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a b s t r a c t 

History shows that the infectious disease (COVID-19) can stun the world quickly, causing massive losses 

to health, resulting in a profound impact on the lives of billions of people, from both a safety and an eco- 

nomic perspective, for controlling the COVID-19 pandemic. The best strategy is to provide early interven- 

tion to stop the spread of the disease. In general, Computer Tomography (CT) is used to detect tumors in 

pneumonia, lungs, tuberculosis, emphysema, or other pleura (the membrane covering the lungs) diseases. 

Disadvantages of CT imaging system are: inferior soft tissue contrast compared to MRI as it is X-ray-based 

Radiation exposure. Lung CT image segmentation is a necessary initial step for lung image analysis. The 

main challenges of segmentation algorithms exaggerated due to intensity in-homogeneity, presence of 

artifacts, and closeness in the gray level of different soft tissue. The goal of this paper is to design and 

evaluate an automatic tool for automatic COVID-19 Lung Infection segmentation and measurement using 

chest CT images. The extensive computer simulations show better efficiency and flexibility of this end- 

to-end learning approach on CT image segmentation with image enhancement comparing to the state of 

the art segmentation approaches, namely GraphCut, Medical Image Segmentation (MIS), and Watershed. 

Experiments performed on COVID-CT-Dataset containing (275) CT scans that are positive for COVID-19 

and new data acquired from the EL-BAYANE center for Radiology and Medical Imaging. The means of 

statistical measures obtained using the accuracy, sensitivity, F-measure, precision, MCC, Dice, Jacquard, 

and specificity are 0.98, 0.73, 0.71, 0.73, 0.71, 0.71, 0.57, 0.99 respectively; which is better than methods 

mentioned above. The achieved results prove that the proposed approach is more robust, accurate, and 

straightforward. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The eruption of the severe acute respiratory syndrome COVID- 

9 continues to grow where over (25, 414, 924) worldwide cases 

f confirmed infections are reported at the end of August 2020, ac- 

ording to Worldometer [ http://worldomet-ers.info/coronavirus/ ]. 

To control the spread of this virus, screening large numbers of 

uspected cases for appropriate quarantine and treatment has be- 

ome an urgent priority. Most tests to check for COVID-19 relied on 

ests done at a laboratory for pathogen testing, which is the most 

ccurate test possible. Still, it is time-consuming with significant 

alse-negative results [1] . 
∗ Corresponding author. 

E-mail address: adel.oulefki@fulbrightmail.org (A. Oulefki). 
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Patients suspected of having respiratory infection or pneumonia 

re admitted to the hospital under consideration of specific diag- 

ostic procedures with laboratory and other non-laboratory tests 

o identify the cause, location, and severity of the infection. The 

aboratory tests include standard procedures, like blood gas anal- 

sis tests, complete blood count (CBC), and pleural effusion [2] , 

n a procedure that needs transporting samples from the hospi- 

al to the lab, which takes up valuable time. On the flip side, 

he non-laboratory tests are the computer-assisted imagery anal- 

sis techniques used to inspect/registrate the lung regions using 

igital chest radiography (or standard 2D X-ray) or CT scan. On the 

ontrary to the conventional 2D X-ray; which uses a fixed X-ray 

ube that does not provide much detail. 3D CT scan is a nonde- 

tructive scanning technology that has the advantage of providing 

 very detailed view of the lung of bone, soft tissue, and blood ves- 

els [2] . Advantages of CT imaging include low cost, wide availabil- 

ty, high spatial resolution with current multi-slice scanners, short 

https://doi.org/10.1016/j.patcog.2020.107747
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107747&domain=pdf
http://worldomet-ers.info/coronavirus/
mailto:adel.oulefki@fulbrightmail.org
https://doi.org/10.1016/j.patcog.2020.107747
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Table 1 

Summary of a combined COVID-19 lesion segmentation-classification approaches. 

Authors Database used Approach used Obtained results Highlights 

Zheng et al. [12] 499 + 131 CT volumes U-Net Accuracy of 0.901 -Rapid COVID-19 lesions 

diagnosis - Great potential to 

be applied in clinical 

application 

Cao et al. [13] 2 patients U-Net architecture – -Quantitative Pipeline 

Gozes et al. [14] Testing set of 157 patients (China,U.S). Deep Learning CT 

Image Analysis 

0.996 AUC 92.2% 

specificity 

-Heat map of a 3D volume 

display -Measures the 

progression of disease 

overtime 

Jin et al. [15] 1136 cases 723 positives UNet + , CNN sensitivity of 0.974 

specificity of 0.922 

-The system automatically 

highlighted all lesion regions 

for faster examination 

Ying et al. [8] 88 patients diagnosed with the COVID-19 ResNet-50 AUC of 0.95, recall 

(sensitivity) of 0.96 

-A rapid and accurate 

identification of COVID-19 

Shan et al. [8] 249 COVID patients VB-Net Dice similarity 

coefficients of 91.6 

-A deep learning-based system 

for automatic segmentation of 

infection regions as well as 

the entire lung from chest CT 

scans 

Shen et al. [16] 44 confirmed COVID-19 cases Threshold-based 

region growing 

R ranged 0.7679, 

P < 0 . 05 

-Moderate correlation between 

lesion percentage scores 

obtained by radiologists 
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can time and higher sensitivity. Disadvantages include: Inferior 

oft tissue contrast compared to MRI and X-ray-based radiation ex- 

osure [3] . 

