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Visual evaluation of electroencephalogram (EEG) for Interictal Epileptiform Discharges (IEDs) as 

distinctive biomarkers of epilepsy has various limitations, including time-consuming reviews, 

steep learning curves, interobserver variability, and the need for specialized experts. The 

development of an automated IED detector is necessary to provide a faster and reliable diagnosis 

of epilepsy. In this paper, we propose an automated IED detector based on Convolutional Neural 

Networks (CNNs). We have evaluated the proposed IED detector on a sizable database of 554 

scalp EEG recordings (84 epileptic patients and 461 nonepileptic subjects) recorded at 

Massachusetts General Hospital (MGH), Boston. The proposed CNN IED detector has achieved 

superior performance in comparison with conventional methods with a mean cross-validation area 

under the precision–recall curve (AUPRC) of 0.838 ±0.040 and false detection rate of 0.2±0.11 per 

minute for a sensitivity of 80%. We demonstrated the proposed system to be noninferior to 30 

neurologists on a dataset from the Medical University of South Carolina (MUSC). Further, we 

clinically validated the system at National University Hospital (NUH), Singapore, with an 

agreement accuracy of 81.41% with a clinical expert. Moreover, the proposed system can be 

applied to EEG recordings with any arbitrary number of channels.
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1. Introduction

Epilepsy is the fourth most common neurological disorder in the world, with about 70 

million affected.1 It is characterized by enduring predisposition to recurrent unprovoked 

seizures. The routine scalp electroencephalogram (EEG) is widely explored as a 

fundamental medical test for diagnosis of epilepsy.2–7 Diagnosis based on ictal or seizure 

events is time-consuming due to their low frequency of occurrence. Paroxysmal 

abnormalities in EEG or Interictal Epileptiform Discharges (IEDs) are unique biomarkers of 

epilepsy.8 According to the International Federation of Societies for Electroencephalography 

and Clinical Neurophysiology (IFSECN), IEDs are defined as transients distinguishable 

from background activity, with a characteristic spiky morphology, typically, but neither 

exclusively nor invariably, found in interictal EEGs of individuals with epilepsy.9 These 

transients play a crucial role in the diagnosis and treatment of epilepsy.10

The current gold standard of identifying IEDs is the visual inspection performed by experts. 

This is a time-consuming, tedious, and subjective process.6 Therefore, the development of 

an automated, efficient IED detection is necessary to improve patient care. Various 

approaches to IED detection have been proposed in the literature, namely, mimetic analysis, 

parametric modeling, template matching, neural networks, and wavelet-based ones.3 In 

Table A.1, we have tabulated the IED detection literature chronologically. It is infeasible to 

compare the different methods in the literature due to the lack of a standard IED dataset, 

diverse IED feature definitions, lack of clinical validation, and distinctive performance 

evaluation characteristics. Most studies in the literature are only validated on a small 

database of IEDs, e.g. 1491 (19 patients),11 469 (eight patients),12 101 (one patient),13 482 
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(eight patients),14,15 etc. Moreover, the computational complexity of the methods is not 

reported. The development of a robust and reliable automated or semi-automated IED 

detection remains a necessity, yet challenging problem.

In the recent years, Convolutional Neural Networks (CNNs)16 have shown to achieve higher 

efficiency for epilepsy diagnosis and monitoring: seizure detection,17,18 EEG classification,
4,5,19 and IED detection.20–22 Deep networks can detect latent structures or features from the 

raw data, thereby reducing the dependency on handcrafted features. There is only a limited 

number of studies investigating the deep learning technique of CNN for IED detection. Le et 
al.11 have proposed a Deep Belief Network (DBN) for detecting IEDs. Tjepkema-

Cloostermans et al. developed a CNN-based IED detector that achieved a sensitivity of 

47.4% for specificities of 98% (epileptic EEGs) and 99% (nonepileptic EEGs) on a dataset 

of 100 subjects (with 1815 annotated IEDs).21 Both have been evaluated only on a small 

dataset, thereby making it unreliable. Clarke et al. employed a two-dimensional (2D) CNN 

for identifying epileptic events in patients with idiopathic generalized epilepsy (24-h 

ambulatory outpatient EEG recordings).22 The system has attained a false positive (FP) rate 

of 1.16 per minute for a sensitivity of 96.7%.

In this study, we develop a one-dimensional (1D) CNN-based IED detector and compare the 

performance with the various traditional classification algorithms, namely, k-Nearest 

Neighbors (k-NN),23 Classification and Regression Tree (CART),24 Support Vector Machine 

(SVM),25 Linear Discriminant Analysis (LDA),26 and Ensemble AdaBoost27 method (a 

popular boosting algorithm based on LDA, k-NN, and CART). We compare the various 

classification algorithms by performing five-fold cross-validation on the dataset of 554 

subjects (18,164 annotated IEDs) recorded at Massachusetts General Hospital (MGH), 

Boston. The proposed IED detector has shown superior performance compared to the 

traditional approaches with a mean false positive rate of 0.2 per minute for a sensitivity of 

80%. Further, this study considers EEG data from multiple institutions and also expert 

annotations from different institutions. We evaluate the proposed system on two other 

datasets from the Medical University of South Carolina (MUSC), USA, and National 

University Hospital (NUH), Singapore. For the MUSC and NUH datasets, the IED 

annotations have been performed independently by different sets of academic and clinical 

experts. We also evaluate the detector on the EEGs of individual patients and verify whether 

it detects IEDs in the correct channels. The IED channel localization is essential to aid in 

determining the epilepsy syndrome as well as help to determine the epileptic foci.10 As far 

as we know, such a study has not yet been reported in the literature.

