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Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is an ancestral molecule that was 

isolated from sheep hypothalamic extracts based on its action to stimulate cAMP production by 

pituitary cell cultures. PACAP is one of a number of ligands that coordinate with GnRH to control 

reproduction. While initially viewed as a hypothalamic releasing factor, PACAP and its receptors 

are widely distributed, and there is growing evidence that PACAP functions as a paracrine/

autocrine regulator in the CNS, pituitary, gonads and placenta, among other tissues. This review 

will summarize current knowledge concerning the expression and function of PACAP in the 

hypothalamic-pituitary-gonadal axis with special emphasis on its role in pituitary function in the 

fetus and newborn.

Introduction

Pituitary adenylate cyclase activating polypeptide (PACAP) is one of a number of ligands 

that coordinate with gonadotropin-releasing hormone (GnRH) to control reproduction. 

While initially identified as a hypophysiotropic factor, there is accumulating evidence that 

PACAP is primarily a paracrine/autocrine hormone in the CNS, pituitary and gonad. 

Overexpression of PACAP in the anterior pituitary in male mice delayed puberty and 

suppressed serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and 

testosterone levels as well as pituitary gonadotropin-releasing hormone receptor (GnRH-R) 

expression perhaps because pituitary folllistatin expression was markedly increased (1). On 

the other hand, PACAP knockout male mice are testosterone-deficient with relative LH 

insufficiency (2), and females are sub-fertile with lower implantation rates (3,4).

1. PACAP and its receptors.

PACAP was isolated in 1989 from sheep hypothalamic extracts based on its action to 

stimulate cyclic AMP production by rat pituitary cell cultures (5). PACAP is the most highly 

conserved member of the VIP-secretin-glucagon peptide superfamily (6). There are two 
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PACAP isoforms, a 38 amino acid form and a C-terminally truncated 27 amino acid form, 

with PACAP-38 accounting for 90% of the protein in most tissues. The human PACAP 

promoter contains two cAMP-response-like elements, a 12-O-tetradecanoylphorbol 13-

acetate-response element, two sequences that are homologous to the consensus sequence for 

pituitary-specific factor growth hormone transactivator factor-1-binding sites, and six 

binding domains for the thyroid-specific transcription factor-1 (7). Given PACAP’s effect to 

increase cAMP production, the CREs and AP1 sites in the PACAP promoter allow for a 

feed-forward mechanism in which PACAP transcription can be activated by PACAP itself 

(8) (Moore et al, Molecular and Cellular Endocrinology, in press). This mechanism, shown 

in Figure 1, likely mediates the change in expression that occurs abruptly between the fetal-

newborn pituitary (see section 6).

Because it is found in high concentration in the hypothalamus (9), is present in the median 

eminence (10), and levels in portal blood exceed those of peripheral blood (at least in the rat) 

(11), PACAP is viewed as a hypophysiotropic factor. However, the portal:peripheral plasma 

ratio for PACAP was 2:4, compared to 5:120 for GnRH (12). While PACAP is found in 

peripheral plasma (13), PACAP in the circulation is rapidly degraded with a half-life of 2 to 

10 min (14).

PACAP activates three distinct 7- transmembrane receptors: VPAC1 and VPAC2 receptors 

with relatively similar affinity for VIP and PACAP, and the highly specific PAC1 receptor 

(PAC1-R; ADCYAP1R1) [3]. There are multiple splice variants of the PAC1-R that result 

from alternative splicing of two 84 bp exons in the third intracellular loop (designated hip, 

and hop) and were named null (neither hip nor hop), hip, hop1, hop2 (a shorter version of 

hop1), and hiphop1 and hiphop2 (15). PAC1-R variants that differ from the null receptor in 

the amino-terminal extracellular domain have also been identified [5].

VPAC-1 and -2 and all PAC1_R variants bind PACAP38 and PACAP27 with high affinity, 

and like other members of the group B G-protein coupled receptor family, couple with Gαs 

to activate adenylate cyclase and increase cAMP signaling. In some cell types, PACAP 38 

>>PACAP 27 also couples with Gq/11 to stimulate IP3 production, the MAPK pathway, and 

increase intracellular calcium (16), as well as nitric-oxide synthase type I and cGMP (17). 

PAC1-R has also been shown to signal via β-arrestin1 and β-arrestin2 (18). Thus, variable 

expression and signaling of the PAC1 -R variants would be expected to produce different 

transcriptomes (7,19,20).