Various methodologies in computer vision have been proposed 

o deal with different sides to combat the COVID-19 pandemic, 

ncluding segmentation and classification methods [4] . These ap- 

roaches can be classified into two fundamental classes: Classical 

achine Learning and Deep Learning methods [5] . 

In general, Image segmentation has become an increasingly im- 

ortant task in radiology research and clinical practice. The goal 

f segmentation is to separate regions or objects of interest from 

ther parts of the body to make quantitative measurements. More 

pecifically, obtaining further diagnostic insights, including measur- 

ng the area and volume of segmented structures. The main chal- 

enges of segmentation algorithms exaggerates due to intensity in- 

omogeneity, presence of artifacts and closeness in the gray level 

f different soft tissue. 

Various aspects of segmentation algorithms have been explored 

or many years. Existing segmentation approaches can be classi- 

ed into three main classes: manual, semi-automatic, and fully- 

utomatic. Manual segmentation methods are time-consuming, 

onotonous, and can be affected by inter and intra-observer vari- 

bility. Semi-automatic approaches are already widespread and in- 

egrated with publicly available software packages. Finally, fully- 

utomatic procedures do not need user intervention. Each of these 

ethods has its advantages and limitations. However, even now, 

he investigators try to make segmentation steps as easy as possi- 

le with the help of automatic software tools. Still, the problem of 

egmentation remains challenging [6] , because (1) no general solu- 

ion can be applied on a large and continually growing number of 

ifferent regions of interest (ROI), (2) vast variations of ROI prop- 

rties, (3) different medical imaging modalities. Lastly (4) associ- 

ted changes of signal homogeneity; mainly variability and noise 

or each object [7] . Besides, as noted in Shi et al. [8] (a) while

lenty of Al systems have been proposed to assist in diagnosing 

OVID-19 in clinical practice, there are only a few works related to 

nfection segmentation in CT scans [9] . (b) most of COVID-19 imag- 

ng data-sets focus on diagnosis, only one data-set providing seg- 

entation labels, and (c) the qualitative evaluation of infection and 

ongitudinal changes in CT scans could thus offer useful and vital 
2 
nformation in fighting against COVID-19. 1 However, these meth- 

ds are not applicable when we have a tiny data-set. In this paper, 

e focus on a segmentation system to automatically quantify in- 

ection regions of interest (ROIs) and measure the volume of the 

nfection area. 

In [10] , the author presented a broad survey of computer vi- 

ion methods to combat the challenge of the COVID-19 pandemic. 

ome examples of image segmentation and classification methods 

n COVID-19 applications are summarized in Table 1 along with re- 

ults obtained of each approach. 

In this article, we took advantages of a classical machine 

earning-based COVID-19 segmentation methods, since (a) it pro- 

ides a high accuracy while deep networks require large data-sets, 

b) computationally cheap, (c) easy to design, interpret, and use, 

hich is helpful for clinicians and consumers communities in de- 

eloping countries. 

Finally, clinical detection and diagnosis of COVID-19 by expe- 

ienced doctors is often a tedious task, where there is a need to 

ave a simple, fast, working on low power computational devices 

including cellphone) an automated method that can provide seg- 

entation and quantification of infection regions of the patients 

very 3–5 days and monitoring progression the infected patients 

sing lungs CT scans images. The qualitative evaluation of longi- 

udinal changes in CT scans could thus offer essential information 

n fighting against COVID-19. To address the above issues, this pa- 

er proposes a novel tool for automatic COVID-19 Lung Infection 

egmentation and measurement using chest CT images. The pre- 

ented architecture has the potential to be quantifying the COVID- 

9 infected regions and monitoring longitudinal disease changes. 

he presented system will be very beneficial in developed coun- 

ries to help Africa through the COVID-19 pandemic [11] . 

Therefore, the expected outcome of the proposed work is to 

ake into account the coronal-view of the CT scan for a better ex- 

erimental interpretation. Although there are several approaches 

or medical image segmentation, few studies have been done and 

ested on an image with COVID-19 lesion to observe its ability to 

egment the lesion precisely [8] . Subsequently, those algorithms 

ay not be the best choice for searching for smaller homogeneous 

egions in medical images that may contain the features of a dis- 

ase such as COVID-19. This challenge motivates us to observe the 
1 [ http://medicalsegmentation.com/covid19/ ] 

http://medicalsegmentation.com/covid19/
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Fig. 1. Flowchart of the proposed COVID-19 enhancement, segmentation, and visualization. 
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Fig. 2. Illustrative example of a (3-by-3) directional filter operation with a locally 

adaptive filter; (a) directional pattern; (b) (3-by-3) local adaptive filter. 
erformance of some state-of-the-art algorithms proposed in the 

iterature for tackling the COVID-19 lesions area. Besides, it leads 

s to offer a robust scheme that has an excellent ability to seg- 

ent the COVID-19 lesion in an accurate way. 