In a preliminary study from 2016, we proposed a 1D CNN for IED detection, achieving an 

area under the receiver operating characteristic curve (AUC) of 0.947 on a small dataset of 

five EEGs.20 In 2018 we reported results for an improved 1D CNN algorithm for IED 

detection, achieving a false positive rate of 2.38 per minute for a sensitivity of 80%.4 In that 

study, we also proposed an automated system to classify IED EEGs versus non-IED EEGs 

that achieved a five-fold cross-validation accuracy of 83.86% and an AUC of 0.87. In a 

parallel work to this study, a 2D CNN for IED detection was proposed (SpikeNet), and it 

was applied for EEG classification that achieved an AUC of 0.98.5 In this study, we improve 

the 1D CNN IED detection system and validate it on multiple sizable datasets from different 
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institutions. This study might be the first cross-institutional assessment of automated IED 

detection. We assess the sensitivity and false positive rate of the proposed IED detector, and 

also verify whether it is able to reliably localize IEDs on the scalp.

The rest of the paper is organized as follows: we describe the EEG datasets in Sec. 2.1, the 

data preparation and preprocessing in Sec. 2.2, and the different methodologies adopted to 

train and evaluate the IED detector in Secs. 2.3 and 2.4. In Sec. 3, we illustrate the results 

and observations. Further, in Sec. 4, we discuss the effectiveness of the CNN detector in 

comparison with the literature. In Sec. 5, we summarize the study and propose the future 

scope of the study.

2. Methods

2.1. Clinical scalp EEG

We analyzed 554 scalp EEG recordings from 545 subjects (84 epileptic patients with 

annotated IEDs and 461 nonepileptic EEGs). The data were recorded during clinical care 

(see Table 1) according to the International 10–20 electrode system at MGH, Boston, USA. 

The study was approved by the MGH Institutional Review Board (IRB) with a waiver of 

informed consent. The epileptic dataset contains data from 43 males (aged 35.2±27.2 years) 

and 41 females (aged 37.1±28.21 years). A total of 14,170 IED events (along with the 

channel labels of occurrence) are annotated by two neurologists, independently. The 

annotation was performed with the aid of Neuro-Browser (NB) software.28 We consider the 

waveforms with majority agreement (both the annotators) as IEDs. The IEDs were annotated 

in an exhaustive manner, i.e. the annotators have tried to annotate all the IEDs in the EEGs 

by reviewing the complete EEG recording. Consequently, a single IED event could occur at 

multiple channels. We have 14,170 IEDs events with a total of 18,164 IEDs. The inter-IED 

annotation time window was set as 250ms (32 samples), i.e. only IEDs with a separation of 

32 samples are annotated.

In addition, we evaluate the performance of the proposed IED detector on two other datasets 

from the MUSC29,30 and NUH, Singapore. The MUSC dataset consists of 200 30-s scalp 

EEG segments extracted from a library of 1000 routine EEGs performed in the MUSC 

Neurophysiology Laboratory for clinical purposes between 2010 and 2011. These 200 

segments consisted of IEDs, difficult-to-interpret IEDs, benign paroxysmal activity, and 

random EEG segments from nonepileptic EEGs.29,30 The data were recorded at different 

sampling frequencies: 200, 250 and 512Hz. This study was performed according to the IRB 

approval from MUSC and Clemson University. The MUSC dataset was annotated in two 

phases with the EEGnet software.31 In Phase 1, 35 annotators viewed EEG segments and 

indicated the presence of all IEDs using a Web-based EEG annotation system.29 A total of 

573 IED instants were annotated by at least one expert. In Phase 2, 235 selected IEDs 

(which were marked by at least two experts) were reannotated by 18 experts on a five-point 

Likert scale as either (1) definitely not an epileptiform discharge, (2) not likely an 

epileptiform discharge, (3) not sure, could go either way, (4) likely an epileptiform 

discharge, or (5) definitely an epileptiform discharge.30
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The NUH data consists of 75 routine scalp EEGs recorded during the routine clinical care at 

NUH, Singapore (see Table 2). The study was approved by the National Health Group 

(NHG) Domain-Specific Review Board (DSRB). The data consists of 75 epileptic EEGs 

with 43 males (aged 58.75±18.38 years) and 32 females (aged 63.85±17.76 years) recorded 

at a sampling frequency of 256Hz. We have performed the clinical validation of the 

proposed system with the NUH dataset. The NUH data were evaluated with the IED 

detector, and the results are cross-evaluated by a clinical neurologist. The detected IED 

segments are displayed to the clinical neurologist as a 11-s 19-channel EEG segment 

(typical clinical setting) in a bipolar longitudinal montage with the identified IED at the 

center. The clinician annotated the segments on a scale of 1–10, with 1–3 indicating a 

definite misdetection, 4–6 indicating uncertain segment, and 7–10 indicating a highly certain 

IED.

2.2. Data preparation

We apply the following EEG preprocessing steps: a Butterworth notch filter (fourth-order) of 

60Hz (USA)/50Hz (Singapore) to remove the electrical interference, a Butterworth 1-Hz 

high-pass filter (fourth-order) to remove the DC shift and baseline fluctuations, 

downsampling to 128Hz, and the Common Average Referential (CAR) montage. We also 

performed an artifact rejection based on noise statistics (adapted from recording stability 

analysis32). First, we divided the data from each channel into consecutive segments of 1s 

and computed the root-mean-square (RMS) value for each segment. For each channel data, 

the segments that exhibited a higher RMS value than a threshold were identified as noisy 

ones. The noisy segment was suppressed, i.e. the values were made to zero. If more than 

five-channels of EEG was found to be noisy, then the entire 1s of 19-channel EEG data were 

discarded. This mechanism helps us to remove localized artifacts such as electrode popping, 

faulty electrode contacts, undesired glitches, etc. The threshold was set as median

+4×standard deviation of the RMS values.

