators’ perturbation data was further 

integrated to refine the preliminary network. b, In depth view of the transcriptional regulation at 

each wave. Top row; the representation of regulatory networks highlighting TFs interaction. The 

thicker and darker an edge is the more TF-target connections it represents. Target genes are 

represented by up and down hexagons, according to their regulatory response to IFN-β. Middle 

row; heatmaps representing a ranking of the TFs based on ‘Cent’ stands for centrality and ‘HG’ 

stands for hypergeometric test. Bottom row; hierarchical backbone networks. Red circles 

represent up-regulated TFs, blue circles represent down-regulated TFs. c, Dynamics of TFs 

regulation across the transcriptional waves. Each hexagon represents targets from each 

transcriptional wave. Green circles represent regulatory TFs which are differentially expressed 

only in one transcriptional wave they are connected to, while purple circles represent bridging 

TFs, which are DE in all transcriptional waves they are connected to. The thicker and darker an 

edge is, the more TF-target connections it represents. 

 

Figure 5 

Integration of IFN-I regulatory network with T cells signature in COVID-19  

a, UMAP representation of T cells from healthy control samples (n = 13) and COVID-19 

samples (n = 18). 13 subcluster were identified. b, IFN-I score for CD4+ and CD8+ T cells across 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.30.362947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.30.362947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 17

the three disease conditions. c, Heatmaps for co-inhibitory receptors expression in CD4+ and 

CD8+ T cells across the three disease conditions. d, Expression of key co-inhibitory receptors 

between control vs COVID-19 for CD4+ and CD8+ T cells. Average expression per subject for 

each gene is shown. *p < 0.05, **p < 0.01, ***p < 0.001. Kruskal-Wallis test. e, Correlation 

matrix of ISGs (dark gray) and co-inhibitory receptors (light gray) in CD4+ and CD8+ T cells in 

COVID-19 patients. f, IFN-I score for subsets of CD4+ and CD8+ T cells between control vs 

COVID-19. g, Heatmap showing co-inhibitory receptors expression for subsets of CD4+ and 

CD8+ T cells in COVID-19. h, Computed three transcriptional waves (early, intermediate, and 

late) score for the subsets of CD4+ and CD8+ T cells in COVID-19 patients. Scores were 

calculated based on upregulated DEGs of CD4+ and CD8+ T cells for each transcriptional wave. 

i, Regulatory relationship between regulators in intermediate phase network for LAG3 and TIGIT 

are shown. Positive regulation (TF to target) is highlighted in red and negative regulations in 

blue. j, Box plots showing expression of key regulators between control vs COVID-19 for CD4+ 

T cells. Average expression per subject for each gene is shown. *p < 0.05, **p < 0.01, ***p < 

0.001. Kruskal-Wallis test. k, Regulatory relationship between regulators in late phase network 

for LAG3, HAVCR2, and PDCD1 are shown. Positive regulation (TF to target) is highlighted in 

red. 
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Figure legends for Supplementary Figures 

Supplementary Figure 1 

a, FACS gating strategy for isolating naïve CD4+ and naïve CD8+ T cells. FACS isolated cells 

were immediately plated on 96 well round bottom plates coated with anti-CD3 (2 μg/ml) and 

soluble anti-CD28 (1μg/ml) in the absence or presence of human IL-27 (100 ng/ml) or IFN-β 

(500 U/ml). b, Representative histograms of surface expression of TIM-3, LAG-3, and PD-1 

assessed by flow cytometry at 72-96 hours after stimulation. Percent single positive cells for 

TIM-3, LAG-3, and PD-1 (left) and triple positive cells (right) are shown (n = 6-8). *p < 0.05, **p 

< 0.01, ****p < 0.0001. Two-way ANOVA or Repeated-measures one-way ANOVA with Tukey's 

multiple comparisons test. c, Representative dot plots of flow cytometry analysis for TIM-3 and 

TIGIT expression in naïve CD4+ and CD8+ T cells (left). Cells were treated as a, and analyzed at 

72 hours of culture. Percent TIGIT positive cells in naïve CD4+ T are shown (n = 8). *p < 0.05, 

**p < 0.01. Repeated-measures one-way ANOVA with Tukey's multiple comparisons test 

(middle). qPCR analysis of TIGIT expression over the time course (13 time points from 0 to 96 

hours). Each dot represents average expression of two independent individuals’ data (right). 