The proposed framework is developed and investigated within 

he Matlab ® environment, and the essential CT Scan images of 

OVID-19 is collected from the COVID-CT-Dataset [17] . Also, a data- 

et from the EL-BAYANE center for Radiology and Medical Imaging 

hich include a data CT images on a person who got two times CT 

mages. The main contributions of this paper are as follows: 

• A new image contrast enhancement algorithm by combing lin- 

ear and logarithmic stitching parametric algorithms. 
• An improved image-dependent multilevel image thresholding 

method. 
• Method to compute the number of image-dependent multilevel 

k . 
• An image segmentation approach to minimize the over- 

segmented regions. 

The remaining part contained in the present paper is organized 

s follows. After briefly reviewing the related works on the seg- 

entation of COVID-19 in Section 1 . Section 2 outlines the pro- 

osed pipeline and measurement comparison both on objective 

nd subjective perspectives (in Section ) and in terms of the color- 

ng of a segmentation algorithm (in Section 3 also). We conclude 

y highlighting the outcome achieved (in Section 4 ). 

. Materials and methods 

In the remainder of this section, we report the enhancement 

ethod, along with the proposed segmentation and visualization 

unctions. Its impact is quite more significant in biomedical and 

edical research [18] . The impact-contributions of this section are: 

• Method to compute the number of image-dependent thresholds 

k, which based on a local minimum level of a project 2D his- 

togram. 
• Method to correct threshold by using the k-largest entries of 

Kapurs Entropy. 
• The method to compute the optimal threshold by taking a 

weighted combination of corrected thresholds. 
3 
• The method to compute Kapurs Entropy using a projected 2D 

histogram. 
• A new image contrast enhancement algorithm by combing lin- 

ear and logarithmic stitching parametric algorithms. The linear 

function works well for common-exposed imaging components, 

while the logarithmic function works well for under-exposed 

imaging components. 

The outline of the proposed COVID-19 enhancement, segmenta- 

ion, and visualization method is described in Fig. 1 . First, the lung 

egion is extracted from the input CT images. Then, the left and 

ight lungs are separated [19] . After that, image enhancement is 

pplied on the right and the left lung separately (detailed in 2.1.1 ). 

t this stage, we proposed a modified Local Contrast Enhancement 

or a small more detailed CT target detection. The fundamentals 

f our modification are taken the concept from a local contrast 

ethod that can be found in Chen et al. [20] . 

.1. Enhancement 

In this sub-section, we focus on images that are degradedly ac- 

uired, to improve the quality of CT images for a more accurate 

erception of information in images for both human viewers and 

or other automated COVID-19 lungs infected region segmentation 

nd measurement systems. In Fig. 2 we illustrated the steps used 

or enhancements by separating the considered image into a small 

ile. In addition to that, we generated a directional block. In each 

irectional filter, we included a local mean filter. 
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Fig. 3. The proposed masking pneumonia regions comparison; (a) a CT-scan image; (b) a dilated structural image by using a ‘ circle ’ dilating filter; (c) a dilated structural 

image by using a ‘ plus ’ dilating filter; (d) a dilated structural image by using a ‘ square ’ dilating filter; (e) a dilated structural image by using a ‘ circle ’ dilating filter; (f) a 

visualized contrast metric; (g) a visualized contrast metric by using a ‘ circle ’ dilating filter; (h) a visualized contrast metric by using a ‘ plus ’ dilating filter; (i) a visualized 

contrast metric by using a ‘ square ’ dilating filter; (j) a visualized contrast metric by using a ‘ circle ’ dilating filter. 
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.1.1. Generate a contrast metric 

Original CT-scan images illustrate bright regions in an image to 

ntroduce significant noticeable information. However, some parts 

re over-bright, and some parts are dark. Prior to classifying de- 

ails, it is important to be enhanced local contrast in order to re- 

urn a more accurate segmentation. Generally, COVID-19 targets 

ave positive local contrast which means that the lesion areas are 

righter than the local background in all directions. To control the 

roper luminance level, we propose two enhancement functions: 

i) an exponential function; and (ii) a logarithmic function. The ex- 

onential function slight increases local contrast and it can be set 

s a preserving function in case the exponential parameter is set as 

1.0). Another proposed function is written in a logarithmic term. It 

trongly increases local contrast in dark regions and preserve local 

ontrast in bright regions, simultaneously. The essential details can 

e visualized by combining two enhanced features and written as: 

 i, j = ( L − 1 ) •
( 

E i, j − min 

{
E i, j 

}
max 

{
E i, j − min 

{
E i, j 

}}
) 

(1) 

 i, j = αA i, j • βB i, j (2) 

 i, j = 

( 

S 2 
i, j ∣∣G i, j 

∣∣ + ψ 

) γ a 

; B i, j = log 
γ b 

( 

1 + 

S 2 
i, j ∣∣G i, j 

∣∣ + ψ 

) 

(3) 

G i, j 

∣∣ = max 
z 

∣∣I i, j � f x,y,z 

∣∣ (4) 

here Y i, j a visualized contrast metric. L the total number of lu- 

inance levels in a visualized domain. E i, j a contrast metric. A i, j a 

inear contrast metric. B i, j a logarithmic contrast metric. α a con- 

tant of the linear contrast metric. β a contrast of the logarithmic 

ontrast metric. S i, j - a filtered (dilated) structural image [21] . γ a 

 contrast enhancement parameter of the linear contrast metric. 

b - a contrast enhancement parameter of the logarithmic con- 

rast metric. ψ a small number to avoid a calculation error in 

ase any elements of a directional gradient edge metric equal to 

ero. | G i, j | a directional gradient edge metric. I i, j an input image. 

f x,y,z a directional compass mask (compass masks called the masks, 

hich are generated by taking a single mask and rotating it to the 

ight primary compass orientations) in a z-direction. � - a two- 

imensional convolution operator. 