We extracted the IED segments and non-IED segments to train the IED detectors. Each 

annotated IED was extracted as a 500-ms (64 samples) waveform. The IEDs are annotated at 

random locations by the neurologists. To ensure the 500-ms window covers the IED and the 

associated events, we realign the EEG segments containing IED waveforms manually. The 

background EEG waveforms (or the non-IEDs) were also extracted from the IED-free EEGs 

as 500-ms waveforms with an overlap of 75%. We considered only nonepileptic EEGs to 

extract background waveforms since there is a possibility of overlooked epileptiform events. 

There is a high probability for the IED event to occur at multiple channels. While evaluating 

the performance of the system, considering the multiple channel occurrences of a single IED 

event as different data points might skew the performance indices. Consequently, we applied 

all the annotated IED waveforms for training, while the testing performance indices are 

computed based on IED time instants.

The IED detectors were evaluated according to the five-fold cross-validation. We divided the 

entire dataset EEG-wise into five folds at random by keeping the IED count, age, and gender 

distribution consistent over the different folds. We have also made sure that the multiple 

recordings from the same patient are added into the same fold. The details regarding the 
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different folds are presented in Table 3. We have observed the ratio of IED events to non-

IED events to be approximately 1:650 based on the MGH dataset annotations. Each fold 

contains about 90 nonepileptic EEGs; consequently, each testing set contains approximately 

1.25 million background events extracted with an overlap of 75%, typically representing the 

real-world scenario. The entire block diagram of the proposed approach is illustrated in Fig. 

1 (training) and Fig. 2 (evaluation).

2.3. CNN-based IED detector

CNNs are multi-layered feed-forward neural networks.16 The weights of the network are 

updated through the process of error backpropagation. It consists of a combination of the 

following types of layers: the input layer, convolutional layer, rectified linear unit (ReLU) 

layer, pooling layer, and fully connected layer. Multiple parameters can be optimized for the 

CNN network, which leads to many possible configurations. The major parameters for a 

CNN network design include the number of convolutional layers, number of convolution 

filters, the dimension of convolution filters, number of pooling layers, number of fully 

connected layers, activation function, number of hidden layer neurons, dropout probability, 

and number of training iterations. The CNN was implemented with TensorFlow 1.2.133 

utilizing a K80 Tesla graphical processing unit (GPU) on Ubuntu 16.04.

The CNN IED detector is trained and evaluated at the waveform level, i.e. each IED detector 

is trained to identify whether a single-channel EEG segment (1×64 segments) is an IED. The 

set of extracted IED and background waveforms are applied to train the CNN IED detector. 

Initially, the convolution operation is performed by convolving the EEG segment with a 1D 

filter to capture the temporal information of the EEG signal and passed through the output 

function to form the feature map. Here, the output function is selected as the ReLU. Next, a 

max-pooling layer is applied for dimensionality reduction. The generated features from the 

convolutional layers are applied to the fully connected hidden layers. Finally, the CNN 

output layer was mapped to [0,1] by applying a softmax layer, with “1” indicating an IED 

detection with high confidence (certainty). An illustration of the CNN model applied in this 

study is provided in Fig. 3.

In order to prevent negative class overfitting due to the class imbalance, we applied balanced 

training, i.e. the IED-to-background ratio was maintained as 1:1. We also employ dropout 

and batch processing to optimize the CNN network and to avoid overfitting. In dropout, the 

weights of a certain percentage of the fully connected layer were dropped at each training 

iteration to prevent potential overfitting. The two classes, IED and non-IED waveforms, are 

heavily skewed. In batch processing, the training class ratio is maintained as 1:1, but the 

training set is continuously replaced after a prefixed number of iterations (10 iterations). We 

also applied a negative sampling technique to improve the IED training process, i.e. we 

extracted the background waveforms that were most similar to the IEDs. The entire 

background set contains approximately 99% of highly certain or easily separable 

waveforms. We employed a CNN IED detector trained on random backgrounds to separate 

the IED-like negative samples or “false positive” backgrounds. Later the training was 

performed based on the extracted FP background set.
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The hyperparameters of CNN and the training termination criteria were optimized in a brute 

force manner with nested cross-validation on the training dataset: 75% for training and 25% 

for validation. The CNN training termination criteria are dependent on the validation error. 

As a result, we need a separate validation set in order to evaluate the different sets of 

hyperparameters. Consequently, we divide the validation set into two: one for training 

termination criteria (Validation Set 1), and the other for the hyperparameter selection 

(Validation Set 2). For each fold, the network was trained until the network attained a 

particular patience level. The patience-level threshold was set at 25. Each time when there 

was no improvement in the validation loss over five consecutive iterations (the improvement 

threshold was set as the learning rate 10E−4), the patience variable was incremented. Later, 

we evaluate the performance of the trained CNN on Validation Set 2. This process is 

repeated for the different sets of CNN hyperparameters, and the set that produces the best 

performance is chosen as the optimized hyperparameter set. Table 4 details the different 

optimized parameters applied for CNN. We consider the cross-entropy as the error function 

for the training and validation of the CNN architecture.