****p < 0.0001. One-way ANOVA with Tukey's multiple comparisons test. d, qPCR analysis of 

IL10 and IFNG expression over the time course (13 time points from 0 to 96 hours). Each dot 

represents average expression of two independent individuals’ data (left). IL-10 and IFN-γ 

production assessed by intracellular staining (right). Cells are treated as in a, and cytokines are 

stained intracellularly. Cytokine positive cells are detected by flow cytometry (n = 6). *p < 0.05, 

**p < 0.01. Repeated-measures one-way ANOVA with Tukey's multiple comparisons test.  

 

Supplementary Figure 2 

Representative plots for T cell proliferation assay using cell trace violet dye. Naive and memory 

CD4+ T cells were stimulated with anti-CD3 and anti-CD28 in the absence or presence of IFN-β. 
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TIM-3 expression and cellular proliferation were assessed at 24, 48, 72, and 96 hours after 

stimulation. Overlayed histogram for control and IFN-β condition were shown at right.    

 

Supplementary Figure 3 

a, Schematic experimental setup for high temporal resolution transcriptional profiling. b, 

Heatmap showing log fold change of differentially expressed genes expression between IFN-β 

and control Th0 condition at each timepoints for naive CD4+ (left) and CD8+ T cells (right). 

Genes are clustered based on the three transcriptional wave or bi-modal pattern. c, Line plots 

for IFI6, IFNG, LAG3, and OSM expression in naive CD4+ (left) and CD8+ T cells (right). 

 

Supplementary Figure 4 

a, Contour plots for total living cells and backgating analysis for GFP positive cells. Primary 

naïve CD4+ T cells were transduced with scramble shRNA control LV with or without Vpx-VLPs 

pre-transduction. Cells are collected at 96 hours after starting stimulation and analyzed by flow 

cytometry. b, c, Heatmaps showing the effect of TFs perturbation under IFN-β stimulation on 

ISGs (b) and co-inhibitory receptors (c). Values in the heatmap were normalized by subtractions 

of log10 fold change of scramble shRNA control over perturbed expression. The “+” sign 

indicates statistically significant effect with adjusted p value < 0.05 (details in Methods).  

 

Supplementary Figure 5 

a, b, UMAP representation of T cells from healthy control samples (n = 13) and COVID-19 

samples (n = 18) color coded by a, disease conditions and b, each individual. Cells from same 

individual were labeled as one subject code, which resulted in 10 individual codes shown in b. c, 

Heatmap showing the expression of DETFs for CD4+ and CD8+ T cells in each T cell subset. d, 

Bundled regulatory network showing interaction between regulators at intermediate phase and 
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transcriptional signature of dividing CD4+ T cells in COVID-19. Regulators at intermediate phase 

are marked with circles (red; upregulated TFs, blue; downregulated TFs), and genes that are 

differentially expressed in dividing CD4+ T cells in COVID-19 were marked with squares (light 

red; upregulated DEGs, light blue; downregulated DEGs). 
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Methods 

Study subjects 

Peripheral blood was drawn from healthy controls who were recruited as part of an Institutional 

Review Board (IRB)-approved study at Yale University, and written consent was obtained. All 

experiments conformed to the principles set out in the WMA Declaration of Helsinki and the 

Department of Health and Human Services Belmont Report. 