General mathematics concepts with dilation are when a struc- 

uring element has a height [22] . Thus, the dilation of A (x, y ) by
4 
 (x, y ) is defined as: 

A 

⊕ 

B )(x, y ) = max 
{

A (x − x ′ , y − y ′ ) + B (x − x ′ ) | (x ′ , y ′ ) ∈ D b 

}
, 

(5) 

here (A) original image, (B) dilated features and (D) structural 

lement of (b). The proposed masking pneumonia regions compar- 

son by using different structural filters are presented in Fig. 3 . 

.2. Masking metric and multilevel image thresholding for image 

egmentation by optimizing Kapur entropy 

In this sub-section, we focus on presenting a method that di- 

ides a CT image into COVID-19 lung infected from none infected 

egions. Extensive computer simulations show that the use of the 

i-level threshold (pneumonia and non-pneumonia regions) in the 

OVID-19 CT segmentation is not efficient. Otsu and Kapur based 

ethods are the most used for multilevel threshold image segmen- 

ation. Otsu’s method chooses an optimal threshold by maximizing 

he between-class variance, while Kapur et al. [23] threshold de- 

ermine by maximizing the entropy of the object and background 

ixels. Several people implemented evolutionary algorithms for the 

est multilevel threshold selections. Nevertheless, all these models 

equire more computational time, which makes multilevel thresh- 

lding impractical for most image processing and computer vision 

pplications with weak computational resources. 

.2.1. Improved Kapur entropy-based multilevel thresholding 

rocedure (masking metric generation) 

In this part, we present an improvement multilevel Kapur’s 

ntropy-based thresholding technique by adding a new element, 

amely choosing the image dependent level number of thresh- 

lds automatically. That will help to categorize small targets of 

T scan images and reduce the computational complexity of Ka- 

ur’s multilevel thresholding which heavily depends on the num- 

er of thresholding and which rapidly increases with the increas- 

ng number of thresholds as illustrated in the masking metric 

lgorithm 1 (Steps 1 to 9). The bi-level thresholding segments 

n image into two different regions. The pixels with gray values 

reater than a specific value T are classified as object pixels, and 

he others with gray values lesser than T are classified as back- 

round pixels. Multilevel thresholding is a process that segments 

 gray level image into several different regions-segments the im- 

ge into certain brightness regions, which correspond to one back- 

round and several objects. Fig. 5 . It shows by increasing the num- 
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Algorithm 1: Masking algorithm: pseudo-code of multilevel thresholding. 

Input : Lung CT image 

01: Generate a denoised image by applying a denoising filter to the input image 

02: Generate a 2D histogram by matching the luminance level of the denoised image and the input image 

03: Generate a 1D histogram by projecting the 2D histogram into a threshold axis. 

04: Apply a 1D Gaussian filter (smoothing) to the 1D histogram. 

p l = h l 

⊗ 

f a (6) 

f α = 

1 √ 

2 πδ
e −

−(l− L 
2 

) 2 

2 δ2 (7) 

// Where (h l ) the number of occurrences in each luminance level, (l) . f a a 1D denoising filter, (ρ) a constant 
parameter deciding the weight of each neighboring PDF affecting. (L ) the total number of luminance level. (α) the 
size of the filter, and 

⊗ 

a 1D convolution operator. 
05: Search the local minimum of the smoothed histogram using the method presented in [24] 

τ ( l ) = 

{
p l−n (h l−n −ω c−1 

) 

2 
, . . . , p l h l , . . . , 

p l−n (h l−n −ω c−1 
) 

2 
, minimum 

Constant, otherwise 
(8) 

// where p the 1D filtered signal. h the number of occurrences in each luminance level, l. n the size of a local 
block for detecting a local minimum position. (c) the order of a local sliding block. 

06: Compute the total number of local minimum threshold label it as ”the total number of image-dependent thresholds, k ”

k = | τl | (9) 

// Where k the total number of image-dependent thresholds. | | a cardinality operator. 
07: Calculate the Kupar’s Entropy by using the summation of a cross-entropy. For the calculation of cross-entropy, it can be 

separated into two components: a lower component (E l ) and an upper component (E μ) , For example, it is calculated by: 

E(t) = E l (t) + E μ(t) (10) 

E(t) = 

p l (t) 

c l (t) 
log 

(
p l (t) + c l (t) 

c l ( t) 

)
; E μ( t) = 

p μ( t) 

c μ( t) 
log 

(
p μ( t) + c μ(t) 

c μ( t) 

)
(11) 

c l (t) = c(t ) ; c μ(t ) = 1 − c(t) (12) 

c(t) = 

L −1 ∑ 

t=0 

p(t) ; p(t) = 

h t ∑ L −1 
t=0 h t 

(13) 

// where p(t) the probability density function. c(t) a probability occurrence. h the number of pixels in each 
luminance level, t. L the total number of luminance levels. ( ) l and ( ) u a lower component and an upper 
component, respectively. 