After applying the CNN IED detector, we obtain 19 outputs (different EEG channels) for a 

single EEG time instant. Next, we combine these 19 outputs by considering the maximum of 

the 19-channel outputs to produce a single output value. When the output value is above a 

threshold, an IED occurrence is identified. In our analysis, the training is performed on all 

IEDs in the training set (including the multiple occurrence of an IED), whereas the 

evaluation is only performed on the IED events.

2.4. Performance assessment

We compare the CNN IED detector with traditional classifier-based IED detectors: k-NN,23 

CART,24 SVM,25 LDA,26 and Ensemble AdaBoost27 method (LDA, k-NN, and CART). We 

apply the same pipeline as well as data cross-validation for evaluating the different 

classifiers. The different parameters of the traditional classifiers (see Table B.1) are 

optimized by applying Bayesian optimization34 (five-fold cross-validation). We investigate 

the performance of IED detectors based on the measures listed in Appendix C. Since the 

different classes are heavily imbalanced, we assess the performance of the classifiers by 

means of area-related measures, namely, AUC and area under the precision–recall curve 

(AUPRC). At times, area-related measures also could be misleading. Consequently, we 

evaluate the false positives per minute values for fixed sensitivity values. After evaluating 

the IED detection performance, we also evaluate whether the IEDs are detected at the correct 

channels. Specifically, we compare the channel labels annotated by the experts with the 

channel labels predicted by the IED detector. This was also performed as part of the five-fold 

cross-validation, where the CNN threshold was chosen to be 0.5. Moreover, we investigate 

the performance of the IED detector for each EEG; concretely, we report how many of the 

IEDs were detected by the CNN algorithm.

We also evaluate IED detectors trained on the MGH dataset on the MUSC and NUH 

datasets. Here, we evaluate the datasets by applying a sliding window of 75%, and no 

realignment for the IEDs is performed. In the MUSC dataset analysis, we set a threshold of 

4 (as annotations 4 and 5 indicate a confirmed IED) on the mean annotator consensus value 
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on Phase-2 annotations and evaluate the performance of the IED detectors in comparison 

with the performance of the 35 experts. The detection window was set as 1s, i.e. the 

detections separated by 1s or less were considered the same detection. In the NUH data 

analysis, we evaluate the EEGs with the CNN IED detector and randomly extracted IED 

events with higher certainty (CNN prediction value greater than 0.4). These IEDs are later 

scored by an expert (Rahul Rathakrishnan) at NUH. Finally, we investigate the relevance of 

features that defines an IED. We investigate the common morphological features of IEDs 

(see Fig. 4), i.e. amplitude (peak, rise, and fall amplitudes), duration (rise and fall durations), 

and slope (rise and fall slopes) features.35 CNNs have been proved to learn sophisticated 

features without supervision. Here we apply the time-series EEG waveforms as the input to 

the CNN. We compare the feature relevance by evaluating the correlation with the CNN 

output. The relevance was computed for each cross-validation fold separately, and the results 

were averaged.

3. Results

3.1. CNN IED detector

The five-fold cross-validation AUC and AUPRC results for the IED detectors are presented 

in Table 5. The AUC values are high for all the IED detectors on the MGH EEG dataset. 

This is mainly attributed to class imbalance. In such scenarios, AUPRC is more meaningful 

compared to AUC values. We discard the detectors that have achieved inferior AUPRC 

values (value less than 0.5) from further analysis.

The IED detectors based on CNN, Ensemble CART, and SVM with Gaussian kernel 

provided the best AUPRC values. Now we compare the false positives per minute for fixed 

sensitivity values for further evaluating the three IED detectors (see Table 6). The traditional 

IED detectors achieved the values of mean false positives per minute of 4.72±5.43 

(Ensemble CART) and 2.55±3.48 (SVM), whereas the CNN IED detector exhibited superior 

performance with a false positive rate of 0.2±0.11 (sensitivity of 80%). We have compared 

the different methods in the literature with the proposed CNN IED detector and the 

traditional IED detectors in Fig. 5. The proposed IED detector has exhibited superior 

performance than most of the methods reported in the literature.

3.2. Patient-wise assessment of the IED detector

We investigate here the sensitivity of the CNN IED detector for each individual EEG 

(patient) separately. Specifically, in Fig. 6, we show the true positives versus the total 

number of IEDs (ground truth) for the 93 annotated EEGs. For the great majority of the 

EEGs, most IEDs were detected by the CNN algorithm (see sensitivities for different EEGs 

in Fig. 7). For three of the EEGs (with only one annotated IED), the IEDs were not 

identified. The median error percentage is 1.59%, and the mean error percentage is 12.9% 

[95% confidence interval (CI), 8.3–17.5%].

3.3. IED channel localization

It is important to reliably determine the location of the IEDs on the scalp. To this end, the 

IED detector needs to detect the IEDs at the correct locations. So far in our analysis, we 
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ignored this issue, since the detector aggregates CNN outputs from all channels, and decides 

based on the maximum of those outputs. Here we investigate whether the CNN outputs at 

the individual channels match the locations of the IEDs. Specifically, we evaluate whether 

the CNN IED detector has detected the IEDs at the same channel locations as annotated by 

the clinical experts. We apply the same five-fold cross-validation analysis (see Sec. 2.2), and 

we set the CNN IED detector threshold as 0.5 to make a binary decision (IED or non-IED). 