Human T cell isolation and culture 

Peripheral blood mononuclear cells (PBMCs) were prepared from whole blood by Ficoll gradient 

centrifugation (Lymphoprep, STEMCELL Technologies) and used directly for total T cell 

enrichment by negative magnetic selection using Easysep magnetic separation kits 

(STEMCELL Technologies). Cell suspension was stained with anti-CD4 (RPA-T4), anti-CD8 

(RPA-T8), anti-CD25 (clone 2A3), anti-CD45RO (UCHL1), anti-CD45RA (HI100) and anti-

CD127 (hIL-7R-M21, all from BD Biosciences) for 30 minutes at 4°C. Naïve CD4+ T cells 

(CD4+/CD25neg/CD127+/CD45ROneg/CD45RA+ ) and naïve CD8+ T cells 

(CD8++/CD25neg/CD127+/CD45ROneg/CD45RA+) were sorted on a FACSAria (BD Biosciences). 

Sorted cells were plated in 96-well round-bottom plates (Corning) and cultured in RPMI 1640 

medium supplemented with 5 % Human serum, 2 nM L-glutamine, 5 mM HEPES, and 100 U/ml 

penicillin, 100 μg/ml streptomycin, 0.5 mM sodium pyruvate, 0.05 mM nonessential amino acids, 

and 5% human AB serum (Gemini Bio-Products). Cells were seeded (30,000-50,000/wells) into 

wells pre-coated with anti-human CD3 (2 μg/ml, clone UCHT1, BD Biosciences) along with 

soluble anti-human CD28 (1μg/ml, clone 28.2, BD Biosciences) in the presence or absence of 

human IFN-β (500 U/ml: Pestka Biomedical Laboratories) or IL-27 (100 ng/ml: BioLegend) 

without adding IL-2.  

Lentiviral and Vpx-VPLs production 
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Lentiviral plasmids encoding shRNA were obtained from Sigma-Aldrich. Each plasmid was 

transformed into One Shot Stbl3 chemically competent cells (Invitrogen) and purified by 

ZymoPURE plasmid Maxiprep kit (Zymo research). Lentiviral pseudoparticles were obtained 

after plasmid transfection of 293FT cells using Lipofectamine 2000 (Invitrogen) or TurboFectin 

8.0 Transfection Reagent (Origene). To prepare Vpx-VLPs, 293T cells were co-transfected by 

Lipofectamine 2000 or TurboFectin 8.0 Transfection Reagent with the 5 μg pMDL-X, 2.5 μg 

pcRSV-Rev, 3.5 μg X4-tropic HIV Env, and 1 μg pcVpx/myc, as described previously with some 

modifications37,38. The medium was replaced after 6-12 h with fresh media with 1X Viral boost 

(Alstem). The lentivirus or Vpx-VLPs containing media was harvested 72 h after transfection 

and concentrated 80 times using Lenti-X concentrator (Takara Clontech) or Lenti Concentrator 

(Origene). LV particles were then resuspended in RPMI 1640 media without serum and stored 

at -80°C before use. Virus titer was determined by using Jurkat T cells and Lenti-X GoStix Plus 

(Takara Clontech).  

Lentiviral transduction with Vpx-VPLs  

Two step Vpx-VLP and LV transduction was performed as described previously with some 

modiciations36. Vpx are pseudotyped with X4-tropic HIV Env to promote efficient entry of Vpx-

VLPs into quiescent human T cells37. FACS-sorted naïve CD4+ T cells were plated at 50,000 

cells/well in round bottom 96 well plate and chilled on ice for 15 min. 50 μl of Vpx-VLPs were 

added to each well and mixed with cold cells for an additional 15 min, then spinfected with high-

speed centrifugation (1200 g) for 2 hour at 4 °C. Immediately after centrifugation, cells are 

cultured overnight at 37 °C. Vpx-transduced cells are spinoculated again with LV particles 

containing shRNAs with high-speed centrifugation (1000 g) for 1.5 hours at RT. After 24 hours 

of incubation, the second transduction of LV particles with shRNAs were performed as well as 

the first time spinoculation. After a second LV transduction, cells were washed and plated into 

96-well round-bottom plates pre-coated anti-human CD3 (2 μg/ml) with soluble anti-human 
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CD28 (1 μg/ml), in the presence or absence of human IFN-β (500 U/ml). Cells are collected at 

day 4 after anti-CD3/CD28 stimulation and GFP positive cells were sorted by FACSAria. 