Consequent to the extensive distribution of the ligand and its receptors, PACAP exerts a 

wide array of functions including protection against neuronal apoptosis and retinal 

degeneration, neurotransmitter function, vaso- and broncho-dilatation, tear secretion, 

activation of intestinal motility, bladder pain and micturition, anti-inflammatory and 

antioxidant effects, immune modulation, thermogenesis, appetite suppression, and sleep and 

circadian rhythms, as well as effects on endocrine systems (21). There are PACAP effects in 

the exocrine and endocrine pancreas, hepatocytes, osteoblasts, adrenal medulla and cortex, 

testis and ovary, thyroid, pineal, hypothalamus, neurohypophysis and pars tuberalis as well 

as the anterior pituitary.
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2. Functions of PACAP as a neuropeptide

Early studies by Arimura et al (9) revealed the highest concentration of immunoreactive 

PACAP in the hypothalamus. Further research showed that PACAP is widely distributed in 

the CNS (22) in various brain regions including the cerebral cortex, amygdala, and 

hippocampus. In situ hybridization methods revealed dense labeling in the supraoptic 

nucleus (SON) followed by the anterior and posterior hypothalamic regions, the dorso-

ventromedial, and arcuate nuclei and in the tubero- and premammillary regions (23), the 

periventricular region and in the paraventricular nucleus (PVN) (24).

A series of experiment suggest that hypothalamic PACAP functions as a local activator of 

GnRH secretion. The intracerebroventricular (icv) injection of PACAP into adult male rats 

produced a small but significant increase in GnRH mRNA levels which was abolished by the 

PACAP6-38 antagonist which itself suppressed the basal hybridization signal (25). The 

GnRH neuronal line, GT1-7, was reported to express multiple PACAP receptor splice 

variants, and to respond to PACAP with an increase in cAMP production (26) and GnRH-R 

expression (27). The effect on GnRH may be through Kisspeptin neurons since Kisspeptin1 
mRNA levels were increased by PACAP38 in mHypoA-50 and mHypoA-55 hypothalamic 

cell lines although the PACAP 6-38 antagonist produced a similar effect (28).

Using in situ hybridization, we found (29) that Pacap mRNA expression in the PVN and 

pituitary vary significantly across the estrous cycle in the rat, with the greatest changes 

occurring on the day of proestrus (Figure 2). Pacap mRNA in the PVN declined significantly 

on the morning of diestrus. At noon of proestrus, there was a notable peak in PVN Pacap 
mRNA that occurred three hours before the gonadotropin surge, followed by a decline. 

Pituitary expression of Pacap mRNA also varied on the afternoon of proestrus with a 

moderate decline at the time of the gonadotropin surge and a significant increase later in the 

evening. Expression of the mRNA species encoding the 288 amino acid form of follistatin 

increased significantly following the rise in pituitary Pacap mRNA, at the termination of the 

secondary surge in Fshb gene expression.

While these observations suggest a faciliatory role for PACAP in the rat estrus cycle, in vivo 

experiments to examine the effects of exogenous PACAP or the PACAP 6-38 antagonist 

have produced variable results depending on dose and route of administration, sex and 

species (30). For example, intra-atrial or icv administration of PACAP38 stimulated LH 

release in adult male rats (31) but icv PACAP38 on the day of proestrus inhibited the release 

of LH and ovulation in rats (32) while in a second study, icv PACAP38 suppressed but 

PACAP27 enhanced the LH surge (33). Choi et al (34) reported that PAC1-R antisense 

oligodeoxynucleotide administered icv to immature female rats suppressed the prepubertal 

increases in GnRH and GnRH-R mRNA levels and delayed sexual maturation. On the other 

hand, Szabo et al found that the subcutaneous (sc) administration of PACAP to neonatal rats 

delayed vaginal opening and reduced immunoreactive GnRH in the pre-optic area in 30-day 

old rats (35).

The importance of PACAP to adult reproductive function has been demonstrated by studies 

of PACAP- and PAC-1-knockout mice which have revealed many instances of endocrine 

dysfunction as summarized in Table 1. PACAP knockout mice have substantial newborn 
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mortality. Surviving females have normal sexual maturation and estrous cycles but have 

disrupted mating behavior, a lower implantation rate with reduced fertility, and lower 

prolactin and progesterone levels (4,36). PACAP knockout males developed testosterone 

deficiency apparently because of LH insufficiency insofar as LH levels were normal or 

reduced in the setting of low testosterone. The LH activated steroidogenesis enzymes, 

testicular steroidogenic acute regulatory protein (StAR) and P450c17 were reduced. As these 

animals age (15 mo), knockout mice were protected from the germ cell depletion and 

vacuolization that was observed in w/t testes (37). Mice rendered deficient in PAC-R1 had 

increased mortality at weaning but no fertility disturbance has been noted (38,39).