08: Determine the best k −threshold values by maximizing the below equation 

T n = 

{ 

max { E(1) , E(2) , . . . , E(L − 1) , n = 1 } 
max {{ E(1) , E(2) , ., E(L − 1) } ∩ { T 1 , ., T n −1 }} , n = 2 , 3 , ., k − 1 

max {{ E(1) , E(2) , . . . , E(L − 1) } ∩ { T 1 , . . . , T n }} , n = k } 
(14) 

// where k the total number of image-dependent thresholds. (E) Kapurs Entropy. (n ) the order of the image-dependent 
thresholds. (T n ) best k −threshold values. 

09: Calculate an optimally fractional weight threshold 

T φ = ω n � T n ; ω n = 

E t ∑ n 
t=1 E t 

;
∑ 

n 

ω n = 1 (15) 

// where T n best k −threshold values. (ω n ) a fractional weight. ( ) the order of the image-dependent thresholds. 
(�) a fractional weight operator. (E) Kapurs Entropy. 

10: Generate a masking metric [
m i, j 

]
k 

= 

{
F , T φ ≥

∣∣R i, j 

∣∣
k 

> D 

B, otherwise 
(16) 

// where | R i, j | k the number of pixels in k th sub-region. T φ an optically corrected threshold. | | a cardinality 
operator. D the minimum number of pixels in each region. 

[
m i, j 

]
k 
a local mask of sub-regions. F and B foreground and 

background constant, for instance, F = 0 , B = 255 represent the masking metric that the region of interest becomes 
dark, and the rest regions of them illustrate bright. 

// For the minimum number in each region, it can be defined by a user or calculating the average size of all 
sub-regions. 

D = 

ρ

n 

n ∑ 

k =1 

∣∣R i, j 

∣∣
k 

(17) 

// Where ρ a region-adjusting parameter. (n ) the total number of sub-regions. 
∣∣R i, j 

∣∣
k 
the number of pixels in k th 

sub-region. 
Output : The masking metric of COVID-19 regions 

5 
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Fig. 4. The proposed masking pneumonia regions comparison; (a) Original CT image; (b) one-dimensional histogram of the lung tissue region; (c) dilated image; (d) two- 

dimensional histogram; (e) one-dimensional histogram projected by a 2D histogram; (f) local minima numbers on histograms (the image dependent level number of thresh- 

olds). 

Fig. 5. Results using Kapur threshold (a) input lung image, (b) 2-level thresholding, (c) 4-level, (d) 8-level of the proposed segmentation with their histograms. It is based 

on modified Kapur’s entropy computation (see Fig. 6 ). 
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er of thresholds the thresholded image tends towards the original 

mage ( Fig. 4 ). 

.3. Classify a lung region into small sub-regions 

To mask all possible of small pneumonia regions, the masking 

quation needs to control the minimum number of pixels in each 

egion and classifies sub-regions into two classes by using the pro- 

osed fractional threshold correction. It can be described as the 

asking metric algorithm (see steps 9 and 10). 

. Results and discussions 

In this section, we present the experimental results of the 

roposed image segmentation pipeline. Firstly, we show that our 

ethod achieves state-of-the-art results on a COVID-CT-Dataset 

ontaining (275) CT scans that are positive for COVID-19 with man- 

ally labeled ground-truth lesions by the radiologist doctor. Sec- 

nd, we study with new CT images from a local hospital contain- 

ng 22 patients tested positive for the corona-virus. Third, we show 

he 3D visualization and the effect of the COVID-19 lesion on the 

atient’s lungs. 
6 
The empirical results achieved in the proposed work are pre- 

ented and discussed in this section. The developed scheme is exe- 

uted using a MacBook Pro® with a (2.5) GHz Intel Core i − 7 pro- 

essor and (16 GB) RAM equipped with the MATLAB® Academic 

ersion. Experimental results confirm that the proposed requires a 

ean time of (0.4 s) to process one CT image. However, the execu- 

ion time can be improved within a workstation with higher com- 

utational capability. The advantage of the proposed system lies in 

ts fully automated that ensures a short turnaround time for both 

egmentation and enhancement. 

To evaluate and determine the performance of the proposed 

egmentation approach, the statistical values of the segmented 

OVID-19 lesion are compared with the result of the GraphCut 

25] , Watershed [26] , Medical Image Segmentation Approach (MIS) 

24] , U-Net [27] , Attention-UNet [28] , Gated-UNet [29] , Dense-UNet 

30] , U-Net++ [31] , Inf-Net [32] , Seg-Net [33] , BiSe-Net [34] , and

SP-Net [35] methods. In the CT scans of patients with COVID-19 

esions, that are suspectedly considered infected by a medical ex- 

ert. The possibility of having a lesion absence in the image can 

e presented, resulting in the consideration of patients as nor- 

al and healthy, therefore; no segmentation is required. Besides, 
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Fig. 6. Illustrative example of the proposed segmentation lesion detection; (a) Enhanced CT scan; (b) Ground-Truth; (c) Proposed segmented mask; (d) Segmented mask 

using Medical image segmentation (MIS) [24] ; (e) Segmented mask using GraphCut [25] ; (f) Segmented mask using Watershed [26] . 
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e assessed statistically the segmentation quality of the proposed 

gainst GraphCut, Watershed, and MSA, by picking: Accuracy [36] , 

ensitivity [37] , F-Measure [37] , Precision [38] , MCC (Mathew Cor- 

elation Coefficient) [37] , Dice [39] , Jaccard [39] , and Specificity 

37] . By definition, higher values on these indexes imply a better 

uality of segmentation. Mathematical formulas of the accuracy, F- 

easure, MCC (Mathew Correlation Coefficient), dice, and jaccard 

re respectively expressed below: 

ccuracy = 

T N + T N 

T P + T N + F P + F N 

(18) 

ensit i v it y = 

T P 

T P + F N 

′ (19) 