As main result of this analysis, we report that the proposed IED detector identifies the 

channel index at which the IED occurs with a sensitivity of 90.67%, i.e. 16,469 IEDs (out of 

18,164) are identified at the same channel locations as annotated by the experts. We also 

investigate the performance of channel identification for each individual EEG (patient) 

separately. In terms of patientwise assessment, the system achieves a sensitivity of 82.03% 

(95% CI, 77.02–87.05%).

3.4. Feature evaluation

We evaluated the significance of the morphological characteristics of IEDs by computing 

their correlation with the CNN output values. Concretely, we compute the Pearson 

correlation coefficient. The correlation values for the different features are illustrated in Fig. 

8. The correlation values for amplitude and slope features are positive. This suggests that the 

output of the CNN IED detector will be higher for waveforms with high amplitudes, and 

steep rise and fall slopes. The correlation values for the duration features were negative, i.e. 

detected IEDs are generally of shorter duration. We observe that the rising slope is the most 

consistent feature of an IED, as it has the most substantial average correlation and lowest 

standard deviation values.

3.5. Evaluation on MUSC and NUH datasets

We evaluated the three IED detectors (CNN, SVMG, and Ensemble CART) on the MUSC 

dataset. The results for the evaluation with mean annotator consensus of 4 are presented in 

Fig. 9 along with the individual annotator performance. The CNN IED detector achieved a 

false detection rate of 1.43 per minute for a sensitivity of 80%. The proposed IED detector 

was observed to be noninferior to most of the annotators. In the evaluation on the NUH 

dataset, we randomly selected 136 IED events with high certainty (CNN threshold greater 

than or equal to 0.4). These were cross-evaluated by an expert at NUH (Rahul 

Rathakrishnan) on a scale of 1–10. In Fig. 10, we present the CNN outputs together with the 

annotator scores. The proposed system has achieved the following agreement values (for 

different thresholds) with the expert annotations for the IED events:

• 84.55% (CNN prediction ≥0.4, annotator score ≥4);

• 81.41% (CNN prediction ≥0.5, annotator score ≥5); and

• 77.17% (CNN prediction ≥0.6, annotator score ≥6).

4. Discussion

We have developed an automated IED detector based on CNN, and compared it to standard 

classifiers including SVMG and Ensemble DT. The different IED detectors were evaluated 

by performing five-fold cross-validation with the MGH dataset of 554 subjects. Among the 
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traditional IED detectors, SVM with Gaussian kernel and AdaBoost CART performed better 

than other classifiers with mean false positive rates of 4.72 per minute and 2.55 per minute 

(sensitivity of 80%), respectively. But the proposed CNN IED detector has achieved 

considerably superior false positive rates of 0.2 per minute and 0.92 per minute for the 

sensitivity thresholds of 80% and 90%, respectively. We evaluated the IED detectors on the 

MUSC database, and the comparison results were corroborated with the five-fold cross-

validation results. Moreover, the CNN IED detector was demonstrated to be noninferior to 

the neurologists (both academic and clinical) on the MUSC dataset. The IED detector was 

clinically validated at NUH, Singapore, with an agreement of 81.41% with the consensus of 

a single clinical expert. Therefore, the proposed system performance was comparable with 

an uncorrelated expert opinion.

The proposed IED detector has achieved superior performance in comparison with the 

different methods proposed in the literature (see Fig. 5). Le et al. have proposed a DBN for 

detecting IEDs. Their study is performed on data from 19 subjects with 1491 annotated 

events. The study employs a feature extraction method in combination with a DBN and has 

achieved a mean leave-one-subject-out cross-validation (LOSO-CV) sensitivity of 76% for 

the specificity of 97.24%. The results are low for clinical application even though the testing 

is performed on an IED-to-background ratio of 1:2.11 Tjepkema-Cloostermans et al. had 

developed a CNN-based IED detector, which is shown to have achieved a sensitivity of 

47.4% for specificities of 98% (epileptic EEGs) and 99% (nonepileptic EEGs) on a dataset 

of 100 subjects (with 1815 annotated IEDs).21 The evaluation was reported for a single run, 

i.e. cross-validation was not performed. Moreover, the study does not report any benchmark 

results. Scheuer et al. have evaluated the Persyst P13 detector on a dataset of 5474 IEDs 

found within 40 long-term EEGs, 35 of which contained IEDs and achieved a sensitivity of 

43.9% for an FP rate of 1.65 per minute.36 The study also benchmarks three human 

annotators with a mean pair-wise sensitivity of 51.5% for a false detection rate of 1.99 per 

minute. Ganglberger et al. have demonstrated a similar study comparing the EpiSpike 1.5 

algorithm37 applied in the Enceveis software with ANN-based system on a dataset of 12 

long-term EEGs with 5582 annotated IEDs. The ANN-based system performed superior to 

the EpiSpike algorithm for the same false positive rate of 0.33 per minute (ANN-based 

system: sensitivity of 44.1% for a precision of 56.2%, EpiSpike: sensitivity of 34.6% for a 

precision of 58.5%). Jing et al. have achieved a 10-fold cross-validation AUC of 0.98 for 

classifying IED according to the consensus of eight annotators by applying a 2D CNN-based 

IED detector (SpikeNet5). The other performance indices are not reported for the above 

study, and therefore, a direct comparison cannot be performed. The CNN IED detector 

proposed in this paper achieved a superior mean five-fold cross-validation AUC of 0.989.