PACAP is a potent suppressor of feeding behavior, by decreasing ghrelin which suppresses 

appetite, and by increasing leptin and GLP1 which increase satiety (40). PACAP also 

appears to mediate in part the effects of leptin on food intake (41) and perhaps its effect to 

enhance pubertal development and reproductive function (42). Ross et al (43) developed a 

conditional knockout model of PACAP from ventral premammillary nucleus (PMV) neurons 

that express the leptin receptor. They found delayed sexual maturation in females, disruption 

of the LH surge, and fewer pups per litter. Kisspeptin induction of LH secretion was 

unaffected. They also deleted PACAP from the PMV of adult female Adcyap1fl/fl mice with 

bilateral stereotaxic injections of an adenovirus carrying cre-recombinase, and again found 

dysregulation of the estrus cycle. They propose that PACAP plays a role in conveying the 

signal between nutrition and GnRH release.

PACAP immunoreactivity in and around magnocellular neurons and colocalization of PAC-

R by in situ hybridization in arginine vasopressin (AVP) neurons in the SON suggest a role 

for PACAP in the control of vasopressin secretion (44).

3. PACAP and its receptors in the pituitary

Although initially identified as a hypothalamic peptide, PACAP is also produced in the 

pituitary. An early immunoassay detected PACAP in the adult rat pituitary, although at much 

lower levels than in the hypothalamus, with higher levels in the posterior than in the anterior 

lobe (9). No PACAP mRNA was found in the adult rat pituitary by Northern blotting (45). 

Subsequently, Koves et al (46) used dual immunohistochemistry to localize PACAP to 

gonadotrophs, and Jin et al (47) identified PACAP mRNA using RT/PCR in pituitary 

folliculostellate (FS) cells obtained by laser-capture microdissection from adult female rats. 

FS cells are agranular and star-shaped with long cytoplasmic processes (48) that intermingle 

with and are joined to the endocrine cells by a variety of intercellular junctions (49) allowing 

for intercellular communication. Thus, PACAP in gonadotrophs could have an autocrine 

effect, and PACAP from FS cells might be a paracrine regulator of gonadotrophs.

Each of the pituitary secretory cells, as well as FS cells, express at least one form of the 

PACAP receptor (19,50,51). Studies using rat (52–54) or ovine (55) pituitary cell monolayer 

cultures revealed, however, only small effects of added PACAP on the release of PRL, GH, 

and ACTH. There are some species-specific differences, as PRL synthesis and secretion are 

substantially stimulated by PACAP in pituitary cultures from fish (56). PACAP also 

effectively stimulates the release of GH and PRL from rat GH3 cells, and ACTH from the 

mouse pituitary tumor cell line AtT-20 (57,58).
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Gonadotrophs, on the other hand, are clearly regulated by PACAP, with direct effects on 

gonadotropin secretion and subunit gene expression, and indirect effects by modulating the 

actions of GnRH. PACAP directly stimulates the release of LH and uncombined 

glycoprotein α-subunit from primary pituitary cell cultures (52,54) although the effect is less 

than that of GnRH, and desensitizes rapidly (59). Most notably, PACAP enhances LH and 

FSH secretion by pituitary cells that are stimulated with GnRH (52,60), an effect that is 

especially pronounced when pituitary cells are perifused and stimulated with pulses of 

GnRH as a model of the hypothalamic-pituitary unit. In this model, PACAP also increased 

α-subunit mRNA levels, lengthened LHb mRNA but suppressed Fshb mRNA levels (60).

Gonadotroph-derived cell lines developed by Dr. Pamela Mellon and colleagues (61) have 

been instrumental in understanding the intracellular signaling pathways through which 

PACAP regulates the gonadotropin subunit genes. αT3-1 cells, viewed as immature because 

they express gonadotropin-α but not β-subunits, also express PAC1-R at a high level with 

the hop and short variants predominating although other forms (PAC1-R hiphop and hip) 

were also observed (51). In these cells, PACAP stimulates cAMP production and activates 

inositol phosphate to increase cytosolic Ca2+(62) with the former pathway leading to an 

increase in Cga mRNA levels (62–64).

In LβT2 cells, with characteristics of differentiated gonadotrophs (65), PAC1-R expression 

is very low although PCR products are consistent with the short and the hop1, hop2 or hip 

forms (66). In this cell line, PAC1-R overexpression has been used to study PACAP 

signaling to Lhb and Fshb transcription (67) including experiments designed to understand 

differences among the various splice variants. In these cells, PACAP stimulates the Lhb 
promoter in part through cAMP-PKA (68) and increased EGR-1 (69). Stimulation of the 

Lhb promoter was more evident when cells were stimulated with intermittent PACAP pulses 

(67) perhaps because of desensitization with continuous PACAP. PACAP likewise activated 

the Lhb promoter in pituitary cultures from mice expressing a rat Lhb-luciferase transgene 

(68).

