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a b s t r a c t

Obesity is a major risk factor for SARS-CoV-2 infection and COVID-19 severity. The underlying basis of
this association is likely complex in nature. The host-cell receptor angiotensin converting enzyme 2
(ACE2) and the type II transmembrane serine protease (TMPRSS2) are important for viral cell entry. It is
unclear whether obesity alters expression of Ace2 and Tmprss2 in the lower respiratory tract. Here, we
show that: 1) Ace2 expression is elevated in the lung and trachea of diet-induced obese male mice and
reduced in the esophagus of obese female mice relative to lean controls; 2) Tmprss2 expression is
increased in the trachea of obese male mice but reduced in the lung and elevated in the trachea of obese
female mice relative to lean controls; 3) in chow-fed lean mice, females have higher expression of Ace2 in
the lung and esophagus as well as higher Tmprss2 expression in the lung but lower expression in the
trachea compared to males; and 4) in diet-induced obese mice, males have higher expression of Ace2 in
the trachea and higher expression of Tmprss2 in the lung compared to females, whereas females have
higher expression of Tmprss2 in the trachea relative to males. Our data indicate diet- and sex-dependent
modulation of Ace2 and Tmprss2 expression in the lower respiratory tract and esophagus. Given the high
prevalence of obesity worldwide and a sex-biased mortality rate, we discuss the implications and
relevance of our results for COVID-19.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Since the worldwide spread of COVID-19 caused by SARS-CoV-2
[1e4], epidemiological studies have highlighted obesity as a major
risk factor for development of COVID-19, disease severity, and
death [5e10]. This association is not merely due to the high prev-
alence of obesity among world populations. A meta-analysis of 75
published studies frommore than 10 countries in Asia, Europe, and
North and South America confirmed a link between obesity and
COVID-19 [9]. However, how obesity influences and contributes to
the pathophysiology of COVID-19 is hotly debateddmultiple
mechanisms have been suggested, ranging from obesity-linked
alteration in lung function, vascular health, systemic low-grade
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inflammation, altered immune response, and viral-bacterial in-
teractions [11e17].

SARS-CoV-2 uses the host cell transmembrane carboxypepti-
dase ACE2 as a receptor to enter cells [18e20]. This process relies on
the type II transmembrane serine protease TMPRSS2 to cleave and
prime the viral spike protein for cell entry [18]. Expression of both
ACE2 and TMPRSS2 in target cells is thought to be important for
viral infection. Data from single-cell RNA sequencing reveal
expression of ACE2 and TMPRSS2 in multiple cell types within the
heart, lung, trachea, esophagus, kidney, gastrointestinal tract, and
liver [21e24]. Since SARS-CoV-2 is a respiratory virus that causes
significant lung pathology [25] and is spread through person-to-
person contact [26] or aerosolized nasal droplets [27,28], viral en-
try through the respiratory tract is thought to be the major route of
infection.

In the present study, we hypothesized that obesity alters
expression of ACE2 and TMPRSS2 in the lower respiratory tract and
that these changes could potentially contribute to greater risk of
developing COVID-19. To test this, we evaluated expression of Ace2
and Tmprss2 in the trachea, lung, and esophagus of chow-fed lean
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Table 1
Age, sex, weight, total fat and lean mass, and lung weight of lean and obese mice.

Male P Female P

N 9 8 10 10
Diet Chow High-fat diet Chow High-fat diet
Age (months) 6 6.5 6 6.5
Weight (g), mean ± SEM 29.0 ± 0.45 45.2 ± 1.49 <0.0001 21.9 ± 0.76 36.5 ± 1.50 <0.0001
Total fat mass (g), mean ± SEM 4.80 ± 0.46 18.6 ± 0.94 <0.0001 2.60 ± 0.23 12.6 ± 0.98 <0.0001
Total lean mass (g), mean ± SEM 21.1 ± 0.41 20.8 ± 0.37 0.600 17.2 ± 0.44 17.1 ± 0.34 0.907
Lung weight (g), mean ± SEM 0.148 ± 0.002 0.159 ± 0.004 0.017 0.140 ± 0.005 0.156 ± 0.003 0.008
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mice and obese mice of similar age chronically fed a high-fat diet
(HFD). We observed both diet- and sex-dependent modulation of
Ace2 and Tmprss2 expression in the lower respiratory tract (trachea
and lung) and esophagus. Given the high prevalence of obesity
worldwide [29] and sex biases in COVID-19erelated death [30], this
study has relevance and implications for COVID-19.

2. Materials and methods

2.1. Mice

C57BL/6J male and female mice were housed in polycarbonate
cages on a 12-h light-dark photocycle with ad libitum access to
water and food, with no more than five adult mice per cage. Mice
were fed either standard laboratory chow (Tekland 2018SX, Envigo,
Indianapolis, IN) or a HFD (60% kcal derived from fat; D12492,
Research Diets, New Brunswick, NJ) beginning at 6 weeks of age. At
termination of the study, food was removed for 2 h before eutha-
nasia. All animal protocols were approved by the Institutional An-
imal Care and Use Committee of The Johns Hopkins University
School of Medicine (Protocol # MO16M431).