Three methods13,22,38 have been found to have reported superior performance than our 

proposed IED detector [see Fig. 5(a)]. Zacharaki et al. have evaluated the system only on a 

small dataset of 101 IEDs from a single EEG,13 whereas our proposed system has been 

evaluated on a sizeable dataset of 554 subjects with 18,164 annotated IEDs. Thomas et al. 
have performed the evaluation only on a subset of the EEG segments38 with IED-to-

background ratio of 1:5. In our study, we have considered the complete 30-min EEG 

recordings with the typical IED-to-background ratio of 1:500. Clarke et al. have developed a 

system for identifying epileptic events in patients with idiopathic generalized epilepsy who 
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underwent 24-h ambulatory outpatient EEG recording.22 Our study mainly focuses on 

developing a generalized IED detector on routine scalp EEG recordings. Our proposed IED 

detector has achieved a sensitivity of 80% for an FP rate of 0.2 per minute on a sizable 

database of 14,170 IED events. Also, we have employed one of the largest databases of 

interictal events for evaluation from multiple centers.

Moreover, a 1D CNN, as proposed in this paper, offers significant advantages over a 2D 

CNN. First of all, it contains on the order of 10–100 times fewer parameters, hence it 

requires less data and time to train. Second, since the detector is applied to each channel 

separately, it is able detect at what channels the IEDs occur, yielding important spatial 

information about the IED. Such information is harder to obtain from a 2D CNN, since only 

a single output is provided for a segment of multi-channel EEG, instead of outputs for each 

individual channel as in 1D CNN. Moreover, the proposed 1D CNN can directly be applied 

to an arbitrary number of channels, whereas a separate 2D CNN model needs to be trained 

for every number of channels; this can potentially be achieved by transfer learning. In other 

words, one would need to train a 2D CNN model for 16, 32, 64, etc. channels. In practical 

EEG recordings, the signal at a few channels might be distorted, due to a bad contact or 

other reasons. In the 1D CNN approach, such channels can readily be left out in the 

detection process, while that is far less obvious or straightforward for 2D CNN. As a last 

advantage of the 1D CNN approach, we would like to point out that it is trivial to parallelize 

the 1D CNN IED detector code on GPU, since the 1D CNN at each channel can be 

implemented on a separate core. Although the 2D CNN can also be implemented in a 

parallel fashion, it is less trivial.

The proposed CNN IED detector takes approximately 0.744 (95% CI, 0.740–0.748) for 

preprocessing and 8.180s (95% CI, 8.162–8.198) for CNN evaluation (determined from 100 

runs) for evaluating a single 30-min 19-channel routine EEG recording sampled at 128Hz. 

The above evaluation does not include the data loading overhead. An expert takes 

approximately 10min to review a 30-min routine EEG with approximately 19 electrodes. By 

contrast, the CNN IED detector can analyze the EEG within seconds, providing the 

neurologist valuable information about potential IEDs in the EEG. As a result, the proposed 

IED detector may speed up the diagnostic process. Moreover, the CNN detector can be 

operated in real time, which might prove to be useful for analyzing EEG in real time in 

neuro-ICU settings. The evaluation was performed with an Intel (R) Xeon(R) CPU E5–2630 

v4 @ 2.2-GHz CPU using Python v3.5.

This study has a few limitations. The simple artifact rejection technique applied in this study 

is only capable of removing high-amplitude noise. More sophisticated artifact rejection has 

to be employed for improving the IED detector. Moreover, we have applied a simple “max 

rule” for combining the output from the different channels into a single time-instant output. 

This typically leads to higher sensitivity at the cost of more false detections. We need to 

apply a multi-channel-based decision mechanism in order to reduce the false detections, 

similar to the Wiener filter-based method suggested by Van Eyndhoven et al.39
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5. Conclusions and Future Work

We have developed an efficient, automated CNN-based IED detector with linear complexity 

to the number of channels. The proposed IED detector was evaluated on a sizable dataset of 

554 subjects from MGH, and it achieved a false positive rate of 0.2 per minute for a 

sensitivity of 80%. The CNN IED was proved to be noninferior to neurologists by evaluating 

it on the MUSC dataset. Further, the IED detector was clinically validated at NUH with an 

accuracy of 81.41% in agreement with a single clinical expert. This system could ultimately 

aid neurologists in the diagnosis of epilepsy.

Deep learning systems have been shown to improve their performance with an increase in 

the size of the dataset. In the future, more annotated EEG data could be eventually added to 

train the system, thereby adaptively improving the performance of the detector. Detection of 

only a few unambiguous IEDs is necessary to conclude that an EEG is epileptic, from a 

clinical perspective. In the future, we plan to design a system to classify entire EEGs as IED-

free versus IED-present, leveraging on the IED detector proposed in this study. Such an EEG 

classification system may ultimately provide efficient automated monitoring of EEG 

recordings for the diagnosis of epilepsy. However, this could be challenging as the 

sensitivity of EEG classification based on IEDs is low as well the IED occurrences are 

highly subjective.7,10 Further, IED frequency has shown to exhibit certain rhythmicity with 

the occurrence of seizures.40 Certain seizure patterns are observed to contain IED patterns.5 

Moreover, the IED location is relevant in order to identify the localization of epileptogenic 

foci. Consequently, the proposed system could be useful for seizure detection and prediction, 

as well as aiding in epilepsy surgery.
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Appendix A.: IED Detection Literature

Table A.1.

Overview of IED detection studies.

