Skip to main content
. 2020 Nov 2;114:107747. doi: 10.1016/j.patcog.2020.107747

Table 3.

Quantitative segmentation using proposed against U-Net [27], Attention-UNet [28], Gated-UNet [29], Dense-UNet [30], U-Net++ [31], and Inf-Net [32] supervised methods. The best two results are shown in red and blue fonts.

Segmentation methods Quality mertics
Dice Sensitivity Specificity Precision
U-Net [27] 0.308 0.678 0.836 0.265
Attention-UNet [44] 0.466 0.723 0.930 0.390
Gated-UNet [29] 0.447 0.674 0.956 0.375
Dense-UNet [30] 0.410 0.607 0.977 0.415
U-Net+ [31] 0.444 0.877 0.929 0.369
Inf-Net [43] 0.579 0.870 0.974 0.500
Seg-Net [33] 0.705 0.852 0.954
BiSe-Net [34] 0.706 0.852 0.852
ESP-Net [35] 0.706 0.859 0.954
Proposed 0.714 0.733 0.994 0.739