2.2. Body composition analysis

Body composition analyses for total fat and lean mass were
determined using a quantitative magnetic resonance instrument
(Echo-MRI-100, Echo Medical Systems, Waco, TX) in the Mouse
Phenotyping Core facility at Johns Hopkins University School of
Medicine.

2.3. Tissue collection

Whole lung, trachea, and esophagus were immediately har-
vested from euthanized mice, flash-frozen in liquid nitrogen, and
stored at �80 �C until analysis.

2.4. Quantitative real-time PCR

Total RNA was isolated from lung, trachea, and esophagus using
Trizol reagent (Life Technologies, Frederick, MD), reverse tran-
scribed using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA),
and subjected to quantitative real-time PCR analyses using
SsOAdvanced Universal SYBR Green Supermix (Bio-Rad) on a CFX
Connect Real-Time System (Bio-Rad). A total of 50 ng (lung sam-
ples) or 100 ng (trachea and esophagus samples) of reverse-
transcribed cDNA were used in each real-time PCR reaction. Data
were normalized to the average of two house-keeping genes (b-
actin and cyclophilin A) and expressed as relative mRNA levels
using the DCt method [31]. Real-time PCR primers used in this
study were: Ace2 forward, 50- TCCAGACTCCGATCATCAAGC-30 and
reverse, 50-GCTCATGGTGTTCAGAATTGTGT-3’; Tmprss2 forward, 50-
CA GTCTGAGCACATCTGTCCT-30 and reverse, 50-CTCGGAGCA-
TACTGAGGCA-3’; b-actin forward, 50-AGTGTGACGTTGACATCCGTA-
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30 and reverse, 50-GCCAGAGCAGTAATCTCCTTCT-3’; cyclophilin A
forward, 50-GAGCTGTTTGCAGACAAAGTTC-30 and reverse, 50-CCC
TGGCACATGAATCCTGG-3’.

2.5. Statistical analysis

All data are presented as mean ± SEM. Single-variable com-
parisons between two groups of data were performed using two-
tailed Student’s t-test with 95% confidence intervals (i.e. male
chow vs male HFD, in which gene expression is measured and diet
is the variable; and male chow vs female chow, in which gene
expression is measured and sex is the variable). Comparisons were
not made across two variables, for example, male chow vs female
HFD. Prism 8 (GraphPad Software, La Jolla, CA, USA) was used for
statistical analyses, and differences were considered to be statisti-
cally significant at P < 0.05.

3. Results

Age, body weight, total fat and lean mass, and lung weight of
male and female mice fed control chow or a HFD are indicated in
Table 1. As expected, five months of chronic high-fat feeding
resulted in significant weight gains and fat mass accrual in both
male and female mice relative to control chow-fed mice.

3.1. Obesity alters expression of Ace2 and Tmprss2 in lung, trachea,
and esophagus

Quantitative real-time PCR showed that in obese male mice fed
an HFD, expression of Ace2 was significantly elevated in the lung
and trachea relative to chow-fed lean male mice (Fig. 1A,C). In
esophagus, Ace2 expression did not significantly differ between
obese and lean male mice (Fig. 1E). In obese female mice, however,
expression of Ace2 in the esophagus was significantly reduced
relative to lean female animals (Fig. 1E). In contrast to Ace2
expression, Tmprss2 expression was significantly reduced in the
trachea of obese male mice relative to lean controls (Fig. 1D). In
obese female mice, Tmprss2 expressionwas significantly reduced in
the lung but elevated in the trachea compared to female lean
controls (Fig. 1B,D).

3.2. Sex differences in Ace2 and Tmprss2 expression in chow-fed
lean mice

In chow-fed lean mice, females had significantly higher
expression of Ace2 in the lung and esophagus thanmales (Fig.1A,E).
Although expression of Ace2 in trachea also trended higher in lean
females compared to lean males, the differences were not signifi-
cant (Fig. 1C). Interestingly, chow-fed female mice had significantly
higher Tmprss2 expression in the lung but significantly lower
expression in the trachea compared to chow-fed male mice
(Fig. 1B,D). Unlike in the lower respiratory tract, no sex differences
were noted in expression of Tmprss2 in the esophagus of chow-fed



Fig. 1. Expression of Ace2 and Tmprss2 in lean and obese mice. Real-time PCR analysis of Ace2 and Tmprss2 transcript levels in lung (A, B), trachea (C, D), and esophagus (E, F) of
lean male (n ¼ 9), obese male (n ¼ 8), lean female (n ¼ 10), and obese female (n ¼ 10) mice. All expression data were normalized to the average of two house-keeping genes (b-actin
and cyclophilin A). All data are expressed as mean ± SEM. *P < 0.05; ***P < 0.001.
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animals (Fig. 1F).