Real time quantitative PCR 

Total RNA was extracted using RNeasy Micro Kit (QIAGEN), or ZR-96 Quick-RNA kit (Zymo 

Research), according to the manufacturer’s instructions. RNA was treated with DNase and 

reverse transcribed using TaqMan Reverse Transcription Reagents (Applied Biosystems) or 

SuperScript IV VILO Master Mix (Invitrogen). cDNAs were amplified with Taqman probes 

(Taqman Gene Expression Arrays) and TaqMan Fast Advanced Master Mix on a StepOne 

Real-Time PCR System (Applied Biosystems) according to the manufacturer's instructions. 

Relative mRNA expression was evaluated after normalization with B2M expression.  

Flow cytometry analysis 

Cells were stained with LIVE/DEAD Fixable Near-IR Dead Cell Stain kit (Invitrogen) and surface 

antibodies for 30�min at 4�°C. For intracellular cytokine staining, cells were treated with 50 nM 

phorbol-12-myristate-13-acetate (MilliporeSigma) and 250 nM ionomycin (MilliporeSigma) for 4 

hours in the presence of Brefeldin A (BD Biosciences) before harvesting. Cells were washed 

and fixed with BD Cytofix™ Fixation Buffer (BD Biosciences) for 10 min at RT, then washed with 

PBS. Intracellular cytokines were stained in permeabilization buffer (eBioscience) for 30 min at 

4�°C. The following antibodies were used: anti-LAG-3 (11C3C65, BioLegend), anti-PD-1 

(EH12.1, BD Biosciences), anti-TIGIT (MBSA43, eBioscience), anti-Tim-3 (F38-2E2, Biolegend), 

anti-IFN-γ (4S.B3, eBioscience), and IL-10 (JES3-9D7, Biolegend). Cells were acquired on a BD 

Fortessa flow cytometer and data was analyzed with FlowJo software v10 (Threestar).  

RNA-seq library preparation and data analysis 

cDNAs were generated from isolated RNAs using SMART-Seq v4 Ultra Low Input RNA Kit for 

sequencing (Takara/Clontech). Barcoded libraries were generated by the Nextera XT DNA 
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Library Preparation kit (Illumina) and sequenced with a 2x100 bp paired-end protocol on the 

HiSeq 4000 Sequencing System (Illumina).  

After sequencing, adapter sequences and poor-quality bases (quality score < 3) were trimmed 

with Trimmomatic. Remaining bases were trimmed if their average quality score in a 4 bp sliding 

window fell below 5. FastQC was used to obtain quality control metrics before and after 

trimming. Remaining reads were aligned to the GRCh38 human genome with STAR 2.5.239. We 

used Picard to remove optical duplicates and to compile alignment summary statistics and RNA-

seq summary statistics. After alignment, reads were quantitated to gene level with RSEM40 

using the Ensembl annotation. 

Identification of three transcriptional waves 

The correlation matrix is created by Pearson correlating41 the IFN-β expression profile of each 

time point with all the other time points, creating a symmetric matrix of Pearson correlation 

coefficients. 

Differential expression calculation 

The differential expression (DE)42 of the sequenced genes from every time point was calculated. 

The DE was calculated using the DEseq243 R package. An in-house decision algorithm was 

built to determine which genes are DE. The algorithm used three separate testing methods 

available in DEseq2 for calculating DE genes: Wald44, likelihood ratio test (LRT)45, and time-

course46. For each of the three methods, genes with false discovery rate (FDR) adjusted 

P.value bellow 0.05, are regarded as DE. The algorithm defined genes as DE differently for 

CD4+ and CD8+ T cells. For CD4+ T cells, if TFs appeared in two out of the three calculating 

methods (agree by two), they were regarded as DE. For CD8+ T cells, if TFs appeared in any of 

the methods above, they were regarded as DE. 
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Selection of regulators for perturbation 

The list of TFs for perturbation was selected based on following aspects: 1) overlapped 

differentially expressed TFs across the time point between CD4+ and CD8+ T cells in our results. 