In contrast to its activation of Cga, and Lhb, PACAP stimulation of Fshb is transient in 

primary rat pituitary cell cultures, and is followed by suppression (70,71), although not in 

LβT-2 cells (66,67,71). A likely explanation for this difference involves robust stimulation of 

follistatin expression by PACAP in the normal pituitary (70) which is essentially 

undetectable in LbT2 cells (66). According to this paradigm, ongoing PACAP stimulation of 

Fshb transcription is blocked in the normal pituitary when follistatin increases, binds activin, 

and prevents the multiplicity of activin effects including up-regulation of the Fshb and Gnrhr 
genes (72). How PACAP may differentially regulate the gonadotropin subunit genes is 

shown in Figure 3, and evidence that this mechanism is important to the ontogeny of the 

gonadotropins in the fetus and newborn is summarized in Section 6.

In addition to direct effects on gonadotropin subunit genes, there is substantial cross-talk 

between PACAP and GnRH signaling pathways in gonadotrophs. PACAP has been found to 

increase GnRH-R expression (73) and to enhance GnRH-R signaling (74). Gnrhr 
transcription is increased by PACAP in LβT2 cells through CREB and SF-1 [28], and Gnrhr 
mRNA levels in αT3-1 cells are increased by PKA activation in which GnRH-stimulated IP 
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production is increased synergistically by PACAP (62). The nitric oxide pathway also 

appears to contribute to the interaction between PACAP and GnRH as both ligands increase 

nitric oxide synthase type I protein levels in rat gonadotrophs via cAMP leading to an 

increase in cyclic GMP (75).

Furthermore, effects may be amplified because GnRH increases PACAP and PAC1-R 

expression in primary pituitary cell cultures (76) as well as in LβT2 gonadotroph cells (77). 

On the other hand, GnRH blunts PACAP-induced cAMP accumulation by up to 70% in both 

αT3-1 (78) and LβT2 cells (79) in which GnRH phosphorylates PAC1-R (79).

Pituitary PACAP may play an important role in gonadotroph function in the transition from 

the fetus to newborn (Section 6) as well as in the timing of pubertal development. We 

created a transgenic model of pituitary PACAP overexpression using the gonadotropin-α 
subunit promoter (1). Male transgenic mice had delayed sexual maturation based on testis 

weight and balano-preputial separation, with delayed spermiogenesis. LH and FSH levels 

were suppressed, and GnRH-receptor expression was decreased. The effect of PACAP to 

stimulate follistatin transcription (80) may have mediated these changes. Pituitary follistatin 

expression in w/t mice declines from day 10 to day 30, and then remains stable, and there is 

a reciprocal rise in GnRH-R expression. In the transgenic mice, however, pituitary follistatin 

was substantially higher while Gnrhr mRNA was suppressed through day 40. It is likely 

follistatin binding to activin blocked activin paracrine upregulation of the GnRH-R to 

produce gonadotropin deficiency.

4. PACAP in the testes and ovaries

In addition to regulating reproduction via hypothalamic-pituitary functioning, PACAP has 

direct effects on the testis and ovaries. PACAP is present in high concentration in testis (9) 

including the human testis (81), and is primarily found in germ cells (82,83). Accordingly, 

levels increase from age 20 to 60 days in the rat, and are low when spermatogenesis is 

disrupted, e.g. by cryptorchidism (84). A shorter PACAP mRNA is expressed in the testis 

from rats, mice, bovine and humans, and reflects a novel testis-specific first exon upstream 

from the transcriptional start-site. The gene encodes a PACAP precursor with no signal 

peptide suggesting a paracrine function. The level of expression across the rat seminiferous 

tubule varies during the spermatogenic cycle, and presumably reflects a role for PACAP in 

spermatogenesis (85,86).

PACAP receptors are widely distributed in testis although localization has varied by species. 

VPAC2 binding sites in the rat predominate in seminiferous tubules by in situ hybridization 

and are implied by ligand specificity (87,88) but localized to Leydig cells in immature mice 

by immunohistochemistry (89). VPAC2 knock-out mice (both males and females) were 

healthy and fertile young adults, and produced normal sized litters, but in older males (31 

wks), VPAC2 deficiency caused diffuse seminiferous tubular degeneration with hypospermia 

and reduced fertility (90) supporting a role for this receptor in the effect of PACAP on 

spermatogenesis. Rat Sertoli cells (SC) predominantly express a unique PAC1-R splice 

variant (91). PAC1-R mRNA is found in rat Leydig cells (92) and in the clonal TM3 Leydig 

cell tumor cell line (93).
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PACAP may play a role in the function of the fetal and immature testis. PACAP simulates 

cAMP production by SC cultures from immature rats, although less effectively than FSH, 

but like FSH, PACAP stimulation becomes less potent in cultures as animals mature (94). 