EEG count

IED count

Reference EEG 
channels

Algorithm Performance measures

Sensitivity Specificity Precision FP/min

Current study 461 + 200 + 
75

1D CNN 80% — 82% 0.2

18,164 + 
235 + 136

Ensemble 
CART

80% — 30.3% 2.55

Single-
channel

SVM 80% — 29.5% 4.72
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EEG count

IED count

Reference EEG 
channels

Algorithm Performance measures

Sensitivity Specificity Precision FP/min

Jing et al.5 (2019) 9571 2D CNN AUC = 0.980

13,262 Persyst 13 AUC = 0.882

19-channel

Clarke et al.22(2019) 103 + 7

6000 + 6983

21-Channel 2D CNN 96.7% — — 1.16

Thomas et al.4 (2018) 156

18,164

Single-
channel

1D CNN 80% — 55% 2.38

Tjepkema-
Cloostermans et al.21 

(2018)

100

1815 98% 
(epileptic)

0.6 (epileptic)

19-Channel 2D CNN 47.4% 99% 
(nonepileptic)

— 0.03 
(nonepileptic)

—

Le et al.11 (2018) 19

1491

Single-
channel

DBN 87.35% 97.89% — —

Fukami et al.12 (2018) 8 Eigenvalue

469 analysis

19-channel Clustering 70.8% — 39% —

Ganglberger et al.37 

(2017)
12

5582 EpiSpike 
1.5

34.6% — 58.5% 0.33

Multi-
channel

ANN 44.1% — 56.2% 0.33

Thomas et al.38 (2017) 50

8929

Single-
channel

AP–TM 90% 85.9% 66.8% —

Le Douget et al.41 

(2017)
17

2157

Single-
channel

WT, RF 62% — 26% —

Scheuer et al.36 (2017) 40

5474 Human 
experts

51.5% 1.99

Multi-
channel

Persyst 13 43.9% — — 1.65

Johansen et al.20 (2016) 5
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EEG count

IED count

Reference EEG 
channels

Algorithm Performance measures

Sensitivity Specificity Precision FP/min

7500

Single-
channel

CNN AUC = 0.947

Carey et al.42 (2016) 6

NR

Single-
channel

NN 82.68% — 72.67% —

Rosado and Rosa43 

(2016)
NR + 3

NR + 1308 WT

Single-
channel

Fuzzy Logic 80% 70% — —

Zacharaki et al.13 

(2016)
1

101

Multi-
channel

SVM 97% 63% — 0.1

Lodder and van 
Putten15 (2014)

8 + 15

482 + 241 Self-
adapting

Single-
channel

TM 92% — — 6

Lodder et al.14 (2013) 8 + 15

482 + 241

Single-
channel

TM 90% — — 2.36

Liu et al.44 (2013) 15

142 AdaBoost

Single-
channel

classifier 95.5% 92.4% — —

Halford et al.31 (2013) 100

2571 ANN

Single-
channel

WT 65.3% 80.6% — —

Notes: CNN: Convolutional Neural Network, DBN: Deep Belief Network, ANN: Artificial Neural Network, AP: Affinity 
Propagation, WT: Wavelet Transform, SVM: Support Vector Machine, AUC: area under the receiver operating 
characteristic curve, RF: Random Forest, TM: Template Matching, NR: Not Reported, NA: Not Available and “+”: 
Multiple sets and CART: Classification and Regression Tree.
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Appendix B.: Different Parameters of the Traditional Classifiers Optimized

Table B.1.

Different parameters of the traditional classifiers optimized.

Classifier Parameters Range/Type

CART Minimum number of leaf node observations 1, max 2, N
2

Maximal number of decision splits 1, max 2, N − 1
Split criterion Gini’s diversity index, Cross-entropy

k-NN Distance measure Euclidean, Minkowski

Number of neighbors k [3, 100]

LDA Distance measure Euclidean, Minkowski

Discriminant type Linear

Delta [10−6, 103]

Gamma [0, 1]

Ensemble Aggregation method AdaBoost

Weak learners k-NN, LDA, CART

Number of weak learners [10, 500]

Learning rate [10−3, 1]

SVM Kernel Linear, Gaussian

Box constraint [10−3, 103]

Kernel scale parameter [10−3, 103]

Appendix C.: Performance Measures

We evaluate the IED detectors based on the following performance measures:

• True positives (TP). The number of true IEDs predicted as IEDs.

• False negatives (FNs). The number of true IEDs predicted as non-IEDs.

• True negatives (TNs). The number of true non-IEDs predicted as non-IEDs.

• False positives. The number of non-IEDs predicted as IEDs.

• Sensitivity/Recall. The proportion of IEDs that are correctly identified as IEDs 

from a set of IED and non-IED waveforms:

Sensitivity = TPs
TPs + FNs . (C.1)

• Specificity. The proportion of non-IEDs or background waveforms that are 

correctly classified as non-IEDs:

Specificity = TNs
TNs + FPs . (C.2)
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• Precision/Selectivity. The proportion of true IEDs in the entire set of waveforms 

that are predicted as IEDs:

Precision = TPs
TPs + FPs . (C.3)

• Accuracy. The ratio of correct predictions to total predictions made:

Accuracy = TPs + TNs
TPs + TNs + FPs + FNs . (C.4)

• F1-score. The harmonic mean of precision and recall:

F1‐score = 2 × precision × recall
precision + recall . (C.5)

• False positives per minute (false detections reported per minute or hour). It 
is the rate at which non-IEDs are misclassified as IEDs.

• Receiver operating characteristic (ROC) curve. A graphical plot between true 

positive rate (sensitivity) and false positive rate (1−specificity) for various 

thresholds.

• Precision–recall curve. A graphical plot between Precision and Recall for 

various thresholds.