 Measure = 

(2 ∗ T P ) 

2 ∗ T P + F P + F N 

(20) 

 recision = 

(T P ) 

T P + F P 
(21) 

CC = 

T P ∗ T N − F P ∗ F N √ 

(T P + F N) ∗ (T P + F P ) ∗ (T N + F N) 
(22) 

ice = 

(2 ∗ T P ) 

(2 ∗ (T P + F P + F N)) 
(23) 

accard = 

Dice 

2 − Dice 
(24) 
7 
peci f icity = 

T N 

T N + F P ′ 
(25) 

here (TP) stands for True Positive; (FP) stands for False Positives; 

FN) stands for False Positives; (TN) stands for True Negatives 

.1. Objective evaluation 

To display each quantitative metric in one figure. We selected a 

iolin plot to present the comparisons by calculating the means 

f the segmentation quality measurement of the proposed with 

raphCut, Watershed, and MIS approaches over COVID-CT-Dataset 

17] . The Violin plots show the distribution probability of the data 

t different values. The asymmetric outer shape (in black) repre- 

ents all possible results. Furthermore, it depicts the interquartile 

ange, where more than (50%) of data contained between the two 

xtremities ( 	⊥ ) of the black line along with the means in the 

iddle ( + ), as illustrated in Fig. 7 . The cyan, magenta, and yel- 

ow illustrate the segmentation results of GraphCut, Watershed, 

nd MIS, respectively. While the red illustrates the segmentation 

esults of the proposed. 

The comparison was conducted with eight segmentation qual- 

ty metrics (as illustrated above). In Fig. 7 , eight separate plots are 

orresponding each to four different distributions. Interestingly, the 

eans and interquartile ranges are different between the four dis- 

ributions. Also, the shapes of the distributions are different. Since 

igher overall values obtained from accuracy ( Fig. 7 a), sensitivity 

 Fig. 7 b), F-Measure ( Fig. 7 c), precision ( Fig. 7 d), MCC ( Fig. 7 e), Dice
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Fig. 7. Violin plots with median values of the proposed against Graph Cut, Watershed, and MIS segmentation methods using accuracy, sensitivity, F-Measure, precision, MCC, 

Dice, Jaccard, and specificity metrics. 
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 Fig. 7 f), Jaccard ( Fig. 7 g), and specificity ( Fig. 7 h) indicate a better

egmentation performance. 

It is evident that the statistics of the accuracy, F-measure, MCC, 

ice, and Jaccard metrics, provided by the proposed segmentation 

s greater than GraphCut, Watershed, and MIS unsupervised meth- 

ds. However,in sensitivity, precision, and specificity, where MIS, 

raph Cut, and Watershed respectively tend to be very close than 

esults giving by the proposed. Quantitative segmentation results 
8 
re also summarized in Table 2 which indicates the means and 

tandard deviation of each method. As shown in Table 2 , the best 

esults are obtained by the proposed. But, MIS, GraphCut, and Wa- 

ershed approaches compete in terms of sensitivity, precision, and 

pecificity metrics. 

With regard to recent supervised methods, there is a wide 

ange of applications based on Neural Networks (Deep learning) 

hat contribute actively to fight COVID-19 pandemic [8] ; Neverthe- 
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Table 2 

Quantitative segmentation using proposed, GraphCut, Watershed [42] and MIS unsupervised 

methods on the COVID-CT-Dataset [43] . The best two results are shown in red and blue fonts. 

Quality Segmentation methods 

Proposed Graph cut Watershed MIS 

Accuracy 0.989 ± 0.00 0.972 ± 0.02 0.982 ± 0.03 0.947 ± 0.02 

Sensitivity 0.733 ± 0.16 0.530 ± 0.24 0.508 ± 0.27 0.947 ± 0.09 

F-Measure 0.714 ± 0.14 0.582 ± 0.24 0.492 ± 0.20 0.538 ± 0.20 

Precision 0.739 ± 0.16 0.808 ± 0.43 0.682 ± 0.34 0.405 ± 0.20 

MCC 0.719 ± 0.13 0.631 ± 0.30 0.533 ± 0.20 0.584 ± 0.16 

Dice 0.714 ± 0.14 0.582 ± 0.24 0.492 ± 0.20 0.538 ± 0.20 

Jaccard 0.573 ± 0.15 0.451 ± 0.23 0.349 ± 0.16 0.396 ± 0.20 

Specificity 0.994 ± 0.05 0.995 ± 0.05 0.996 ± 0.07 0.951 ± 0.03 

Table 3 

Quantitative segmentation using proposed against U-Net [27] , Attention-UNet 

[28] , Gated-UNet [29] , Dense-UNet [30] , U-Net++ [31] , and Inf-Net [32] super- 

vised methods. The best two results are shown in red and blue fonts. 