Intersection of DETFs in our in vitro data were chosen; 2) differentially expressed TFs in human 

tumor infiltrated T cells21-24 that were significantly correlated with exhausted T cell cluster where 

LAG-3/PD-1/TIM-3 were highly upregulated. ‘Human TIL score’ for each gene was calculated by 

the number of times it was shared between the four different human cancer TIL datasets21-24; 3) 

HIV specific T cell signature in progressive patients compared to stable patients25. 4) TFs that 

were included by IL-27 and categorized as IL-27 driven co-inhibitory receptor modules3. ‘Human 

ISG score’ for each gene was calculated by the number of times it was shared between the 

three different categories (T cells, PBMCs, and all immune cells) of human ISGs identified by 

Interferome database. All perturbed TFs were confirmed as IFN-I responsible genes that 

showed ‘human ISG score’ more than 1.    

Heatmap of perturbed TFs 

21 TFs were perturbed using lentiviral shRNA, together with a scramble shRNA control (SCR). 

In order to better understand the effect of perturbing said TFs, selected genes of interest (GOIs) 

were analyzed. The calculation of the heatmap values in Supplementary Figure 4b and c is as 

follows: first the expression values of perturbed GOIs is divided by control values without 

perturbation (fold change), this quotient is then logged in base 10. The result of the logarithm of 

the GOIs is the subtracted by the logarithm of SCR fold change. 

����� ���������	 ��
 ����������

������� ��
 ����������
� � ��������������	 ��� ����������

������� ��� ����������
	   

DE analysis was conducted for perturbation against control, genes who yielded n FDR adjusted 

P.value lower than 0.05 were regarded as significant and display a white plus on their tile. 

PCA and PCA biplot analysis 
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The PCA was conducted on a DEGs defined as above as variables, and perturbed genes as 

observations. The data was normalized by the scramble shRNA control identically to the 

Heatmap of perturbed TFs. Although PDCD1 was not defined as DE genes across the time 

course, it was clearly differentially expressed at later time points in mRNA-seq and qPCR, thus 

we manually depicted in Figure 5f. Genes of IFN Score B47 (see Table 1) were represented as 

ISGs in Figure 3e. The PCA and biplot analysis were calculated and visualized using the R 

package FactoMineR48.  

Regulatory networks 

Following DE analysis in each transcriptional wave, the DE genes were separated to TFs and 

their targets (from->to). The targets of all DETFs were determined using ChIP-seq data from the 

database GTRD49. TFs and targets defined as DE were added as network nodes, and edges 

(connections) were added between them. The network figures were created using the software 

Cytoscape 50.  

Top Regulatory TFs Heatmaps 

We ranked the DE TFs of each transcriptional time wave to identify which are the most 

dominant in the overall differentiation process. HG stands for hyper-geometric, the value in the 

heatmap is the �������
. �
���	 of a hypergeometric enrichment test. The targets of each TF 

are tested for enrichment of DE targets in the network, relatively to targets that aren’t DE in the 

network. The HG calculation was conducted using the python SciPy package51. Cent stands for 

centrality, which is a parameter that is given to each node, based on the shortest path from the 

node to the other nodes in the network. It represents how central and connected a node is in the 

rest of the network52. The centrality calculation was conducted using the python NetworkX53 

package. The rank column is an average of both HG and Cent values, after normalization. 

Integration of Perturbation Data to Regulatory Networks 
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DE analysis was conducted for perturbation against control. Genes that were significantly 

affected by a TF perturbation were added as a “validated” edges between the perturbed TF and 

the target gene. If a gene was up-regulated by a TF perturbation, the interaction between them 

is registered as down-regulation. If a gene was down-regulated by a TF perturbation, the 

interaction between them is registered as up-regulation.  

Backbone Hierarchical Networks 

Using the software Cytoscape, we implemented a hierarchical layout, which takes into account 

the directionality of the connections between the TFs. A TF which has only outgoing 

connections will be placed at the top of the hierarchy, while a TF which has only incoming 

connections will be placed at the bottom. 