Testosterone production by fetal Leydig cells is evident by E15.5 which is thought to 

precede the presence of LH in the circulation. The implication is that some factor, either 

endocrine, autocrine or paracrine activates steroidogenesis in early fetal life. To assess this 

idea, El-Gehani et al (95) examined the effects of hCG and PACAP on testosterone synthesis 

by LC from E15.5 to E21.5 pups as well as adult rats. They found that PACAP stimulates 

testosterone production far more potently in fetal than in adult LC whereas the effect of hCG 

is sustained. The presence of PACAP mRNA, albeit at a low level, in the fetal testis supports 

the idea that PACAP is an autocrine stimulator of fetal LC function. Finally, LH-receptor 

deficient males have a normal male phenotype leading to speculation that PACAP was the 

sexual differentiation factor in rats; however, PACAP knock-out males likewise have a male 

phenotype.

As noted above, PACAP knock-out males are testosterone deficient probably because of 

gonadotropin deficiency, but have normal testicular morphology (37) while PAC1-R knock-

out mice of both sexes had increased mortality at weaning but no fertility disturbance was 

noted (38,39).

Effects of PACAP on sperm have also been reported. In one study, sperm heads from 

PACAP-deficient mice were smaller, with more abnormal-shape, than in w/t littermates. In 

the same study, adding PACAP to semen samples from fertile and infertile men increased the 

motility of low -motility sperm (96). A study of PACAP and sperm quality in obesity was 

recently published (97). A high fat diet is known to reduce sperm motility, capacitation and 

oocyte membrane binding, and to increase intracellular reactive oxygen species in mice. 

PACAP i.p. daily for 4 wks partially blocked high fat diet -induced obesity in adult mice, 

and improved testis morphology and sperm function which was thought to be mediated 

through the p53 deacetylase Sirt 1 (silent information regulator 1) leading to suppression of 

apoptosis. Sirtl protein was found to be lower in sperm of those obese infertile men who also 

had decreased semen quality (97).

There is also evidence that PACAP is a paracrine regulator of ovarian function (30,98). 

Female gametogenesis begins with the differentiation of primordial germ cells (PGC) into 

oogonia and then oocytes. Akin to its role in stem cell proliferation and survival, PACAP 

immunoreactivity was identified on the gonadal ridge adjacent to the PGC surface in the 

e11-12 mouse, and PAC1-R is expressed in PGC cells in which PACAP increases cAMP 

production and promotes survival in culture. (99). When immature rats (100) or mice (101) 

are stimulated with PMSG/hCG, PACAP mRNA and protein are found in the majority of 

granulosa and cumulus cells from large preovulatory follicles, suggesting a role in ovulation. 

PACAP also inhibited the growth of preantral follicles suggesting an additional role in 

follicular recruitment (102).

RT-PCR revealed PAC1-R and VPAC2-R in rat granulosa cells whereas only VPAC1-R and 

VPAC2-R were found in thecae-interstitial cells (103). PACAP is a potent activator of cAMP 

production and estradiol and progesterone secretion by immature rat granulosa cells (104) in 
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which PACAP inhibited cell apoptosis (103). Human granulosa-luteal cells obtained at the 

time of IVF also express PACAP and VPAC1-R and VPAC2-R mRNAs that are increased by 

LH/FSH (105)

PACAP and PACAP type I receptor mRNAs are also expressed in the rat corpus luteum 

(106) in which PACAP mRNA gradually increases in pregnancy. Finally, PACAP and its 

receptors are present in human placenta (107) where it may play a role in cell proliferation 

and angiogenesis.

5. PACAP, stress and reproduction.

Stress is a major cause of reproductive dysfunction (108), and there is considerable evidence 

linking PACAP to the stress response (109). PACAP and PAC1-R are highly expressed in the 

amygdala and the bed nucleus of the stria terminalis (BNST), together with corticotropin-

releasing hormone (CRH) and other stress-related peptides (110). When adult male rats were 

exposed to a 7-day variate stress paradigm, PACAP mRNA was markedly increased in the 

BNST (111). PACAP produces stresslike effects in rats when injected icv or specifically into 

the paraventricular nucleus (PVN) or the central amygdala, and potentiates acoustic startle 

when injected into the BNST (111–114). In a comprehensive series of experiments, Eiden et 

al have shown that PACAP functions in the response to stress as a neurotransmitter to CRF-