Segmentation methods Quality mertics 

Dice Sensitivity Specificity Precision 

U-Net [27] 0.308 0.678 0.836 0.265 

Attention-UNet [44] 0.466 0.723 0.930 0.390 

Gated-UNet [29] 0.447 0.674 0.956 0.375 

Dense-UNet [30] 0.410 0.607 0.977 0.415 

U-Net + [31] 0.444 0.877 0.929 0.369 

Inf-Net [43] 0.579 0.870 0.974 0.500 

Seg-Net [33] 0.705 0.852 0.954 –

BiSe-Net [34] 0.706 0.852 0.852 –

ESP-Net [35] 0.706 0.859 0.954 –

Proposed 0.714 0.733 0.994 0.739 
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ess, few of them are currently mature enough to show a viable 

mpact on the detection of the lesion [40] . The main advantage of 

hese methods lies in their ability to outperform the shallow tech- 

iques, but this comes with disadvantages such as their require- 

ent to process a large amount of sensed data. Since, they are 

omputationally expensive, and the duration of the development 

rocess is higher [41] . 

Due to the lack of annotated medical images in lung seg- 

entation, both semi-supervised and unsupervised approaches are 

ighly demanded to analyze the COVID-19 lesion [8] . The advan- 

age of the proposed method is also confirmed by Table 3 , As can

e seen, compared with U-Net [27] , Attention-UNet [28] , Gated- 

Net [29] , Dense-UNet [30] , U-Net++ [31] , Inf-Net [32] , Seg-Net 

33] , BiSe-Net [34] , and ESP-Net [35] supervised methods. The pro- 

osed yields a better segmentation results with more sensitivity, 

recision and dice. In contrast, U-Net++ provides good results and 

ompete, especially in sensitivity metric. 

.2. Subjective evaluation 

COVID-CT-Data-set [17] consists of 760 preprints of COVID-19 

T imagery, posted from January to Mars 2020. CT scans are as- 

ociated with captions describing the clinical findings. Firstly, a 

edical expert creates ground truth (GT) regarding the localization 

f the different COVID-19 lesions structures, since the clinical CT 

can images required manual annotations. This manual substruc- 

ure segmentation meets specific radiological criteria to be recog- 

ized through algorithms rather than offering a biological interpre- 

ation of the annotated image patterns. Moreover, we will use a 

mall data-set from the EL-BAYANE center for Radiology and Med- 

cal Imaging which include data CT images on ten patients one of 

hich got CT images twice. 

Fig. 8 , illustrates the qualitative comparison of the proposed 

egmentation results with the ground truths against three segmen- 

ation approaches GraphCut, Watershed, and MIS. We picked up 
9 
isparate images from the COVID-CT-Data-set and corresponding 

round truth segmented manually by a confirmed radiologist (in 

lack). After that, we applied the proposed along with GraphCut, 

atershed, and MIS segmentation methods are shown in Fig. 8 . 

he cyan, magenta, and yellow illustrate the segmentation results 

f GraphCut, Watershed, and MIS, respectively. While the red illus- 

rates the segmentation results of the proposed. 

It can be seen clearly that the COVID-19 lesions segmentation is 

lmost in exact shape with the ground truth using the proposed. 

n the other hand, GraphCut, Watershed, and MIS over-segment or 

isse some of the COVID-19 lesion areas. Take note, that the first- 

ow second-column, the Watershed method cut out, since it could 

ot correctly identify the border of a lesion region. 

Color-mapping images are the last step in our work, which will 

ssist the radiologist in picking out details, examining the severity 

evel of the infection maps, estimating quantitative values and no- 

ice patterns in the COVID-19 regions in a more intuitive fashion. 

hus, we have picked the ‘Jet’ colormap [45] that has a significant 

mpact on our case. For example, the interpretation of ‘Jet maps’ 

as been split into three (Red, Blue, Green) color parts to distin- 

uish image lesion features. Fig. 9 , illustrates six different cases of 

esion regions of COVID-19-CT data. From the first row, we can see 

hat blue and green present low to moderate risk regions. Where 

ellow and red in the last row show three high risk regions. 

.3. 3D visualization and measurements 

CT images of a total of 22 participants were retrospectively 

ollected. In this data set, 10 among which were confirmed with 

OVID-19 by radiologists. Statistical analysis showed that the lesion 

f COVID-19 in the lungs was significantly different among patients 

 Table 4 ). There were 6 cases with an infection of < (10.00%) and

 cases with > (10.00%) presenting expansion in lesions over the 

ungs. 

The effect of COVID-19 can also be seen in Table 4 , (#9 T =1 -

9 T =2 ). patient number 9 was performed a first test on April 27th, 

hen the second in Mai 7. Introducing the proposed segmentation 

o calculate the disease progression over time of the same person 

s illustrated in the ninth and tenth rows [cases (#9 T =1 -#9 T =2 )]. 

urthermore, the growth lesion was compared with the same pa- 

ient at different dates by calculating the Dice Similarity Coefficient 

DSC) the Hausdorff metric [46] . By definition, The Hausdorff dis- 

ance H(A, B ) is the maximum of h (A, B ) and h (B, A ) . Thereby, it

easures the degree of mismatch between two sets ([cases (A = 

9 T =1 - B = #9 T =2 )]) by measuring the distance of the point of A

hat is farthest from any point of B and vice versa and is defined 

s: H(A, B ) = max (h (A, B ) , h (B, A )) 

A comparison of lesion-based segmentation on the first date of 

xamination with lesion slice-by-slice segmentation on the follow- 

p date resulted in a Dice Similarity Coefficient of (5.76%) and a 

aximum Hausdorff Distance of 29.71 ± 8,59 mm. This minimal 

SC and a maximal Hausdorff distance prove that the severity of 
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Fig. 8. Visual comparison of COVID-19 infection segmentation results against GT. 