Bridging TFs Network 

DETFs and their targets from the three transcriptional waves were combined to create a 

comprehensive network of the dynamic between transcriptional waves. TFs and their targets 

were annotated by the transcriptional wave in which they are DE. TFs that appear in more than 

one transcriptional wave are regarded as bridging TFs. 

Reanalysis of COVID-19 single-cell RNA sequencing data 

A PBMC single cell RNA seq data set of 10 COVID-19 patients and 13 matched controls was 

reanalyzed which had been previously performed and reported by us32. We have described the 

full cohort and detailed methods elsewhere32. From eight of the ten COVID-19 samples, PBMCs 

from two different time points had been analyzed. Four of the COVID-19 patients had been 

classified as progressive, the other six COVID-19 patients as stable. Informed consent had 

been obtained of all subjects and the protocol had been approved by Yale Human Research 

Protection Program Institutional Review Boards (FWA00002571, Protocol ID. 2000027690). 

Briefly, single cell barcoding of PBMCs and library construction had been performed using the 

10x Chromium NextGEM 5prime kit according to manufacturer's instructions. Libraries had been 
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sequenced on an Illumina Novaseq 6000 platform. Raw reads had been demultiplexed and 

processed using Cell Ranger (v3.1) mapping to the GRCh38 (Ensembl 93) reference genome. 

Resulting gene-cell matrices had been analyzed using the package Seurat54 in the software R55 

including integration of data, clustering, multiplet identification and cell type annotation. The final 

annotated R object was used and re-analyzed in Seurat with default settings - unless otherwise 

specified - as follows: 

The three cell populations "Dividing T & NK", "Effector T" and "Memory CD4 & MAIT" were each 

subsetted and reclustered to obtain a finer cell type granularity as they included a mix of CD4, 

CD8, MAIT and gamma delta T cells. Per subset, the top 500 variable genes were determined 

by the “FindVariableFeatures” function using the “vst” method. Data was scaled using the 

“ScaleData” function regressing out the total number of UMI and the percentage of UMIs arising 

from the mitochondrial genome. After Principal Component (PC) Analysis, the first 10 Principal 

Components (PCs) were utilized to detect the nearest neighbors using the “FindNeighbors” 

function and clustered by Seurat’s Louvain algorithm implementation “FindClusters” using a 

resolution of 0.2 for "Dividing T & NK", of 0.3 for "Effector T" and of 0.1 for "Memory CD4 & 

MAIT" subsets. Cluster-specific gene expression profiles were established using the 

“FindAllMarkers” per cluster and per subset to annotate the clusters. New cell type annotations 

were then transferred back to the full dataset.  

A new Uniform Approximation and Projection (UMAP) embedding was created by integrating 

the datasets on a subject level as follows: A subset containing all T cells was generated, which 

was then split by subject. For each subject, the top 2000 variable genes were selected, then 

integration anchors determined by “FindIntegrationAnchors” (with k.filter = 150). These anchors 

were used to integrate the data using the “IntegrateData” function with top 30 dimensions. The 

integrated data was scaled, subjected to a PC analysis and the top 13 PCs used as input for the 

“RunUMAP” function on 75 nearest neighbors56.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.30.362947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.30.362947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 29

Module scores were calculated using the “AddModuleScore” function using a) all genes within 

the GO list “RESPONSE TO TYPE I INTERFERON” (GO:0034340)57 and b) all genes 

significantly associated with either of the three waves in our in vitro perturbation experiments 

(see Table 1). Differential gene expression was established using Seurat’s implementation of 

the Wilcoxon Rank Sum test within the “FindMarkers” function with a Bonferroni correction for 

multiple testing. 

Statistical analysis 

Detailed information about statistical analysis, including tests and values used, is provided in the 

figure legends. P-values of 0.05 or less were considered significant.  

Data and software availability 

The sequence data generated in this study will be deposited in the Gene Expression Omnibus 

(GEO) and the accession code will be provided prior to publication.  
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