ACTH (115), and is an activator of catecholamine synthesis and secretion (116). Restraint 

stress increased hypothalamic CRH mRNA as well as fos and Egr1 in hypothalamic sections 

from wild-type mice but not in mice deficient in PACAP (117) in which the corticosterone 

response was also partially attenuated [31]. Many lines of evidence indicate that stress 

suppresses GnRH secretion by activating the CRF system as well as sympathoadrenal 

pathways (118,119) which may be linked to effects of PACAP. For example, the 

combination of a CRF antagonist and naloxone partially restored LH secretion in female rats 

in which LH was suppressed by PACAP on proestrus (120).

PACAP may also play a role in stress-associated reproductive dysfunction through it effect 

to suppress food intake (121,122), which may indicate a role for PACAP in eating disorders, 

anxiety and depression, as well as the risk for drug and alcohol abuse (123). Furthermore, a 

SNP in a putative estrogen response element in PAC1-R has been associated with 

posttraumatic stress disorder in heavily traumatized humans (124).

6. Pituitary PACAP and the control of gonadotrophs in the fetus and newborn

Targeted pituitary PACAP overexpression in male mice (1) delayed sexual maturation 

associated with a suppression of gonadotropin subunit and Gnrhr mRNAs, and a large 

increase in follistatin expression. In male rats, there is a significant decline in pituitary 

PACAP mRNA expression between postnatal days 17 and 21 (125). This decline is 

paralleled by a significant decline in pituitary follistatin expression and a reciprocal and 

preferential rise in circulating FSH and pituitary Fshb mRNA levels. These data, 

summarized in Figure 4, support the notion that alterations in pituitary PACAP expression 

are involved in developmental changes in gonadotropin synthesis during key periods of 

sexual maturation.
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A more substantial change in pituitary PACAP expression is observed during the perinatal 

period (Figure 5). During rodent embryonic development, pituitary LH immunoreactivity is 

detectable as early as embryonic day 12 (E12) while FSH is not found until E19 or E21 

(126,127). We identified a significant and abrupt decline in pituitary PACAP expression at or 

around the time of birth (128). A coincident decrease in pituitary follistatin expression and 

reciprocal increase in FSHb and GnRH-R expression were also observed. Furthermore, in rat 

pituitary cell cultures, exposure to a potent PACAP antagonist decreased basal LH secretion 

in both pre- and postnatal cultures, decreased aGSU expression, but selectively increased 

Fshb mRNA levels only in cultures from prenatal animals. These results suggest that high 

levels of PACAP expression in the fetal pituitary preferentially suppress FSH synthesis 

through stimulation of follistatin expression. This hypothesis is supported further by the 

observation that pituitary PACAP expression is significantly higher in postnatal day 1 

females when compared to males, and their post-natal rise in FSH secretion (129) and FSH 

expression is delayed.

In subsequent experiments designed to identify potential factors that could inhibit pituitary 

PACAP expression during the perinatal period, we identified activation of dopamine-2 

receptor (Drd2) signaling as a mechanism that may explain the pronounced and abrupt 

decline in PACAP expression in the perinatal pituitary (130). Drd2 is present on the 

membranes of rat gonadotrophs, and Drd2 mRNA was detected in individual gonadotrophs 

from postnatal day 1 rats (130,131). In cultures of E19 rat pituitaries, adding the Drd2 

agonist, bromocriptine, significantly reduced PACAP mRNA expression in a dose-dependent 

manner. Conversely, daily subcutaneous injections of the dopamine antagonist, haloperidol 

from postnatal day 1 to 3 in rats, partially reversed the early postnatal decline in pituitary 

PACAP expression. These data suggest that the perinatal decline in pituitary PACAP may be 

mediated by the dramatic increases in brain dopamine levels which occur just prior to the 

time of birth (132). This sequence of events is summarized in Figure 5.

Additional studies using αT3-1 and LβT2 gonadotroph cells were performed to address the 

mechanism by which Drd2 signaling may suppress PACAP expression. Drd2 mRNA and 

peptide are present in αT3-1 and LβT2 cells (133,134). Furthermore, αT3-1 cells express 

high levels of PACAP and PAC1-R mRNA whereas LβT-2 cells express low levels of PAC1-