Fig. 9. Visual assessment of COVID-19 severity level of the infection segmentation. 

Table 4 

Summary of the effect of COVID-19 of nine patients by calculating the volume of the lungs and 

lesion; the last column presents the ratio in % between the volumes of lesions and lungs. 

Patient N Pateint - Info Segmentation statistics 

Lungs Lesion Ratio 

Sex Age in Vx in cm 

3 in Vx in cm 

3 in % 

1 F 34 1,076,162 3087 18,253 52.35 1.69 

2 M 41 6,899,553 3960.31 273,585 157.03 3.96 

3 F 48 6,782,980 3893.4 634,541 364.22 9.35 

4 M 60 3,839,583 2204.99 1,199,414 688.79 31.23 

5 F 67 4,682,644 2687.82 24,847 14.2621 0.05 

6 M 70 5,632,933 2197.13 1,574,386 614.09 27.94 

7 F 72 5,101,547 2006.84 1,136,467 447.06 22.27 

8 M 72 5,469,199 2944.53 142,521 76.73 2.6 

9 T=1 M 79 7,496,200 4302.79 140,203 80.4759 1.87 

9 T=2 M 79 6,621,017 3515.48 1,306,384 693.63 19.73 
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he lesion is proportional to the amount of lung tissue destruction, 

nd the lesion grows drastically in 10 days only. The effect of the 

esion is also higher, since the percentage of the lesion in voxels 

nd cm 

3 in CT scans is on the order of (1.87%) in the first test, in

omparison to (19.73%) for lesions in the second test. In addition 

o the quantitative results, we present 10 samples of segmentation 

esults in Fig. 10 of the 3D slicer segmenting by applying the pro- 

osed. However, case number ( #9 ) is the most important; this case 

as critical because it set out growth of the lesion over time. 
10 
Fig. 10 ( #9 T =1 ) was taken when the patient develops only fever 

nd a dry cough. The 3D CT scan after applying the proposed seg- 

entation clearly show a small COVID-19 lesion in red on the right 

ung of the patient. Ten days after this examination, the lesions 

row in a drastic way since the patient shows a large quantity of 

esions ( #9 T =2 ). The differential diagnosis between the two exam- 

nations showed that the lesion developed drastically, as shown in 

able (4) statistically and visually in Fig. 10 . 
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Fig. 10. 3D visualization of the segmentation results. 
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. Discussion & conclusion 

Thus far, the CT-scan imaging is a widespread, affordable, de- 

ailed screening tool that effectively helps to visualize and to ac- 

elerate the evaluation of the severity of the COVID-19 lesion. 

n this work, we presented the utility of an automated tool of 

egmentation and measurement for COVID-19 lung Infection us- 

ng chest CT imagery. The computer simulations on both data- 

ets, COVID-CT-Dataset containing (275) CT scans in addition to 

L-BAYANEs centers for Radiology data, show better segmentation 

fficiency and flexibility in comparison to the end-to-end learn- 

ng approaches as well as supervised and unsupervised meth- 

ds. The offered algorithms performance evaluated using the com- 

only used assessment scores such as accuracy, sensitivity, F- 

easure, precision, MCC, Dice, Jacquard, specificity, and Hausdorff

istance. Strengths of our work also include the potential to quan- 

ify the COVID-19 lesion, visualize the infected area, and quickly 

rack the disease changes. Moreover, the proposed approach has 

he ability to detect abnormal regions with low-intensity contrast 

etween lesions and healthy tissues. Even though our suggested 

chieved promising results, it is worth noting that there are some 

imitations. 
11 
The segmentation quality measurements require reliable ground 

ruth (GT) of the lesion mask structure; a medical expert is the 

nly person that can provide the manual segmentation that serves 

s a reference. Second, COVID-19 lesions have similar imaging fea- 

ures as pneumonia caused by other types of viruses. Due to the 

ack of laboratory confirmation of the etiology for each of these 

ases, we could not detect other viral pneumonia for comparison 

urposes. As future work, we consider extending the validation of 

he proposed by collecting chest CT images from various severity 

ypes of lesions through several institutions and countries. 

Furthermore, we are planning to optimize the algorithms to 

eparately pinpoint segment patterns of the lesions that are clas- 

ified as ground-glass opacity, crazy paving, and consolidation. We 

re also planning to combine imaging data with clinical manifesta- 

ions and laboratory examination results to help the better exam- 

nation, detection, and diagnosis of COVID-19. COVID-19 continues 

o spread across the world following a trajectory that is not easy to 

redict. We are hoping that (1) the proposed automatic segmen- 

ation of the COVID-19 lesion tool can use for large-scale clinical 

pplications; (2) the advanced tools will be helpful to other health 

ystems facing similar challenges, including abnormalities caused 

y other viruses and diseases. 
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