• Area under the ROC curve. The area under the ROC curve is referred to as 

AUC. It gives the probability that the system labels a true IED over a randomly 

chosen non-IED as an IED. A high AUC value indicates a better system 

performance.

• Area under the precision–recall curve. The area under the precision–recall 

curve is referred to as AUPRC.
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Fig. 1. 
Block diagram of the proposed IED detector training scheme.
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Fig. 2. 
Block diagram of the proposed IED detector evaluation scheme.
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Fig. 3. 
The proposed CNN architecture with single convolutional, pooling, and fully connected 

layers applied in this study. Nf indicates the number of convolutional filters, Df the 

dimension of convolutional filters, and Nfc the number of neurons in the fully connected 

layer.

Thomas et al. Page 21

Int J Neural Syst. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Morphological features of IEDs evaluated in this study. The features are amplitude (peak, 

rise, and fall amplitudes), duration (rise and fall durations), and slope (rise and fall slopes).
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Fig. 5. 
Performance comparison of the literature with the proposed CNN IED detector and 

traditional classifier-based IED detectors: (a) sensitivity–false positive rate curves and (b) 

sensitivity-precision curves. The performances of different studies in the literature are 

illustrated as circles.
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Fig. 6. 
Comparison of the number of IEDs detected by the CNN IED detector versus the number of 

IEDs annotated by the experts for the 93 EEGs. The detections by the system are in 

agreement with the annotators for most of the EEGs.
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Fig. 7. 
IED detection sensitivity for the 93 EEGs. The sensitivity is high for most of the EEGs.
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Fig. 8. 
Correlation values of the different IED characteristics with the CNN output values.
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Fig. 9. 
(Color online) Comparison of the proposed CNN IED detector and standard IED detectors 

(SVMG and Ensemble CART) based on the precision–sensitivity curve on the MUSC 

dataset with a mean annotator consensus threshold of 4. The performance of experts is 

illustrated as circles (green).
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Fig. 10. 
Comparison between the CNN IED detector predictions with the scores of expert (Rahul 

Rathkrishnan). There is a significant agreement between the system predictions and the 

annotator consensus.
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Table 1.

Age distribution for the MGH EEG dataset (male/female).

Patient age range Routine EEG EMU ICU Total

0 to <5 2 (0/2) 3 (1/2) — 5 (1/4)

5 to <18 22 (14/8) 6 (4/2) 1 (0/1) 29 (18/11)

18 to <30 6 (2/4) 4 (0/4) — 10 (2/8)

30 to <50 5 (3/2) 3 (2/1) — 8 (5/3)

50 to <70 18 (12/6) 1 (1/0) — 19 (13/6)

>70 11 (4/7) 2 (0/2) — 13 (4/7)

Total 64 (35/29) 19 (8/11) 1 (0/1) 84 (43/41)

Note: Routine EEG (outpatient and inpatient services). EMU: Epilepsy Monitoring Unit and ICU: Intensive Care Unit.
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Table 2.

Age distribution for the NUH EEG dataset (male/female).

Patient age range Routine EEG ICU Total

18 to <30 5 (2/3) 6 (6/0) 11 (8/3)

30 to <50 4 (2/2) 6 (4/2) 10 (6/4)

50 to <70 11 (5/6) 17 (9/8) 28 (14/14)

>70 16 (8/8) 10 (7/3) 26 (15/11)

Total 36 (17/19) 39 (26/13) 75 (43/32)

Note: Routine EEG (outpatient and inpatient services). ICU: Intensive Care Unit.
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Table 4.

Different parameter values evaluated for CNN optimization.

Parameter Values/Types

Number of convolution layers 1–4

Number of pooling layers 1–3

Number of fully connected layers 1–3

Number of convolution filters 4, 8, 16, 32, 64

Dimension of convolution filters 1 × 3, 1 × 4, 1 × 5, 1 × 6, 1 × 7, 1 × 8

Number of hidden layer neurons 100, 500, 1000

Activation functions ReLu, tanh, sigmoid

Dropout probability 0.5

Size of the batch processing
2ns, ns, 

ns
2 , 

ns
4

Maximum number of iterations 20,000

Optimizer Adam

Learning rate 10−4

Measure Cross-entropy

Note: ns: Number of IEDs.
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Table 5.

The five-fold cross-validation AUC and AUPRC values for the different IED detectors.

Method AUC AUPRC

SVMG 0.988 ± 0.01 0.615 ± 0.19

SVML 0.954 ± 0.04 0.177 ± 0.10

CART 0.856 ± 0.03 0.376 ± 0.08

k-NN 0.925 ± 0.03 0.489 ± 0.01

LDA 0.973 ± 0.01 0.159 ± 0.07

Ensemble CART 0.991 ± 0.00 0.730 ± 0.10

k-NN 0.908 ± 0.03 0.121 ± 0.01

LDA 0.971 ± 0.01 0.431 ± 0.13

CNN 0.989 ± 0.01 0.838 ± 0.04

Note: The data is reported as mean ± standard deviation.
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Table 6.

The five-fold cross-validation false positive rate comparison for fixed sensitivity thresholds for the selected 

IED detectors.

Method FP rate (per minute) for sensitivity = 80% (F1-score) FP rate (per minute) for sensitivity = 90% (F1-score)

SVMG 4.72 ± 5.43 11.57 ± 12.30

0.433 0.242

Ensemble CART 2.55 ± 3.48 8.61 ± 10.68

0.439 0.218

CNN 0.2 ± 0.11 0.92 ± 0.83

0.809 0.682

Note: The data is reported as mean ± standard deviation.
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