R and PACAP is nearly undetectable (51,66,135,136) mimicking the differences in PACAP 

expression observed in late fetal and early postnatal pituitaries (128). In αT3–1 cell cultures, 

the Drd2 agonist, bromocriptine, produced a dose- and time-dependent decrease in PACAP 

mRNA levels and suppressed the activity of a transiently transfected PACAP promoter-

reporter construct (130). Arimura and colleagues discovered PACAP based on its ability to 

stimulate cAMP production in the pituitary, and PACAP is known to stimulate its own 

production through a cAMP response element in the PACAP promoter (Moore et al., in 

press). Bromocriptine also decreased PACAP-stimulated cAMP production in αT3–1 cells 

suggesting that Drd2 coupling to Gαl, and the resultant inhibition of adenyl cyclase activity, 

may be the signal that interrupts a feed-forward mechanism in which PACAP will self-

regulate and maintain high levels of pituitary PACAP expression until interrupted by Drd2 

signaling at the time of birth. More studies are needed to confirm this hypothesis.
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7. Summary and future considerations

PACAP is an ancestral protein which functions as a paracrine regulator in the CNS, pituitary 

and gonads, and may be a hypophysiotropic factor. Many intriguing findings have been 

summarized in this chapter, yet there are substantial knowledge gaps in understanding 

PACAP’s role in reproduction. While many studies demonstrate in vitro effects, some 

observations are inconsistent or contradictory, and there are few in vivo studies in which 

there are sex- and species-differences. The diversity in PACAP actions is partly due to its 

multiple receptors and signaling pathways which extend its therapeutic potential but raise 

suspicion about the impact of lack of specificity. Moreover, the wide distribution and actions 

of the peptide and its receptors can limit the interpretation of results. Specifically, neonatal 

mortality and sensitivity to stress in global PACAP knock-out mice may have mediated 

many of the reported negative effects on reproduction, and tissue-specific knock-out models 

are needed. The role of PACAP in the estrus cycle remains to be defined. Our results suggest 

that PACAP may be especially important in the fetus. Perhaps the strongest evidence 

identifies a PACAP feed-forward mechanism that controls gonadotropin subunit and Gnrhr 
gene expression through follistatin and activin signaling in the fetal-newborn transition, at 

least in rodents. While PACAP may be involved in a wide array of human diseases from 

neurodegenerative disorders to cancer, there are presently no human disease conditions that 

are clearly linked to PACAP or its receptors. Research on this important molecule continues 

in a wide variety of biological systems.
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Highlights

1. While originally identified as a potential hypophysiotropic factor, PACAP and 

its receptors are co-expressed in the pituitary and gonads, implying a 

paracrine role in reproductive functioning.

2. PACAP stimulates expression of each of the gonadotropin subunit genes 

while pronounced stimulation of follistatin blocks activin signaling to 

suppress FSHb-and GnRH-R expression.

3. PACAP stimulates its own promoter through a cAMP mechanism establishing 

a feed forward mechanism allowing for rapid changes in expression levels.

4. Pituitary PACAP and follistatin expression decline rapidly at or around the 

time of birth in rodents allowing GnRH-R and FSH-b expression to increase 

and initiate sexual maturation.
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Figure 1. 
PACAP receptor second messenger signaling in pituitary cells. The schema describes a 

paracrine/autocrine feed-forward mechanism to maintain a high level of PACAP in the fetal 

pituitary. PACAP and PAC1-R in gonadotrophs and folliculostellate cells likely contribute to 

the autocrine/paracrine system. The mouse PACAP promoter is depicted with three AP1 

sites (−948, −448, −275) and two CRE sites (−205, −179).

Winters and Moore Page 21

Mol Cell Endocrinol. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Pattern of PACAP expression in the hypothalamus (PVN), anterior pituitary, and ovaries 

during the rat estrus cycle. PACAP expression increases in the PVN just prior to the rise in 

GnRH in the preoptic area which initiates the surge in serum LH and FSH. PACAP 

expression in the pituitary rises prior to a decline in FSH secretion. PACAP expression in the 

ovary rises in response to the proestrus surge in circulating gonadotropins, and soon 

thereafter serum progesterone increases. Abbreviations: MET Metestrus; DI Diestrus; PRO 
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Proestrus; EST Estrus; E2 estradiol; P4 progesterone. a: Schirman-Hildesheim, 2005 (150), 

b: Moore, 2003 (151) c: Ozawa, 2005 (152), d: Smith, 1975 (153), e: Ko, 1999 (154).
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Figure 3. 
A model for the mechanism by which PACAP differentially regulates gonadotropin 

expression. Experiments using primary pituitary cell cultures and/or immortalized 

gonadotroph cell lines have shown that PACAP directly stimulates transcription of each of 

the gonadotropin subunits, enhances GnRH-stimulated expression of α-subunit and LHb as 

well as expression of PACAP and the PAC1 receptor. PACAP also stimulates expression of 