3.3. Sex differences in Ace2 and Tmprss2 expression in HFD-fed
obese mice

When comparing obese male and female mice, males had
significantly higher expression of Ace2 in the trachea and Tmprss2
in the lung than females (Fig. 1B and C). Obese female mice, how-
ever, had significantly higher expression of Tmprss2 in the trachea
relative to obese male mice (Fig. 1D).

4. Discussion

Our data indicate sexually dimorphic expression patterns of
Ace2 and Tmprss2 in both lean and diet-induced obese mice.
Although it is not known at present whether expression of ACE2
and TMPRSS2 in the lung, trachea, and esophagus of humans also
exhibit similar patterns of sexual dimorphism, our data have rele-
vance and implications for COVID-19.

Initial viral loads are thought to impact the severity of COVID-19.
Indeed, patients withmore severe COVID-19 have higher viral loads
in the respiratory tract (throat, bronchoalveolar lavage fluid, or
sputum) and longer viral persistence than those who experience
milder disease [32e34]. Not surprisingly, expression levels of the
viral host receptor ACE2 and cell entry-associated molecules (e.g.,
TMPRSS2) are thought to be important and relevant factors influ-
encing viral loads and infection. Although elevated expression of
ACE2 in the upper airway (nasal and olfactory epithelium) may be
linked to anosmia in patients with COVID-19 [35,36], its expression
in the lung appears to plays a crucial role in SARS-CoV-induced lung
injury in animal models [37].

Of the comorbidities associated with COVID-19, obesity consis-
tently ranks among the highest risk factors influencing COVID-19
diagnosis (>46% higher), hospitalization (113% higher), ICU
admission (74% higher), and mortality (48% higher) based on a
meta-analysis of 109,367 individuals from 75 published studies
from more than 10 countries [9]. Obesity also appears to shift
COVID-19 severity to younger ages [8]. Epidemiological data further
suggest that men have ~2.5% greater mortality due to COVID-19
than women [30].

How do sex and obesity influence the pathobiology of COVID-
19? Many host factors, both genetic and behavioral, are likely at
play, with different degrees of importance and contribution to
overall disease severity and viral persistence [11e17]. The present
study sought to address one basic questionddoes obesity alter
expression of Ace2 and Tmprss2 in the lower respiratory tract and
esophagus of male and female mice? Our data show that obese
male mice indeed had significantly higher Ace2 expression in the
lung than lean controls. Although obese female mice had compa-
rable Ace2 levels in the lung as female lean controls or obese male
mice, Tmprss2 transcript levels in the lung were significantly
reduced relative to lean controls and obese male mice.

The trachea connects the upper airway (nose and throat) to the
lung and thus represents an additional high virus-to-tissue contact
zone. In this organ, Ace2 expression was also significantly higher in
obese male mice relative to lean male controls or to obese female
mice. Together, these observations may potentially account, at least
in part, for the association of obesity with SARS-CoV-2 infection
and COVID-19 severity, as well as the male-biased mortality rate.
Interestingly, expression of Tmprss2 in trachea was significantly
lower in obese male mice relative to lean male controls and obese
female mice. It has been suggested that other cellular proteases
(e.g., furin and cathepsin B/L) may potentially be used by SARS-
CoV-2 to enter Tmprss2-negative cells [18,38]. Thus, elevated Ace2
viral receptor expression in the trachea of obese male mice, despite
95
lower expression of Tmprss2, may still favor viral entry if other
cellular proteases can substitute for Tmprss2.

Some limitations of the present study are noted, however. (1)
Only Ace2 and Tmprss2 transcript levels were assessed, and we
presumed that ACE2 and TMPRSS2 protein abundance correlated
with their mRNA levels. (2) Quantifications of Ace2 and Tmprss2
transcript levels were performed on bulk RNA isolated from whole
tissue; as such, we could not ascertain the cell source responsible
for altered expression of Ace2 and Tmprss2 in the lung and trachea
of obesemice. However, recent single-cell RNA sequencing analyses
identified type II pneumocytes and ciliated cells as the two major
cell types in the human lung that express ACE2 and TMPRSS2
[21e24]. (3) Ace2 and Tmprss2 expression levels were only assessed
in ~6-month-old mice, corresponding to young human adults.
COVID-19 mortality is significantly higher in people >70 years old
[39]. Thus, further assessment of Ace2 and Tmprss2 expression in
midlife (~1-year-old) and geriatric (~1.5-year-old) mice is
warranted.

In summary, our study provides valuable insights into dynamic
expression of the SARS-CoV-2 cell entry receptor and an important
associated protease in the context of obesity and sex. This infor-
mation will help inform our ongoing understanding of COVID-19
pathophysiology.
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