GnRH-R and enhances GnRH signaling. On the other hand, PACAP suppresses Fshb and 

GnRH-R expression indirectly by stimulating follistatin (FST) expression in gonadotrophs 

and folliculo-stellate cells, which neutralizes stimulation of Fshb and GnRH-R by activin.
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Figure 4. 
Hypothalamic (PVN) and pituitary PACAP expression in the male rat during early 

maturation. PACAP expression in the PVN and pituitary decrease significantly between 

postnatal days 17 and 29. There is parallel decrease in pituitary follistatin (FST) expression 

and a reciprocal rise for the gonadotropin subunits (LHb and Fshb) and GnRH-R.
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Figure 5. 
Schematic representation of a model elucidating the possible role of pituitary PACAP 

expression in the ontogeny of sexual development in the perinatal period. In late fetal life, 

pituitary PACAP expression is very high and stimulates expression of αGSU and LHb. 

PACAP stimulation also produces high levels of follistatin that effectively block activin 

signaling to GnRH-R and fshb. As the hypothalamic dopaminergic system develops, 

increased dopamine exposure activates type 2 dopamine receptors (Drd2) and thereby Gαi 

which suppresses cAMP production and block the PACAP-stimulated cAMP feed-forward 
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mechanism. As PACAP signaling declines, follistatin production is reduced, and activin is 

freed to stimulate GnRH-R and FSH synthesis, among other genes. The top graphs depict 

the rep orted changes in brain levels of GnRH (155), PACAP (156) and dopamine (132).
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Table 1.

Endocrine changes with PACAC genetic manipulation

Reproductive Function

PAC1R-KO Disrupted estrus cycle Jamen, 2000 (38)

PACAP-KO Testosterone deficient with LH insufficiency Lacombe, 2006 (37)

Delayed testicular aging Lacombe, 2006 (37)

Abnormal sperm shape and size Brubel, 2012 (96)

Sub-fertile females Isaac, 2008 (36)

Decreased progesterone and prolactin levels during pregnancy Isaac, 2008 (36)

Reduced uterine implantation rates Shintani, 2002 (4)

Lpr+ PMV neurons Delayed female sexual maturation Ross, 2018 (43)

Disruption of LH surge Ross, 2018 (43)

Low pup number per litter Ross, 2018 (43)

αGSU-PACAP Delayed male sexual maturation Moore, 2012 (1)

Lifelong suppressed gonadotropins Moore, 2012 (1)

glucose homeostasis

PAC1R-KO Glucose intolerance Winzell, 2007 (137)
Persson, 2002(138)

impaired insulin secretion Winzell, 2007 (137)

Decreased glucagon secretion Winzell, 2007 (137)
Persson, 2002(138)

Less body wt & white adipose tissue Hypoinsulinemia Tomimoto, 2008 (139)

Increased insulin sensitivity Tomimoto, 2008 (139)

PACAP-KO Microvesicular fat accumulation in Gray, 2001 (140)

liver, skeletal muscle and heart increased triglycerides and cholesterol Gray, 2001 (140)

increased insulin and hypoglycemia Gray, 2001 (140)

impaired thermoregulation Gray, 2002 (140)

Susceptibility to insulin-induced hypoglycemia, and related death Hamelink, 2002 (141)

β-cell overexpression Increased insulin secretion Yamamoto, 2003 (142)

Improved insulin sensitivity in high fat diet-induced diabetes Tomimoto, 2004 (143)
Sakuri, 2012 (144)

Stress Response

PAC1R-KO Reduced contextual fear conditioning Otto, 2001 (145)

Impaired hippocampal long-term potentiation Otto 2001 (146)

PACAP-KO Lack of stress-induced CRH upregulation Agarwal, 2005 (112)

Disrupted stress-induced catecholamine release from splanchnic nerves. Stroth, 2010 (147)

Impaired stress-induced ACTH secretion Stroth, 2010 (147)

Reduced stress-induced corticosterone secretion Stroth, 2010 (147)

Impaired stress-induced adrenal steroidogenesis Stroth, 2010 (147)

Feeding Behavior

PAC1R-KO Reduced POMC expression in the arcuate nucleus Mounien, 2009 (148)
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Reproductive Function

Increased postprandial ghrelin Vu, 2015 (40)

Decreased postprandial GLP-1, insulin and leptin Vu, 2015 (40)

Loss of PACAP-induced reduction in food intake Vu, 2015 (40)

PACAP-KO Reduced carbohydrate intake Nakata, 2004 (149)

Impaired leptin-stimulated adipose tissue sympathetic nerve activity Tanida. 2013 (41)

reduced food intake and body weight Nakata, 2004 (149)

reduced body weight Gray, 2001 (140)
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